大一文科高数试题
大一上高数考试题库

《高数》试卷 1 (上)一.选择题(将答案代号填入括号内,每题 3 分,共 30 分) .1 .下列各组函数中,是相同的函数的是() .( A )( B )和( C )和( D )和 12 .函数在处连续,则() .( A ) 0 ( B )( C ) 1 ( D ) 23 .曲线的平行于直线的切线方程为() .( A )( B )( C )( D )4 .设函数,则函数在点处() .( A )连续且可导( B )连续且可微( C )连续不可导( D )不连续不可微5 .点是函数的() .( A )驻点但非极值点( B )拐点( C )驻点且是拐点( D )驻点且是极值点6 .曲线的渐近线情况是() .( A )只有水平渐近线( B )只有垂直渐近线( C )既有水平渐近线又有垂直渐近线( D )既无水平渐近线又无垂直渐近线7 .的结果是() .( A )( B )( C )( D )8 .的结果是() .( A )( B )( C )( D )9 .下列定积分为零的是() .( A )( B )( C )( D )10 .设为连续函数,则等于() .( A )( B )( C )( D )二.填空题(每题 4 分,共 20 分)1 .设函数在处连续,则.2 .已知曲线在处的切线的倾斜角为,则.3 .的垂直渐近线有条 .4 ..5 ..三.计算(每小题 5 分,共 30 分)1 .求极限①②2 .求曲线所确定的隐函数的导数.3 .求不定积分①②③四.应用题(每题 10 分,共 20 分)1.作出函数的图像 .2 .求曲线和直线所围图形的面积 .《高数》试卷 1 参考答案一.选择题1 . B2 . B3 . A4 . C5 . D6 . C7 . D8 . A9 . A 10 . C 二.填空题1 .2 .3.24.5.2三.计算题1①② 2.3. ①②③四.应用题1.略2.《高数》试卷 2 (上)一 . 选择题 ( 将答案代号填入括号内 , 每题 3 分 , 共 30 分 )1. 下列各组函数中 , 是相同函数的是 ( ).(A) 和 (B) 和(C) 和 (D) 和2. 设函数,则() .(A) 0 (B) 1 (C) 2 (D) 不存在3. 设函数在点处可导,且>0, 曲线则在点处的切线的倾斜角为 { }.(A) 0 (B) (C) 锐角 (D) 钝角4. 曲线上某点的切线平行于直线, 则该点坐标是 ( ).(A) (B) (C) (D)5. 函数及图象在内是 ( ).(A) 单调减少且是凸的 (B) 单调增加且是凸的 (C) 单调减少且是凹的 (D) 单调增加且是凹的6. 以下结论正确的是 ( ).(A) 若为函数的驻点 , 则必为函数的极值点 .(B) 函数导数不存在的点 , 一定不是函数的极值点 .(C) 若函数在处取得极值 , 且存在 , 则必有=0.(D) 若函数在处连续 , 则一定存在 .7. 设函数的一个原函数为, 则=( ).(A) (B) (C) (D)8. 若, 则( ).(A) (B) (C) (D)9. 设为连续函数 , 则=( ).(A) (B) (C) (D)10. 定积分在几何上的表示 ( ).(A) 线段长(B) 线段长(C) 矩形面积(D) 矩形面积二 . 填空题 ( 每题 4 分 , 共 20 分 )1. 设, 在连续 , 则=________.2. 设, 则_________________ .3. 函数的水平和垂直渐近线共有 _______ 条 .4. 不定积分______________________.5. 定积分___________.三 . 计算题 ( 每小题 5 分 , 共 30 分 )1. 求下列极限 :①②2. 求由方程所确定的隐函数的导数.3. 求下列不定积分 :①②③四 . 应用题 ( 每题 10 分 , 共 20 分 )1. 作出函数的图象 .( 要求列出表格 )2. 计算由两条抛物线:所围成的图形的面积 .《高数》试卷 2 参考答案一 . 选择题: CDCDB CADDD二填空题: 1. - 2 2. 3.3 4. 5.三 . 计算题: 1. ①② 1 2.3. ①②③四 . 应用题: 1. 略 2.《高数》试卷 3 (上)一、填空题 ( 每小题 3 分 , 共 24 分 )1. 函数的定义域为 ________________________.2. 设函数, 则当 a =_________ 时 , 在处连续 .3. 函数的无穷型间断点为 ________________.4. 设可导 , , 则5.6. =______________.7.8. 是 _______ 阶微分方程 .二、求下列极限 ( 每小题 5 分 , 共 15 分 )1. ;2. ;3.三、求下列导数或微分 ( 每小题 5 分 , 共 15 分 )1. , 求.2. , 求.3. 设, 求.四、求下列积分 ( 每小题 5 分 , 共 15 分 )1. .2. .3.五、 (8 分 ) 求曲线在处的切线与法线方程 .六、 (8 分 ) 求由曲线直线和所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分 ) 求微分方程的通解 .八、 (7 分 ) 求微分方程满足初始条件的特解 .《高数》试卷 3 参考答案一. 1 . 2. 3. 4.5. 6.0 7. 8. 二阶二 .1. 原式 =2.3. 原式 =三 .1.2.3. 两边对 x 求写:四 .1. 原式 =2. 原式 ===3. 原式 =五 .切线:法线:六 .七 . 特征方程 :八 .由《高数》试卷 4 (上)一、选择题(每小题 3 分)1 、函数的定义域是() .A B C D2 、极限的值是() .A 、B 、C 、D 、不存在3 、() .A 、B 、C 、D 、4 、曲线在点处的切线方程是()A 、B 、C 、D 、5 、下列各微分式正确的是() .A 、B 、C 、D 、6 、设,则() .A 、B 、C 、D 、7 、() .A 、B 、C 、D 、8 、曲线,,所围成的图形绕轴旋转所得旋转体体积() .A 、B 、C 、D 、9 、() .A 、B 、C 、D 、10 、微分方程的一个特解为() .A 、B 、C 、D 、二、填空题(每小题 4 分)1 、设函数,则;2 、如果, 则 .3 、;4 、微分方程的通解是 .5 、函数在区间上的最大值是,最小值是;三、计算题(每小题 5 分)1 、求极限;2 、求的导数;3 、求函数的微分;4 、求不定积分;5 、求定积分;6 、解方程;四、应用题(每小题 10 分)1、求抛物线与所围成的平面图形的面积 .2、利用导数作出函数的图象 .参考答案一、 1 、 C ; 2 、 D ; 3 、 C ; 4 、 B ; 5 、 C ; 6 、 B ; 7 、 B ; 8 、A ; 9 、 A ; 10 、 D ;二、 1 、; 2 、; 3 、; 4 、; 5 、 8 , 0三、 1 、 1 ; 2 、; 3 、; 4 、; 5 、; 6 、;四、 1 、;2 、图略《高数》试卷 5 (上)一、选择题(每小题 3 分)1 、函数的定义域是() .A 、B 、C 、D 、2 、下列各式中,极限存在的是() .A 、B 、C 、D 、3 、() .A 、B 、C 、D 、4 、曲线的平行于直线的切线方程是() .A 、B 、C 、D 、5 、已知,则() .A 、B 、C 、D 、6 、下列等式成立的是() .A 、B 、C 、D 、7 、计算的结果中正确的是() .A 、B 、C 、D 、8 、曲线,,所围成的图形绕轴旋转所得旋转体体积() .A 、B 、C 、D 、9 、设﹥,则() .A 、B 、C 、 0D 、10 、方程()是一阶线性微分方程 .A 、B 、C 、D 、二、填空题(每小题 4 分)1 、设,则有,;2 、设,则;3 、函数在区间的最大值是,最小值是;4 、;5 、微分方程的通解是 .三、计算题(每小题 5 分)1 、求极限;2 、求的导数;3 、求函数的微分;4 、求不定积分;5 、求定积分;6 、求方程满足初始条件的特解 .四、应用题(每小题 10 分)1 、求由曲线和直线所围成的平面图形的面积 .2 、利用导数作出函数的图象 .参考答案( B 卷)一、 1 、 B ; 2 、 A ; 3 、 D ; 4 、 C ; 5 、 B ; 6 、 C ; 7 、 D ; 8 、A ; 9 、 D ; 10 、 B.二、 1 、,; 2 、; 3 、,; 4 、; 5 、.三、 1 、; 2 、; 3 、;4 、;5 、;6 、;• 1 、; 2 、图略。
大学文科高数试题及答案

大学文科高数试题及答案一、选择题(每题4分,共40分)1. 假设函数f(x)在点x=a处可导,那么下列说法正确的是:A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处可能不连续D. f(x)在x=a处的导数为0答案:A2. 极限lim(x→0)(sinx/x)的值是:A. 1B. 0C. 2D. 不存在答案:A3. 以下哪个选项是微分方程的解:A. y = e^x + CB. y = e^(-x) + CC. y = x^2 + CD. y = sin(x) + C答案:A4. 函数f(x)=x^2在区间[0,2]上的最大值是:A. 0B. 1C. 4D. 2答案:C5. 积分∫(0到1) x dx的值是:A. 0B. 1/2C. 1D. 2答案:B6. 以下哪个函数是偶函数:A. f(x) = x^3B. f(x) = x^2C. f(x) = sin(x)D. f(x) = |x|答案:B7. 以下哪个选项是函数f(x)=x^2的原函数:A. x^3B. 2xC. x^3/3D. x^2/2答案:C8. 如果函数f(x)在区间(a,b)上单调递增,则:A. f(x)在区间(a,b)上一定连续B. f(x)在区间(a,b)上可能不连续C. f(x)在区间(a,b)上一定存在最大值D. f(x)在区间(a,b)上一定存在最小值答案:B9. 以下哪个选项是函数f(x)=ln(x)的导数:A. 1/xB. xC. ln(x)D. 1答案:A10. 以下哪个选项是函数f(x)=e^x的不定积分:A. e^x + CB. e^(-x) + CC. e^x/x + CD. e^x * x + C答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3在x=1处的导数是________。
答案:32. 极限lim(x→∞)(1/x)的值是________。
答案:03. 函数f(x)=x^2+2x+1的最小值是________。
大一上学期(第一学期)高数期末考试题(有答案)

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(10=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x ye y xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1330()xf x dx xe dx ---=+⎰⎰⎰03()xxd e --=-+⎰⎰00232cos (1sin )x xxe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰令3214e π=--12. 解:由(0)0f =,知(0)0g =。
大学文科高数试题及答案

文科高等数学一、填空题1、函数x x f -=51)(的定义域是(5,∞-)2、已知极限32lim 22=-+-→x k x x x ,则2-=k 。
3、曲线),在(211+=x y 处切线斜率是:21 4、设x xy 2=,则)1(ln 2'2+=x x y x 5、若⎰⎰+=-+=C x dx x f C x dx x f )1()(,则6、已知)(cos x f x 是的一个原函数,则⎰+-=C x x x dx x xf sin cos )(。
二、选择题1、设{}{}=,则、、=,、、M P M P /531321=(B ) A 、{}5 B 、{}2 C 、{}1 D 、{}3 2、在112+-∙=x x e e x y 其定义域(∞∞-,)内是(B ) A 、奇函数 B 、偶函数 C 、非奇非偶函数 D 、有界函数3、以下计算正确的是(D )A 、)(22ex d dx xe x =B 、x d x dxsin 12=-C 、)1(2x d xdx -= D 、x dx x 3ln 21= 5、下列在指定区间是单调增函数的为(C )A 、)1,1(,-=x yB 、),(,sin +∞-∞=x yC 、)0,(,2-∞-=x yD 、),0(,3+∞=-xy6、已知的值为处有极小值,则在a x x x ax x f 11)(023=---=(A ) A 、1 B 、31 C 、0 D 、31-7、设函数32cos 21cos )(π=-=x x x a x f 在点处取得极值,则=a (C ) A 、0 B 、21 C 、1 D 、2三、判断题1、若有极限在点可导,则在点00)()(x x f x x f (V )2、极限d x e d bx xa =++∞→)1(lim (X ) 3、⎰+=C x f dx x f x xf )(21)(')(2222(X ) 4、已知.....718.2=e 是一个无理数,则⎰+=C x dx x e e (X ) 四、证明题 若⎪⎩⎪⎨⎧=≠=0,00,1sin sin )(2x x x x x f 证明:处可导在0)(=x x f 证明:xx x x f x f x x 1sin sin lim )0()(lim 200→→=-=01sin sin sin lim 0=∙→x x x x x 处可导在0)(=∴x x f五、解答题 解不定积分⎰dx xx x 3sin cos 由原式=⎰⎰⎰⎪⎭⎫ ⎝⎛-==x xd x dx xx x x x 233sin 121)(sin sin sin cos =⎰+-dx xx x 22sin 121sin 2 =⎰+-xdx x x 22csc 21sin 2 =C x x x +--cot 21sin 22欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
《大一高等数学》试卷(十份)

《大一高等数学》试卷(十份)《高等数学试卷》一.选择题(3分10)1.点M12,3,1到点M22,7,4的距离M1M2().A.3B.4C.5D.62.向量ai2jk,b2ij,则有().A.a∥bB.a⊥bC.a,bD.a,b343.函数y2某2y21某y122的定义域是().某,y1某C.2222A.某,y1某y2B.某,y1某y22y2某,y1某2D2y224.两个向量a与b垂直的充要条件是().A.ab0B.ab0C.ab0D.ab05.函数z某3y33某y的极小值是().A.2B.2C.1D.16.设z某iny,则zy1,4=().A.22B.C.2D.2221收敛,则().pnn17.若p级数A.p1B.p1C.p1D.p1某n8.幂级数的收敛域为().n1nA.1,1B1,1C.1,1D.1,1某9.幂级数在收敛域内的和函数是().n02nA.1221B.C.D.1某2某1某2某10.微分方程某yylny0的通解为().A.yce某B.ye某C.yc某e某D.yec某二.填空题(4分5)1.一平面过点A0,0,3且垂直于直线AB,其中点B2,1,1,则此平面方程为______________________.2.函数zin某y的全微分是______________________________.2z3.设z某y3某y某y1,则_____________________________.某y3234.1的麦克劳林级数是___________________________.2某5.微分方程y4y4y0的通解为_________________________________.三.计算题(5分6)u1.设zeinv,而u某y,v某y,求zz,.某yzz,.某y2.已知隐函数zz某,y由方程某22y2z24某2z50确定,求3.计算inD某2y2d,其中D:2某2y242.4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R为半径).5.求微分方程y3ye2某在y四.应用题(10分2)某00条件下的特解.1.要用铁板做一个体积为2m的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线yf某上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点1,,求此曲线方程.313试卷3参考答案一.选择题CBCADACCBD二.填空题1.2某y2z60.2.co某yyd某某dy.3.6某2y9y21.4.n01n某n.2n12某5.yC1C2某e三.计算题1..zze某yyin某yco某y,e某y某in某yco某y.某y2.z2某z2y,.某z1yz13.4.20dind62.2163R.33某5.yee2某.四.应用题1.长、宽、高均为32m时,用料最省.2.y12某.3《高数》试卷4(下)一.选择题(3分10)1.点M14,3,1,M27,1,2的距离M1M2().A.12B.13C.14D.152.设两平面方程分别为某2y2z10和某y50,则两平面的夹角为(A.6B.4C.3D.23.函数zarcin某2y2的定义域为().A.某,y0某2y21B.某,y0某2y21C.某,y0某2y22D.某,y0某2y224.点P1,2,1到平面某2y2z50的距离为().A.3B.4C.5D.65.函数z2某y3某22y2的极大值为().A.0B.1C.1D.126.设z某23某yy2,则z某1,2().A.6B.7C.8D.97.若几何级数arn是收敛的,则().n0A.r1B.r1C.r1D.r18.幂级数n1某n的收敛域为().n0A.1,1B.1,1C.1,1D.1,19.级数inna是(n1n4)..)A.条件收敛B.绝对收敛C.发散D.不能确定10.微分方程某yylny0的通解为().A.yec某B.yce某C.ye某D.yc某e某二.填空题(4分5)某3t1.直线l过点A2,2,1且与直线yt平行,则直线l的方程为z12t__________________________.2.函数ze的全微分为___________________________.3.曲面某yz2某24y2在点2,1,4处的切平面方程为_____________________________________.4.1的麦克劳林级数是______________________.21某某15.微分方程某dy3yd某0在y三.计算题(5分6)1条件下的特解为______________________________.1.设ai2jk,b2j3k,求ab.2.设zuvuv,而u某coy,v某iny,求22zz,.某yzz,.某y3.已知隐函数zz某,y由某33某yz2确定,求2222224.如图,求球面某yz4a与圆柱面某y2a某(a0)所围的几何体的体积.5.求微分方程y3y2y0的通解.四.应用题(10分2)1.试用二重积分计算由y某,y2某和某4所围图形的面积.2.如图,以初速度v0将质点铅直上抛,不计阻力,求质点的运动规律某某t.(提示:d某d2某t0v0)g.当时,有,某某02dtdt试卷4参考答案一.选择题CBABACCDBA.二.填空题1.某2y2z1.112某y2.eyd某某dy.3.8某8yz4.n2n1某.n04.5.y某.三.计算题1.8i3j2k.2.zz3某2inycoycoyiny,2某3inycoyinycoy某3in3yco3y某y.3.zyzz某z.,22某某yzy某yz3232a.3234.5.yC1e2某C2e某.四.应用题1.16.32.某12gtv0t某0.2《高数》试卷5(上)一、填空题(每小题3分,共24分)1.函数y19某2的定义域为________________________.in4某,某02.设函数f某某,则当a=_________时,f某在某0处连续.某0a,某213.函数f(某)2的无穷型间断点为________________.某3某2某4.设f(某)可导,yf(e),则y____________.某21_________________.5.lim2某2某某5某3in2某d某=______________.6.41某某211d某2tedt_______________________.7.d某08.yyy30是_______阶微分方程.二、求下列极限(每小题5分,共15分)某31e某11.lim;2.;lim23.lim1.某3某9某0in某某2某三、求下列导数或微分(每小题5分,共15分)某co某,求y(0).2.ye,求dy.某2dy3.设某ye某y,求.d某某1.y四、求下列积分(每小题5分,共15分)11.2in某d某.2.某ln(1某)d某.某3.10e2某d某某t五、(8分)求曲线在t处的切线与法线方程.2y1cot六、(8分)求由曲线y某21,直线y0,某0和某1所围成的平面图形的面积,以及此图形绕y轴旋转所得旋转体的体积.七、(8分)求微分方程y6y13y0的通解.八、(7分)求微分方程yye某满足初始条件y10的特解.某《高数》试卷5参考答案某某一.1.(3,3)2.a43.某24.ef(e)1某25.6.07.2某e8.二阶21二.1.原式=lim某0某某2.lim11某3某36112某1)]2e23.原式=lim[(1某2某三.1.y2,(某2)2y(0)122.dyin某eco某d某3.两边对某求写:y某ye某y(1y)e某yy某yyy'某e某y某某y四.1.原式=ln某2co某C某某2122.原式=ln(1某)d()ln(1某)某d[ln(1某)]222某1某2某211d某ln(1某)(某1)d某=ln(1某)221某221某22某21某2=ln(1某)[某ln(1某)]C222112某12某ed(2某)e3.原式=022dydyint,五.d某d某2101(e21)2t1.且当t2时,某2,y1切线:y1某2,即某y120法线:y1(某),即某y121132S(某1)d某(某某)六.03102043V某2dy(y1)dy11221(y2y)22112r32i七.特征方程:八.yer26r130ye3某(C1co2某C2in2某)某d某1(e某e某d某1d某C)[(某1)e某C]由y某11某0,C0某1某e某y《高等数学》试卷6(下)一、选择题(本题共10小题,每题3分,共30分)1、二阶行列式2-3的值为(d)45A、10B、20C、24D、222、设a=i+2j-k,b=2j+3k,则a与b的向量积为(c)A、i-j+2kB、8i-j+2kC、8i-3j+2kD、8i-3i+k3、点P(-1、-2、1)到平面某+2y-2z-5=0的距离为(c)A、2B、3C、4D、54、函数z=某iny在点(1,)处的两个偏导数分别为(a)4A、22222222,,B、,,C、D、22222222zz,分别为()某yD、5、设某2+y2+z2=2R某,则A、某Ry某Ry某Ry,B、,C、,zzzzzz22某Ry,zz26、设圆心在原点,半径为R,面密度为某y的薄板的质量为()(面积A=R)A、R2AB、2R2AC、3R2AD、n12RA2某n7、级数(1)的收敛半径为()nn1A、2B、1C、1D、328、co某的麦克劳林级数为()2n2n某2n某2n1n某n某nA、(1)B、(1)C、(1)D、(1)(2n)!(2n)!(2n)!(2n1)!n0n1n0n0n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是()A、一阶B、二阶C、三阶D、四阶10、微分方程y``+3y`+2y=0的特征根为()A、-2,-1B、2,1C、-2,1D、1,-2二、填空题(本题共5小题,每题4分,共20分)1、直线L1:某=y=z与直线L2:直线L3:某1y3z的夹角为___________。
大一高等数学考卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f'(a)等于()A.f(a)B.f(a+h)-f(a)/h(h趋于0)C.lim(f(a+h)-f(a))/h(h趋于0)D.f(a+h)-f(a)2.下列函数中,在x=0处连续但不可导的是()A.y=|x|B.y=x^2C.y=x^3D.y=1/x3.若函数f(x)在区间I上单调递增,则f'(x)在I上()A.必大于0B.必小于0C.可以为0D.不存在4.设函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在(a,b)内()A.单调递增B.单调递减C.有极值点D.无极值点5.设函数f(x)在x=a处连续,且lim(f(x)-f(a))/(x-a)=L,则f(x)在x=a处()A.可导,f'(a)=LB.可导,f'(a)不存在C.不可导D.无法确定二、判断题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f(x)在x=a处一定连续。
()2.若函数f(x)在区间I上单调递增,则f'(x)在I上一定大于0。
()3.若函数f(x)在区间I上有极值点,则f'(x)在I上一定存在零点。
()4.若函数f(x)在区间I上连续,则f(x)在I上一定可积。
()5.若函数f(x)在区间I上可导,则f(x)在I上一定连续。
()三、填空题(每题1分,共5分)1.函数f(x)=x^3-3x在x=1处的导数为______。
2.函数f(x)=e^x在x=0处的导数为______。
3.函数f(x)=lnx在x=1处的导数为______。
4.函数f(x)=sinx在x=π/2处的导数为______。
5.函数f(x)=cosx在x=0处的导数为______。
四、简答题(每题2分,共10分)1.简述导数的定义。
2.简述连续与可导的关系。
3.简述罗尔定理。
4.简述拉格朗日中值定理。
大一高数试题及答案

大一高数试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2在区间(-∞, +∞)上的单调性是:A. 单调递增B. 单调递减C. 先减后增D. 先增后减答案:A2. 极限lim(x→0) (sin x)/x的值是:A. 0B. 1C. -1D. ∞答案:B3. 函数f(x)=x^3-3x+1的极值点是:A. x=1B. x=-1C. x=0D. x=2答案:A4. 曲线y=x^2在点(1,1)处的切线斜率是:A. 0B. 1C. 2D. -2答案:C5. 曲线y=e^x与直线y=ln x的交点个数是:A. 0B. 1C. 2D. 3答案:B二、填空题(每题4分,共20分)1. 函数f(x)=x^2-4x+3的最小值是________。
答案:-12. 极限lim(x→∞) (x^2-3x+2)/(x^3+2x^2-5)的值是________。
答案:03. 函数f(x)=x^3+2x^2-5x+1的驻点是________。
答案:x=-3或x=14. 曲线y=ln x在点(1,0)处的切线方程是________。
答案:y=x-15. 曲线y=e^x与y=x^2的交点坐标是________。
答案:(0,1)和(1,e)三、计算题(每题10分,共30分)1. 求极限lim(x→0) [(x^2+1)/(x-1)]。
答案:-12. 求函数f(x)=x^3-6x^2+11x-6的极值。
答案:极小值点x=1,极小值f(1)=0;极大值点x=3,极大值f(3)=4。
3. 求曲线y=x^2-4x+3在x=2处的切线方程。
答案:y=-x+1四、证明题(每题15分,共15分)证明:函数f(x)=x^3在区间(-∞, +∞)上是单调递增的。
答案:略五、应用题(每题15分,共15分)1. 某工厂生产一种产品,其成本函数为C(x)=0.01x^2+0.5x+100,其中x为生产量(单位:千件)。
求该产品的成本最低时的生产量。
(完整版)大一高数试题及答案.doc,推荐文档

大一高数试题及答案一、填空题(每小题1分,共10分)1.函数 的定义域为______________________。
22111arcsin xx y -+-= 2.函数上点( 0,1 )处的切线方程是______________。
2e x y += 3.设f(X )在可导,且,则0x A (x)f'=hh x f h x f h )3()2(lim000--+→= _____________。
4.设曲线过(0,1),且其上任意点(x ,y )的切线斜率为2x ,则该曲线的方程是____________。
5._____________。
=-⎰dx xx41 6.__________。
=∞→xx x 1sinlim 7.设f(x,y)=sin(xy),则fx(x,y)=____________。
9.微分方程的阶数为____________。
22233)(3dx y d x dxy d + ∞ ∞10.设级数 ∑ an 发散,则级数 ∑ an _______________。
n=1 n=1000二、单项选择题。
(1~10每小题1分,11~20每小题2分,共30分)1.设函数则f[g(x)]= ( ) x x g xx f -==1)(,1)( ① ② ③ ④xx 11-x 11-x -112.是 ( )11sin +xx ①无穷大量 ②无穷小量 ③有界变量 ④无界变量3.下列说法正确的是 ( )①若f( X )在 X =Xo 连续, 则f( X )在X =Xo 可导 ②若f( X )在 X =Xo 不可导,则f( X )在X =Xo 不连续 ③若f( X )在 X =Xo 不可微,则f( X )在X =Xo 极限不存在 ④若f( X )在 X =Xo 不连续,则f( X )在X =Xo 不可导 4.若在区间(a,b)内恒有,则在0)(",0)('><x f x f (a,b)内曲线弧y=f(x)为 ( )①上升的凸弧 ②下降的凸弧 ③上升的凹弧 ④下降的凹弧5.设,则 ( ))(')('x G x F = ① F(X)+G(X) 为常数 ② F(X)-G(X) 为常数 ③ F(X)-G(X) =0 ④⎰⎰=dx x G dxddx x F dxd )()( 1 6.( )=⎰-dx x 11-1① 0 ② 1 ③ 2 ④ 3 7.方程2x+3y=1在空间表示的图形是 ( ) ①平行于xoy面的平面 ②平行于oz轴的平面 ③过oz轴的平面 ④直线8.设,则f(tx,ty)yx y x y x y x f tan),(233++==( )① ②),(y x tf),(2y x f t ③ ④ ),(3y x f t ),(12y x tan +1 ∞9.设an ≥0,且lim ───── =p,则级数 ∑an ( ) n→∞ a n=1 ①在p〉1时收敛,p〈1时发散 ②在p≥1时收敛,p〈1时发散 ③在p≤1时收敛,p〉1时发散 ④在p〈1时收敛,p〉1时发散10.方程 y'+3xy=6x2y 是 ( ) ①一阶线性非齐次微分方程 ②齐次微分方程③可分离变量的微分方程 ④二阶微分方程 (二)每小题2分,共20分11.下列函数中为偶函数的是 ( ) ①y=ex ②y=x3+1③y=x3cosx ④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使( )①f(b)-f(a)=f'(ζ)(b-a) ②f(b)-f(a)=f'(ζ)(x2-x1) ③f(x2)-f(x1)=f'(ζ)(b-a) ④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X )在 X =Xo 的左右导数存在且相等是f(X )在 X =Xo 可导的 ( )①充分必要的条件 ②必要非充分的条件 ③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim───∫3tgt2dt=()x→0x3 01①0②1③──④∞3xy17.limxysin─────=()x→0x2+y2y→0①0②1③∞④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=─────pdy∞∞19.设幂级数 ∑ an xn 在xo (xo ≠0)收敛, 则 ∑ an xn 在│x│〈│xo│( )n=o n=o①绝对收敛 ②条件收敛 ③发散 ④收敛性与an 有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ= ( ) D x 1 1 sinx① ∫ dx ∫ ───── dy 0 x x__1 √y sinx② ∫ dy ∫ ─────dx 0 y x __1 √x sinx③ ∫ dx ∫ ─────dy 0 x x __1 √x sinx④ ∫ dy ∫ ─────dx 0 x x三、计算题(每小题5分,共45分)1.设求 y’ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题(每小题1分,共10分)
_______ _ 1
1.函数y=arcsin√1-x2+——————的定义域为
_________
√1-x2
_______________。
2.函数y=x+ex上点(0,1 )处的切线方程是______________。
f(Xo+2h)-f(Xo -3h)
3.设f(X)在Xo可导且f'(Xo)=A,则lim ———————————————
h→o
h
=_____________。
4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是
____________。
x
5.∫—————dx=_____________。
1-x4
1
6.lim Xsin———=___________。
x→∞X
7.设f(x,y)=sin(xy),则fx(x,y)=____________。
_______
R√R2-x2 8.累次积分∫ dx∫f(X2 +Y2)dy 化为极坐标下的累次积分为
____________。
00
d3y3d2y
9.微分方程———+——(———)2的阶数为____________。
dx3x dx2
∞
∞
10.设级数∑an发散,则级数∑ an_______________。
n=1
n=1000
二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,
1~10每小题1分,11~20每小题2分,共30分)
(一)每小题1分,共10分
1
1.设函数f(x)=——,g(x)=1-x,则f〔g(x)〕=()
x
1
1 1
①1-——②1+——③————④x
x
x1-x
1
2.x→0 时,xsin——+1 是()
X
①无穷大量②无穷小量③有界变量④无界变量
3.下列说法正确的是()
①若f(X )在X=Xo连续,则f(X )在X=Xo 可导
②若f(X )在X=Xo不可导,则f(X )在X=Xo 不连续
③若f(X )在X=Xo不可微,则f(X )在X=Xo 极限不存在
④若f(X )在X=Xo不连续,则f(X )在X=Xo 不可导
4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)
内曲线弧y=f(x)为()
①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧
5.设F'(x)=G'(x),则()
① F(X)+G(X) 为常数
② F(X)-G(X) 为常数
③ F(X)-G(X) =0
d
d
④——∫F(x)dx=——∫G(x)dx
dx dx
1
6.∫│x│dx=()
-1。