伟人简介:数学家高斯
P310数学王子高斯的故事

善于归纳总结
高斯在解题过程中善于归纳总结,发现问题的本质 和规律,从而提出一般性的解题方法和思路。
创新思维与非常规方法
高斯在解题时常常运用创新思维和非常规方 法,打破传统思维模式,寻求新的解题途径 。
对后世数学家启示意义
1 2 3
重视基础与兴趣培养
高斯数学思想的形成离不开其扎实的基础和浓厚 的兴趣,这提示后世数学家要重视数学基础教育 和兴趣培养。
高斯对后世影响及评价
010203 Nhomakorabea04
高斯被誉为“数学王子”,是 数学史上最伟大的数学家之一
。
高斯的工作不仅在数学领域产 生了深远影响,还推动了物理 学、天文学等其他学科的发展
。
高斯的学术风格严谨、创新, 为后世数学家树立了榜样。
高斯一生追求真理、献身科学 事业的精神激励着无数后来者
继续探索数学的奥秘。
02
高斯在上小学时,老师为了让学生们从1加到100,以锻炼他们的算术能力。然 而高斯却很快给出了正确答案5050,令老师和同学们大为惊讶。原来,高斯通 过观察发现了等差数列求和的简便方法,即首尾相加乘以项数除以2。
03
高斯在哥廷根大学读书期间,生活非常贫困。为了节省开支,他常常只吃最简 单的食物,甚至有时一连几天只吃面包和黄油。然而,他仍然坚持每天进行长 时间的学习和研究,展现出了顽强的毅力和对数学的热爱。
02
高斯童年时期故事
家庭背景与成长环境
高斯出生于一个普通家庭,父亲是一名勤劳的工 匠,母亲则是一名家庭主妇。
家庭氛围温馨和睦,高斯从小在爱与关怀中长大 。
虽然家庭经济条件一般,但父母总是尽力满足高 斯的学习需求。
早期展现出数学天赋
01
高斯在幼年时就表现出对数字的敏感和喜爱,经常 独自玩耍时摆弄数字。
高斯GaussCarlFriedrich德国数学家

阿基米德﹝Archimedes﹞约公元前287─前 212,古希腊 。阿基米德是整个历史上最伟大 的数学家之一,后人对他给以极高的评价,常 把他和牛顿、高斯并列为有史以来三个贡献最 大的数学家。阿基米德的著作《圆的量度》、 《抛物线的求积》、《论球和圆柱》等是数学 阐述的典范,写得完整、简练,显示出巨大的 创造性、计算技能和证明的严谨性。他对数学 的最大贡献是某些积分学方法的早期萌芽。历 史上有的数学家勇于开辟新的园地,而缺乏慎 密的推理;有的数学家偏重于逻辑证明,而对 新领域的开拓却徘徊不前。阿基米德则兼有二 者之长,他常常通过实践直观地洞察到事物的 本质,然后运用逻辑方法使经验上升为理论﹝ 如浮力问题﹞,再用理论去指导实际工作﹝如 发明机械﹞。没有一位古代的科学家,像阿基 米德那样将熟练的计算技巧和严格证明融为一 体,将抽象的理论和工程技术的具体应用紧密 结合起来
8
罗素﹝Russell, Bertrand Arthur Willian, 18721970﹞英国数学家、逻辑学家。1875年5月18日 生于蒙茅斯郡特里莱克,1970年2月2日卒于威 尔士的普拉斯彭林。早期接受家庭教育,1890 年入剑桥大学三一学院学习数学和哲学。1895 年以论文《论几何学基础》获得剑桥大学研究 员资格。1900年罗素接触到布尔和皮亚诺的符 号逻辑,1901年开始与怀特海合作,试图用逻 辑将全部数学推出来,经过10年的奋战,写成 三大卷的《数学原理》。这部著作对数理逻辑 的发展产生了重要影响,也使罗素本人获得了 崇高的声誉。在写这部书的过程中,他提出了 著名的「罗素悖论」,这对20世纪初关于数学 基础的论战产生过极大影响,导致第三次数学 危机。罗素还是本世纪最有影响的哲学家之一, 其学术活动除数学外,还涉及物理学、历史、 文学、宗教、政治和教育等多方面。
【名人故事】八岁的高斯发现了数学定理

【名人故事】八岁的高斯发现了数学定理在数学史上,高斯(Carl Friedrich Gauss)被誉为“数学之王”,他的数学成就被世人广泛认可,并且对数学领域的发展贡献良多。
让人惊叹的是,他的数学才能早在八岁时就已经展现出来。
据说,高斯八岁那年,他在喀尔巴阡山的一所小学里,当时的老师给学生们出了一个难题,结果大多数同学都束手无策,可是高斯却根据自己的思考得出了一个答案。
这个小小的故事,在当时并没有引起太多的关注,但回顾当时的情景,我们不禁感到震惊:八岁的孩子居然凭借自己的智慧和数学天赋得出了一个数学定理,这是何等的惊人!下面,我们来探究一下这个惊人的故事。
高斯生于1777年,出生在德国的布伦瑞克,从小就展现出非凡的数学天赋。
据说,高斯三岁时,他的父母使他上了学,在第一天上学的路上,他的母亲对他进行了一次古怪的测试,她给高斯一张纸,让他计算100以内所有数的和,结果高斯只用了短短几分钟就计算出了答案。
这一幕让人们对他的智力产生了浓厚的兴趣。
从那时起,高斯的数学才华就一直备受关注。
而最为令人震惊的是,高斯在八岁时就已经展现出了他非凡的数学才能。
在那所小学里,老师给学生们出了一个有关数学的难题:计算1加到100的和。
其他学生们犯难了,开始进行繁杂的计算,可是高斯只用了一会儿的时间就得出了正确的答案:5050。
当时的老师颇为惊讶,可是高斯并没有引起很多的关注,大家只是觉得他是一个普通的孩子。
备受关注的是,高斯竟然是通过一种非常聪明的方法得出了这个数学定理。
据说,高斯借助了他父亲的数学专业书籍,通过一种叫做“等差数列求和”的数学方法,轻松地得出了该定理。
所谓的等差数列,就是数列中任意两项之间的差都是一个常数。
而这种数列求和的方法,正是通过数列项数和首尾两项之和乘以项数的一半得出。
高斯聪明的利用了这个方法,迅速计算出了1加到100的和。
就是这个简单而聪明的方法,使得高斯能够轻松解答老师出的这个数学难题。
高斯八岁时的数学成就是何等的惊人!这个小小的故事让我们看到了他卓越的数学头脑和非凡的智慧。
数学家高斯的故事PPT

பைடு நூலகம்
证明欧几里得定理
总结词:开创先河
详细描述:高斯在非欧几里得几何领域做出了开创性的贡献,他提出的双曲几何和椭圆几何等理论,为后来的几何学发展奠定了基础。
高斯与非欧几里得几何的关联
05
CHAPTER
高斯的精神和品质
01
02
03
从小展现出对数学的浓厚兴趣,经常废寝忘食地研究数学问题。
自学了大量数学知识,并不断深化自己的理解。
02
不满足于现有成果,不断探索新的数学领域和问题。
勇于挑战数学难题,不畏难而退,不断突破自我。
03
THANKS
感谢您的观看。
03
对教育的影响和贡献
04
CHAPTER
高斯的故事和传说
总结词:天才展现
详细描述:高斯在年幼时就展现出非凡的数学天赋,他通过观察和思考,发现了计算1到100的和的简便方法,这一方法被后人称为“高斯求和公式”。
计算1到100的和
VS
总结词:经典证明
详细描述:高斯对欧几里得定理的证明进行了深入的研究,他提出的证明方法既简洁又直观,为后来的数学家提供了宝贵的启示。
天文学研究
02
CHAPTER
高斯的数学成就
高斯在算术领域取得了重大突破,他发现了许多重要的定理和公式,如高斯求和公式,用于快速计算一系列数字的和。
高斯引入了最小二乘法,这是一种用于线性回归分析的统计方法,通过最小化预测值与实际值之间的平方误差来拟合数据。
算术研究
最小二乘法
算术定理
几何定理
高斯在几何学领域也有所建树,他证明了关于平面几何和球面几何的定理,如高斯-博内定理和欧拉-高斯公式。
数学家高斯的故事
数学家的名人故事:伟大的数学天才——高斯

数学家的名人故事:伟大的数学天才——高斯导语:高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。
下面是小编为您收集整理的素材,希望对您有所帮助。
伟大的数学天才——高斯高斯是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。
3岁能纠正父亲计算中的错误;10岁便独立发现了算术级数的求和公式;11岁发现了二项式定理。
少年高斯的聪颖早慧,得到了很有名望的布瑞克公爵的垂青与资助,使他得以不断深造。
19岁的高斯在进大学不久,就发明了只用圆规和直尺作出正17边形的方法,解决了两千年来悬而未决的几何难题。
1801年,他发表的《算术研究》,阐述了数论和高等代数的某些问题。
他对超几何级数、复变函数、统计数学、椭圆函数论都有重大贡献。
同时作为一个物理学家,他与威廉.韦伯合作研究电磁学,并发明了电极。
为了进行实验,高斯还发明了双线磁力计,这是他对电磁学问题研究的一个很有实际意义的成果。
高斯30岁时担任了德国着名高等学府天文台台长,并一直在天文台工作到逝世。
他平生还喜欢文学和语言学,懂得十几门外语。
他一生共发表323篇(种)着作,提出了404项科学创见,完成了4项重要发明。
高斯去世后,人们在他出生的城市竖起了他的雕像。
为了纪念他发现做出17边形的方法,雕像的底座修成17边形。
世人公认他是一位和牛顿、阿基米德、欧拉齐名的数学家。
【拓展延伸】家庭背景高斯是一对贫穷普鲁士犹太人夫妇的唯一的儿子。
母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育。
在她成为高斯父亲的第二个妻子之前,她从事女佣工作。
他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。
当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。
他曾说,他在麦仙翁堆上学会计算。
能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。
父亲格尔恰尔德·迪德里赫对高斯要求极为严厉,甚至有些过分。
高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。
世界著名数学家 卡尔·弗里德里希·高斯(C.F.Gauss)生平介绍

中文名:卡尔·弗里德里希·高斯外文名: C.F.Gauss国籍:德国出生地:不伦瑞克出生日期:1777.4.30简介逝世日期:1855.2.23职业:数学家、物理学家和天文学家主要成就:近代数学奠基者之一代表作品:高等大地测量学理论(上)这位小天才身上,用生动活泼的方式开发高斯的智力。
若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使"我们失去了一位天才"。
正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。
在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。
罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。
她性格坚强、聪明贤慧、富有幽默感。
高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出这已经超出了一个孩子能被许可的范围。
当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。
罗捷雅真地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。
然而她也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。
在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是"欧洲最伟大的数学家",为此她激动得热泪盈眶。
7岁那年,高斯第一次上学了。
头两年没有什么特殊的事情。
1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。
数学教师是布特纳,他对高斯的成长也起了一定作用。
当然,这也是一个等差数列的求和问题。
当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。
E.T.贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。
数学家高斯简介

数学家高斯简介高斯(Carl Friedrich Gauss,1777年4月30日-1855年2月23日)被公认为是数学史上最伟大的数学家之一。
他对数学的贡献横跨多个领域,包括数论、代数、几何、物理学和天文学。
高斯开创了许多新的数学分支,并带领数学发展向前迈进。
在他非凡的数学成就背后,还有一个令人钦佩的个人故事。
高斯出生在现在的德国布伦瑞克市附近的一个小村庄。
尽管他出生在一个贫穷的家庭,但他早年展示出了惊人的数学才华。
在他父亲的指导下,他很早就掌握了阿伯特·杨的《算术》等数学经典书籍。
当他只有三岁的时候,他已经展示出了解决简单数学问题的能力。
这引起了他父亲和其他人的注意,并开始为他提供更高水平的数学课程。
高斯在数学上的天赋使得他很早就引起了数学家们的注目。
当他10岁时,他的才华已经被广泛传播,他开始受到一些著名数学家的关注。
其中一位是德国数学家沃尔夫冈·布希勒,他在高斯年轻时给予了他很多指导和鼓励。
在布希勒的帮助下,高斯在16岁时发表了一篇被认为是数学领域突破性的论文,证明了一个关于构造正17边形的问题。
这引起了许多数学家的注意,并为高斯赢得了声誉。
他受到了大学的邀请,并开始对继续深造感兴趣。
高斯在哥廷根大学学习期间取得了一系列的突破性成果。
他在代数和数论领域做出了许多重要的贡献,其中最著名的是他的数论工作。
高斯在数论中发表了多篇重要的论文,主要涉及素数和二次剩余等问题。
他证明了数论中的数学定理,对数学发展产生了深远的影响。
在几何学领域,高斯也有许多贡献。
他是非欧几何学的先驱之一,主张不同于传统欧几里得几何学的观点。
高斯的非欧几何学理论在当时引起了争议,但现在被广泛接受并成为数学的一部分。
除了在数学领域的突破,高斯还对天文学和物理学产生了重要影响。
他是现代统计学的奠基人,并对电磁学和磁学理论做出了重要贡献。
高斯的法则和高斯定律在这些领域中被普遍应用。
高斯的成就和贡献为他赢得了数学家的声誉。
高斯 简介及评价

高斯高斯是德国著名数学家、物理学家、天文学家、大地测量学家。
他有数学王子的美誉,并被誉为历史上最伟大的数学家之一,和阿基米德、牛顿、欧拉同享盛名。
高斯(Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。
高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。
他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。
高斯是一对普通夫妇的儿子。
他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。
在她成为高斯父亲的第二个妻子之前,从事女佣工作。
他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。
高斯3岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。
他曾说,他在麦仙翁堆上学会计算。
能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。
当高斯9岁时候,高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。
他所使用的方法是:对50对构造成和101的数列求和为(1+100,2+99,3+98……),同时得到结果:5050。
但是据更为精细的数学史书记载,高斯所解的并不止1加到100那么简单,而是81297+81495+......+100899(公差198,项数100)的一个等差数列。
高斯的老师发现了高斯在数学上异乎寻常的天赋,于是从高斯14岁起,便资助其学习与生活。
高斯在18岁时转入哥廷根大学学习,在他19岁时,成功地用尺规构造出了规则的17角形。
高斯在1801年发表的《算术研究》是数学史上为数不多的经典著作之一,它开辟了数论研究的全新时代。
在这本书中,高斯不仅把19世纪以前数论中的一系列孤立的结果予以系统的整理,给出了标准记号的和完整的体系,而且详细地阐述了他自己的成果,其中主要是同余理论、剩余理论以及型的理论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高斯
卡尔·弗里德里希·高斯(Johann
Carl Friedrich Gauss)(1777年4月
30日—1855年2月 23日),生于布伦
瑞克,卒于哥廷根,德国著名数学家、
物理学家、天文学家、大地测量学家。
幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。
1795~1798年在哥廷根大学学习,1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。
从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。
高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。
他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。
生平事迹
少年时期
高斯是一对普通夫妇的儿子。
他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。
在她成为高斯父亲的第二个妻子之前,她从事女佣工作。
他的父亲曾做过园丁、工头、商人的助手和一个小保险公司的评估师。
当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。
高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。
他所使用的方法是:对50对构造成和101的数列求和为(1+100,2+99,3+98……),同时得到结果:5050。
这一年,高斯9岁。
但是根据更为精细的数学史书记载,高斯所解的并不止1加到100那么简单,而是81297+81495+......+100899(公差198,项数100)的一个等差数列。
当高斯12岁时,已经开始怀疑元素几何学中的基础证明。
当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。
他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。
青年时期
高斯的老师Buretter与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig 也对这个天才儿童留下了深刻印象。
于是他们从高斯14岁起,便资助其学习与生活。
这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。
18岁时,高斯转入哥廷根大学学习。
在他19岁时,第一个成功的用尺规构造出了规则的17角形。
成年时期
高斯于公元1805年10月5日与Johanna Elisabeth Rosina Osthoff小姐(1780-1809)结婚。
在公元1806年8月21日迎来了他生命中的第一个孩子约瑟。
此后,他又有两个孩子。
1807年高斯成为哥廷根大学的教授和当地天文台的台长。
虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。
尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的Richard Dedekind和黎曼,黎曼创立了黎曼几何学。
离世
高斯墓地:高斯非常信教且保守。
他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子也离开人世。
次年8月4日高斯迎娶第二位妻子。
1831年9月12日他的第二位妻子也死去,1837年高斯开始学习俄语。
1839年4月18日,他的母亲在哥廷根逝世,享年95岁。
高斯于1855年2月23日凌晨1点在哥廷根去世。
他的很多散布在给朋友的书信或笔记中的发现于1898年被发现。
数学上的成就
高斯发明了最小二乘法原理。
高斯的数论研究总结在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。
高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。
高斯在1816年左右就得到非欧几何的原理。
他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。
他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。
1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。
高斯的曲面理论后来由黎曼发展。
高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。
其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。
高斯的肖像已经被印在从1989年至2001年流通的10德国马克的纸币上。
经典著作
1799年:关于代数基本定理的博士论文
1801年:算术研究
1809年:天体运动论
1827年:曲面的一般研究
1843-1844年:高等大地测量学理论(上)
1846-1847年:高等大地测量学理论(下)。