《矩形》导学案
《矩形第1课时 矩形的性质》精品导学案 人教版八年级数学下册导学案(精品).docx

学习目标:1. 理解矩形的概念,知道矩形与平行四边形的区别与联系.2. 会证明矩形的性质,会用矩形的性质解决简单的问题. 学习重点:矩形的定义、性质及其应用.〉宙主研〈一、 课前检测二、 温故知新1. 平行四边形是怎样定义的?它有哪些性质?请分别用符号语言表示出来.2.如图,现有一个活动的平行四边形,使它的一个内角变化,当内角变化为90°N 这是我们学过的哪个图形?三、预习导航(预习教材第52页,标出你认为重要的关键词)1. 矩形的定义:有一个角是直角的平行四边形叫做 _______ ,也就是长方形.2. 矩形是特殊的平行四边形,你能根据平行四边形的性质,说出矩形的性质吗?四、自学自测1. 矩形是常见的图形,你能举出一些生活中的实例吗?2. _________________________________________ 矩形的定义中有两个条件:一是 ___________________________________________ ,二是 ________________ . 3. 已知矩形的一条对角线与一边的夹角为30° ,则矩形两条对角线相交所得的 锐角为 ________ ;若该矩形的对角线长为4cm,则矩形的两邻边长分别 为 ______ 、 _______ • 五、我的疑惑(反思)师生备注18. 2. 1矩形 第1课时矩形的性质1〉居究点一、要点探究探究点1:矩形的性质思考因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一 个角为直角,它是否具有一般平行四边形所不具有的一些特殊性质呢?活动准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四个角 度数和对角线的长度,并记录测量结果.ACBDZBADZADCZABCZBCD橡皮擦课本桌子(2)根据测量的结果,你有什么猜想?师生备注B:.ZC = ________ ° .A ZB=ZC=ZD=ZA = ____________ ° .②如图,四边形ABCD 是矩形,ZABC=90° ,对角线AC 与DB 相较于点0. 求证:AC=DB.证明:•.•四边形ABCD 是矩形,AAB _____ DC, ZABC=ZDCB= _________在AABC 和ADCB 中,VAB=DC, ZABC=ZDCB, BC= CB, AABC _____ ADCB. /. AC ___________ DB.猜想1矩形的四个角都是 __________ . 猜想2矩形的对角线— 证一证①如图,四边形ABCD 是矩形,ZB=90° . 求证:ZB=ZC=ZD=ZA=90° .证明:•••四边形ABCD 是矩形,A ZB _______ Z D, ZC ________ Z A, AB ________ DC. /. ZB+ZC= _________ ° .A又 V ZB = 90° ,思考请同学们拿出准备好的矩形纸片,折一折,观察并思考. 矩形是不是轴对称图形?如果是,那么对称轴有几条? 要点归纳:矩形除了具有平行四边形所有性质,还具有的性质有: 1. 矩形的四个角都是 _____ •矩形的对角线 _________ • 2. 矩形是 ________ 图形,它有 __ 条对称轴. A 几何语言描述: 在矩形ABCD 中,对角线AC 与DB 相交于点0.A ZABC=ZBCD=ZCDA=ZDAB =90° , AC=DB.B二、精讲点拨例1如图,在矩形ABCD 中,E 是BC 上一点,AE=AD, DF 丄AE ,垂足为F.求证:DF=DC.例2如图,将矩形ABCD 沿着直线BD 折叠,使点C 落在C ,处,BC'交AD 于点E, AD=8, AB=4,求ABED 的面积.方法总结:三、变式训练1.如图,在矩形ABCD 中,对角线AC, BD 交于点0,下列说法错误的是(A. AB 〃DCC. AC±BD2.如图,在矩形ABCD 中,AE 丄BD 于E, ZDAE : 度数.四、课堂小结内容 符号语言B. AC=BD D. 0A=0BZBAE=3: 1,求ZBAE 和 ZEAO 的变式2题图矩形的概念 有一个角是直角的平行 四边形叫做矩形矩形的性质 矩形的四个角都是直角. 矩形的对角线相等./ 星级达标★ 1.已知矩形的一条对角线长为10cm,两条对角线的一个交角为120° ,则矩形的短 边长为 ________ cm.★2.矩形的对角线把矩形分成的三角形中全等三角形一共有( )•C. 6对D. 8对 B.矩形的对角线相等 D.有一个角是直角的四边形是矩形★ ★4.如图,在矩形ABCD 中,连接对角线AC, BD.将AABC 沿BC 方向平移,使点B移到点C,得到ADCE. (1)求证:AACD 竺AEDC.(2)试确定△ BDE 的形状,并说明理由.★★5.已知:如图,0是矩形ABCD 对角线的交点,AE 平分ZBAD, ZA0D=120° ,求 ZAE0的度数.★★★6.如图,在矩形ABCD 中,AB=3, AD=4, P 是AD 上不与A, D 重合的一个动点, 过点P 分别作AC 和BD 的垂线,垂足分别为E, F.求PE+PF 的值.我的反思(收获,不足) 分层作业必做(教材智慧学习配套)选做 参考答案精讲点拨例1试题分析:根据矩形的性质AD 〃BC,AE=AD,可以得到ZDEC=ZADE=ZAED,由DF 丄AE 于F,A. 2对B. 4对★3.下列说法错误的是().A.矩形的对角线互相平分 C.矩形的四个角都相等【详解】证明:连接DE.VAD=AE, .*.ZAED = ZADE.在矩形ABCD 中,AD〃BC, ZC=90° .ZADE=ZDEC,ZDEC = ZAED.又TDF丄AE,.•.ZDFE=ZC=90° .VDE=DE,/. ADFE^ADCE (AAS)..・.DF=DC.例2试题分析:首先根据矩形的性质可得出AD〃BC,即Z2=Z3,然后根据折叠知Z1=Z2, C,D=CD、BC' =BC,可得到Z1=Z3,进而得出BE=DE,设BE=DE=x,则EC' =8-x,利用勾股定理求出x的值,代入面积公式即可求出ABED的面积.详解:•••四边形ABCD是矩形,.・.AD〃BC,即Z2=Z3,由折叠知,Z1=Z2, C‘ D=CD=4、BC, =BC=8,3,即DE=BE,BE=DE=x,则EC' =8n,DEC'中,DC' '+EC' 2=DE242+(8^C)2=X2解得:x=5,ADE的长为5.ABED 的面积=丄DEX AB =丄X5X4=10.2 2变式训练1•试题分析:根据矩形的定义和性质分析判断即可.详解:矩形的性质有①矩形的两组对边分别平行且相等;②矩形的四个角都是直角;③矩形的两条对角线互相平分且相等.所以选项A, B, D正确,C错误.故选C..-.Z1=Z 设在RtA2•试题分析:根据矩形性质得出心血,。
初中数学 导学案:矩形

矩形(第1课时)一、学习目标:知识目标: 1. 经历探索矩形性质的过程。
2. 探索并掌握矩形性质。
能力目标:在直观操作活动和简单说理的过程中发展学生初步的推理能力,增进主题探究的意识,逐步掌握说明的基本方法。
二、学习重点:本节课的重点是矩形的性质和常用判别方法的理解和掌握.三、学习难点:本节课的难点是矩形的性质和常用判别方法的综合应用.四、学习过程:引入课题:知识连接:平行四边形的性质.1.什么是矩形?2.矩形的性质:观察思考,合作发现1.观察课本P中平行四边形的变化过程思考:134(1)在这次变化过程中,四条边长变化了吗?还是平行四边形吗?(2)平行四边形什么时候是矩形?2.矩形定义:当四边形有个内角是直角时,我们就把它叫做矩形。
合作探究,展示交流(一)矩形的性质1.矩形是特殊的平行四边形,因此它具有平行四边形的所有性质。
即(1)对边,(2)对角,(3)对角线 ,(4)是中心对称图形 2. 矩形的四个内角都是直角吗? 3.画一个矩形ABCD 合作探究:你认为矩形ABCD 是轴对称图形吗?如果是,(1) 它有几条对称轴?试着画出来,并用对折的方法进行验证。
(2) 连结对角线AC 、BD ,它们的交点O 在矩形的对称轴上吗? (3) OA 、OB 、OC 、OD 之间有什么数量关系?4.5.求证:矩形的对角线相等. 归纳矩形的性质: 展示交流:6.自学课本135页,例题(注意解题思路及解题格式)完成下面的题 练习:如图,矩形ABCD 的两条对角线相交于点,∠AOD=120°,AB=4cm ,求矩形对角线的长.7.已知:如图,E 为矩形ABCD 的边AD 的中点,连接BE ,CE.求证:△EBC 是等腰三角形8.如图:在矩形ABCD 中,对角线AC ,BD 相交于点O ,过点B 作BE ∥AC ,交DC 的延长线与点E.求证:BD=BE.O D CA BC DE9.如图,在矩形ABCD 中,AB=3,AD=4,P 为AD 上一点,过点P 作PE ⊥AC ,PF ⊥BD ,垂足分别为E ,F. 求:PE+PF.10.如图,在矩形ABCD 中,AB=3,AD=4,E 为CD 的中点,连接AE 并延长,交BC 的延长线与点F ,连接DF. 求:DF 的长.知识梳理: 达标检测: 1.判断(1)矩形是平行四边形( )(2)矩形的两条对角线将矩形分成四个面积相等的等腰三角形( ) 2.选择矩形具有而一般平行四边形不具有的性质是( ).A.对角线相等B.对边相等C.对角相等D.对角线互相平分3. 填空 :矩形的一组邻边长分别是3cm 和4cm , 则它的对角线长是_______ cm.(2)矩形的短边长为3cm,两对角线所成的钝角是120 °,则它的对角线长是_______.(3) 已知矩形对角线长为4cm,一边长为 3 cm,则矩形的面积是________. 4. “直角三角形斜边上的中线等于斜边长的一半”,你能用 矩形的有关性质解释这个结论吗?五、课后小结:六、布置作业:。
八年级数学下册 2.5 矩形导学案(新版)湘教版

矩形一、学前反馈二、导入目标【学习目标】记忆矩形的定义;能结合图形说出矩形的性质;记忆矩形的判定方法。
重点、难点:重点:矩形的性质和判定方法。
难点:利用矩形的性质和判定方法解决一些简单的实际问题。
三、自主学习阅读教材P58、58、60页的内容,解决下列问题:在现实生活中我还能举出更多是矩形的例子: 叫做矩形,也称为 3、从矩形的定义可以看出,矩形是特殊的平行四边形,特殊在于它有一个角是 )从上可得, 都是直角的四边形是矩形。
由此容易得出:矩形的四个角都4、结合图形1我能说出矩形的一些性质:(1)边:AB= ,AD=(2)角:ABC ∠= = = =︒90(3)对角线:AC= ,OA= = =(4)在图1中有 对全等的三角形,它们分别是 ;(5)图1中有 个等腰三角形,它们分别是四、合作探究:阅读教材P97“说一说”~P98内容,解答下列问题:1、结合图2,向同桌我能说出“对角线相等且互相平分的四边形是矩形。
或者说,对角线相等的平行四边形是矩形”。
并能写下来。
矩形的判定方法:1、有一个角是 的平行四边形是矩形;2、四个角都是 的四边形是矩形;3、对角线 的四边形是矩形。
或者说,对角线 的平行四边形是矩形五、展示交流1.有三个角是直角的四边形是矩形,对吗?我能用一个图形加以说明。
2.有二个角是直角的四边形是矩形,对吗?我能用一个图形加以说明。
3.有一个角是直角的四边形是矩形,对吗?我能用一个图形加以说明。
平行四边矩形4.对角线相等的四边形是矩形,对吗? 我能用一个图形加以说明。
5.如图3,在ABCD 中,它的两条对角线相交于点O 。
如果ABCD 是矩形,试问:OAD ∆是什么样的三角形?如果OAD ∆是等腰三角形,其中OA=OD ,试问:ABCD 是矩形吗?六、达标提升如图4,在矩形ABCD 中,︒=∠30BCA ,且AC=4。
求:矩形的对角线长;矩形的各边长;矩形的周长;矩形的面积。
矩形(二)主备人:何冬燕 审核人:叶秋萍 参与人:全体八年级数学老师一、学前反馈二、导入目标【学习目标】 能理解矩形是轴对称图形,并能说出矩形的对称轴;进一步加强对矩形性质和判定的理解与应用。
人教版数学八年级下册18.2《矩形(1)》导学案

18 矩形〔1〕导学案学习目标:1、理解矩形的意义,知道矩形与平行四边形的区别与联系.2、掌握矩形的性质定理,会用定理进展有关的计算与证明.3、掌握直角三角形斜边上中线的性质与应用.重点:矩形的性质.难点:矩形的性质的灵活应用.一.学前准备:平行四边形有哪些性质:二.探索新知:1、叫做矩形.矩形是的平行四边形.如图记作,读作.2、从矩形的意义可以探究矩形具有的性质:〔1〕矩形具有平行四边形具有的一切性质.边:角:对角线:〔2〕矩形是图形,它有对称轴,分别是的连线所在的直线.〔3〕矩形与平行四边形比拟又有其特殊的性质〔探究、归纳、模式表示〕:矩形性质1.因为,所以.矩形性质2.因为,所以3、从矩形的性质可以说明:直角三角形斜边上的中线等于斜边的〔模式表示〕:因为,所以4、分析例题1,运用知识解决问题例1 〔教材P53例1〕:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,下载后可自行编辑修改,页脚下载后可删除。
下载后可自行编辑修改,页脚下载后可删除。
AB=4cm ,求矩形对角线的长.解:∵ 四边形ABCD 是 形, ∴ AC 与BD 且 .∴ OA= .又 ∠AOB= °,∴ △OAB 是 三角形.∴ 矩形的对角线长AC=BD = 2OA=2×4=8〔cm 〕.三.自我检查:1.〔1〕矩形的定义中有两个条件:一是 ,二是 . 〔2〕矩形的一条对角线与一边的夹角为30°,那么矩形两条对角线相交所得的四个角的度数分别为 、 、 、 .〔3〕矩形的一条对角线长为10cm ,两条对角线的一个交角为120°,那么矩形的边长分别为 cm , cm , cm , cm .〔4〕矩形的两条对角线的夹角为60°,较短的边长为厘米,那么对角线长为 .〔5〕在直角三角形ABC 中,∠C=90°,AB=2AC ,那么∠A= °,∠B= °2.〔1〕以下说法错误的选项是〔 〕A 、矩形的对角线互相平分B 、有一个角是直角的四边形是矩形C 、矩形的对角线相等D 、有一个角是直角的平行四边形叫做矩形 〔2〕矩形的对角线把矩形分成的三角形中全等三角形一共有〔 〕A 、2对B 、4对C 、6对D 、8对〔3〕由矩形的一个顶点向其所对的对角线引垂线,该垂线分直角为1:3两局部,那么该垂线与另一条对角线的夹角为〔 〕A 、22.5°B 、45°C 、30°D 、60°〔4〕矩形的两条对角线的夹角为60°,对角线长为15cm ,较短边的长为〔 〕A 、12cmB 、10cmC 、D 、5cm3、折叠矩形ABCD 纸片,先折出折痕BD ,再折叠使A 落在对角线BD 上A′位置上,折痕为DG .AB=2,BC=1.求AG 的长.G A`D CBA下载后可自行编辑修改,页脚下载后可删除。
八年级数学下册 18.2.1《矩形》矩形的判定导学案(新版)新人教版

八年级数学下册 18.2.1《矩形》矩形的判定导学案(新版)新人教版18、2、1《矩形》矩形的判定学习目标:1、理解并掌握矩形的判定方法、2、能熟练应用矩形的性质、判定等知识进行有关证明和计算、重点:会证明矩形的判定定理难点:会运用矩形的三种判定方法解决相关问题。
学习过程:一、自主探究探究一:下面给大家介绍一下工人制作窗框的过程、1、先截出两对符合规格的铝合金窗料如图,使AB=CD,EF=GH2、摆成四边形(如第2个图),这时窗框的形状是平行四边形,依据的数学道理是_________________________是平行四边形、3、将直角尺紧靠窗框的一个角(如第3个图),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时,说明窗框合格,这时窗框是矩形,依据的数学道理是__________________________ 是矩形、探究二:1、除了上面制作矩形的方法外,还有其他的方法吗?请你画一个矩形;、交流画矩形的方法,得到矩形的判定方法;(自学教材54页)矩形的判定定理(1)__________________________________几何语言:∵_______________________________∴_______________________________矩形的判定定理(2)__________________________________几何语言:∵_______________________________∴_______________________________证明矩形的判定定理(1)已知:求证:证明:证明矩形的判定定理(2)已知:求证:证明:探究三:二、典例展示三、巩固练习。
矩形导学案.doc

19.2.1 矩形 (1)导学案时间:姓名:班级:一 . 明确目标,预习交流【学习目标】1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系。
2.会初步运用矩形的概念和性质来解决有关问题。
【重、难点】重点:矩形的性质。
难点:矩形的性质的灵活应用。
【预习作业】:1.平行四边形具有下列性质:______________边(线段)____________________________平行四边形角____________________________2.矩形的定义和性质:(预习新知)①定义:有一个角是的平行四边形叫做矩形.②矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角 ______;矩形的对角线 ______;矩形是轴对称图形,它的对称轴是 ____________.(即:矩形的对边;矩形的四个角都是;矩形的对角线互相平分且;矩形既是图形,也是对称图形)二 . 合作探究,生成总结探讨 1.如图,矩形ABCD,对角线相交于O,①观察矩形的对角线AC 和 BD 有何关系?②对角线所分成的三角形,你有什么发现?A DOB C归纳:矩形的性质(1)矩形的四个角都是( 2)矩形的对角线。
(对角线所分成的四个三角形都是)练一练:1.矩形具有而平行四边形不具有的性质是()A. 对边相等B.对角相等C.对角互补D.对角线平分2.在矩形 ABCD 中,两条对角线 AC 、BD 相交于 O,∠ ACD=30 °, AB=4.(1)判断△ AOD 的形状;( 2)求对角线 AC 、BD 的。
A BOD C3.如图,矩形 ABCD 中, AC 与 BD 交于 O 点,BE AC 于E, CF BD 于F。
求证 BE=CF。
第3题图4.如图,在矩形 ABCD中, AB=3,AD=4,P 是 AD上的动点, PE⊥ AC于 E,PF⊥ BD于 F,求 PE+PF的值 .PA DE FOB C第4题图5.如图 ,矩形纸片 ABCD,且 AB=6cm,宽 BC=8cm,将纸片沿 EF 折叠,使点 B 与点D 重合,求折痕 EF 的长。
八年级数学下册 18.2.1《矩形》矩形的判定导学案新版新人教版

八年级数学下册 18.2.1《矩形》矩形的判定导学案新版新人教版18、2、1《矩形》矩形的判定学习目标1、熟悉矩形的判定方法,会判定一个四边形是菱形。
2、会用矩形的判定和性质进行有关的计算和证明。
3、经历探索矩形的判定的过程,发展合情推理的意识,培养严密的逻辑推理能力。
重点:综合运用矩形的判定和性质进行有关的计算和证明、难点:根据题目的条件合理运用判定方法证明矩形、时间分配旧知回顾2分钟、自主探知10分钟问题解决15分练习巩固10分课堂小结3分、学案(学习过程)导案(学法指导)学习过程一、回顾旧知:1、什么是矩形?(有一个角是直角的平行四边形是矩形)2、矩形有什么性质?边:对边平行且相等角:四个角都是直角对角线:对角线相等、3、如何判定一个平行四边形或四边形是矩形?(与研究平行四边形的判断方法类似,研究一下矩形的性质定理的逆命题,看看他们是否成立、)二、自主探知1、定义(判定1):有一个角是直角的平行四边形是矩形、2、思考:矩形的对角线相等,反过来,对角线相等的平行四边形是矩形吗?怎么证明?判定2:对角线相等的平行四边形是矩形、3、思考:矩形的四个角都是直角,它的逆命题成立吗?即四个角都是直角的四边形是矩形吗?进一步,至少有几个角是直角的四边形是矩形?判定3:有三个角是直角的四边形是矩形、三、问题解决:1、在 ABCD中,对角线AC,BD相交于点O,OA=OD, ∠OAD=500 求∠ OAB的度数解:∵四边形ABCD是平行四边形∴OA=OC= AC OB=OD= BD 又∵OA=OD, ∴ AC=BD、∴四边形ABCD是矩形∴ ∠DAB=900 又∵ ∠OAD=500 ∴ ∠OAB=4002、已知平行四边形ABCD的对角线AC,BD交于点O,△AOB是等边三角形,AB=4、(1)平行四边形ABCD是矩形吗?说明你的理由、(2)求这个平行四边形的面积四、课堂练习P551、4一、导课:1、复习矩形的性质、2、从研究问题的方法及逆命题的角度入手,去研究矩形的判定、二、自主探知1、教师引导解释强调矩形的定义:先判定是平行四边形在加一个直角。
八年级数学上册《矩形》导学案 苏科版

八年级数学上册《矩形》导学案苏科版一、学习目标:1、会证明矩形的判定定理1和判定定理2。
2、会根据矩形的定义和判定定理判定一个四边形是矩形,能进行有关的论证和计算。
二、课前准备:1、的四边形是矩形。
2、的平行四边形是矩形。
3、的平行四边形是矩形。
三、课堂学习:1、矩形的定义与性质问题1:什么样的图形是矩形。
问题2:结合以下图形说出平行四边形和矩形各自的性质,并突出矩形的本质属性。
2、矩形判定方法的探讨问题1:你有什么方法说明一个四边形是矩形?问题2:猜想:一个四边形有几个角是直角时是矩形?问题3:你能说明你的猜想的正确性吗?与同学交流。
问题4:现在你有哪些方法说明一个四边形是矩形?问题5:命题:“矩形的对角线相等”的逆命题是什么?问题6:请你猜想:当一个四边形是平行四边形时,它具备什么条件时可成为矩形?问题7:你能证明你的猜想是正确的吗?与同伴交流你的想法。
证明过程如下:A B ( 已知:在平行四边形ABCD中,AC=BD 求证:ABCD是矩形证明:∵ AC=DB,BC=CB,AB=CD C D ∴ △ABC ≌ △DCB ∴∠ABC=∠DCB AB ∥ DC ∴∠ABC+∠DCB=180 ∴∠ABC=90 ∴平行四边形ABCD是矩形)3、用矩形判定方法解决问题问题1:你有什么方法说明一个四边形是矩形?问题2:已知:如图, ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积。
A B C D问题3:现有一块四边形的木板和一把带有刻度的曲尺,请你运用所学知识设计一种方案,判断这块木板的形状是矩形?并说出设计的原理。
四、课堂练习:判断正误(1)对角线相等且互相平分的四边形是矩形。
()(2)对角线相等且两组对边分别相等的四边形是矩形。
()(3)对角线相等的四边形是矩形。
()(4)对角线互相平分且有一个角是直角的四边形是矩形。
()五、课堂小结:本节课主要研究判定矩形的方法:1、矩形的定义:有一个角是直角的平行四边形是矩形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形
第一课时
学习目标:
1、理解矩形的意义,知道矩形与平行四边形的区别与联系。
2、掌握矩形的性质定理,会用定理进行有关的计算与证明。
3、掌握直角三角形斜边上中线的性质与应用。
学习重点:矩形的性质及“直角三角形斜边上的中线等于斜边的一半”学习难点:矩形性质的得出及灵活应用。
一、自学教材,明确目标
阅读教材内容
二、研读教材,解读目标
1.叫做矩形。
矩形是的平行四边形。
2.矩形是轴对称图形吗?它有几条对称轴?
3.从矩形的意义可以探究矩形具有的性质:
(1)矩形具有平行四边形的一切性质吗?这些性质什么?
(2)矩形与平行四边形比较又有其特殊的性质,这些特殊的性质是什么?
(3)用几何语言表述矩形的所有性质:
4.从矩形的性质可以说明:直角三角形斜边上的中线等于斜
边的
如图,在Rt ΔABC 中,O 是斜边AC 的
中
点, 求证:OB=2
1
AC
证明:
5. 如图,在矩形ABCD 中,AC 与BD 相交于点O ,∠AOB=60O ,AB=4㎝, 求矩形对角线的长。
6. 教材练习:
7.教材习题
B
A
C
O
三、巩固训练,达成目标:
1、由矩形的一个顶点向其所对的对角线引垂线,该垂线分直角为1:3两部分,则该垂线与另一条对角线的夹角为( ) A 、22.5° B 、45° C 、30° D 、60°
2、矩形的两条对角线的夹角为60°,较短的边长为4.5厘米,则对角线长为 。
3、已知:如图2,矩形ABCD 中,E 是
求证:CE =EF 。
4、折叠矩形ABCD 纸片,先折出折痕BD ,再折叠使A 落在对角线BD 上A′位置上,折痕为DG 。
AB=2,BC=1。
求AG 的长。
5
6、如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在F 的位置,BF 交AD 于E ,AD=8,AB=4,
求△
BED 的面积。
7、在Rt ΔABC 中,∠C=90°,CD 是AB 边上的中线,∠A=30°,AC=5
3。
求△ADC 的周长。
四、小结与反思:
18.2.1矩形
第二课时
学习目标:
1.理解并掌握矩形的判定方法.
2.能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
3. 培养综合应用知识分析解决问题的能力。
学习重点:矩形的判定.
学习难点:矩形的判定及性质的综合应用.
一、自学教材,明确目标:
阅读教材内容
1.利用矩形的定义来判定一个四边形是平行四边形:
矩形定义:
2. 探究矩形的判定定理一:
的平行四边形是矩形。
如图,已知:
求证:
证明:
3. 探究矩形的判定定理二
的四边形是矩形。
如图,已知:
求证:
证明:
二、应用知识,实现目标:
1. 教材练习:A
B C
D
2,教材习题:
3.下列各句判定矩形的说法是否正确?为什么?
(1)有一个角是直角的四边形是矩形;()(2)有四个角是直角的四边形是矩形;()(3)四个角都相等的四边形是矩形;()(4)对角线相等的四边形是矩形;()(5)对角线相等且互相垂直的四边形是矩形;()(6)对角线互相平分且相等的四边形是矩形;()
(7)对角线相等,且有一个角是直角的四边形是矩形;()(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;()
(9)两组对边分别平行,且对角线相等的四边形是矩形.( ) 三、巩固训练,达成目标:
1.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A.测量对角线是否相互平分B.测量两组对边是否分别相等
C.测量一组对角是否都为直角D.测量其中三角形是否
都为直角
2.能判断四边形是矩形的条件是()
A、两条对角线互相平分
B、两条对角线相等
C、两条对角线互相平分且相等
D、两条对角线互相垂直。
3.如图,EB=EC,EA=ED,AD=BC, ∠AEB=∠DEC。
证明:四边形ABCD 是矩形.
4.已知四边形ABCD中AC⊥BD,E、F、G、H分别是AB、BC、CD、DA 的中点。
求证:四边形EFGH是矩形。
四、综合应用,拓展目标:
5. 已知ABCD的对角线AC,BD相交于O,△AOB是等边三角形,AB,求这个平行四边形的面积
cm
4
6.如图,M、N分别是平行四边形ABCD对边AD、BC的中点,且AD=2AB,求证,四边形PMQN是矩形。
7.已知:如图(1),ABCD的四个内角的平分线分别相交于点E,
F,G,H.
求证:四边形EFGH是矩形.
8.已知:如图,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得DE=CD.连结AE,BE,则四边形ACBE为矩形.
五、小结与反思:
第11 页共11 页。