实验五 查找与排序

实验五 查找与排序
实验五 查找与排序

本科学生综合性实验报告

(封面)

项目组长_郑慧乐___学号_0174280____

成员郑慧乐

专业_物联网___班级_173___

实验项目名称_____实验五查找与排序

指导教师及职称___黄淑英_______开课学期2018 至_2019 学年_第一_学期上课时间2018 年12 月 3 日

学生实验报告

一、实验目的及要求:

1、目的

1.进一步掌握有序顺序表的折半查找算法。

2.进一步巩固排序的算法,编写对20个及以上的无序数据进行希尔排序和快

速排序的实现程序。

2、内容及要求

1.建立一20个及以上数据的有序顺序表,表中可以仅存放记录的关键字,实现对该有序的折半查找算法,测试数据应充分考虑查找成功和查找不成功两种情况。

2.建立一20个及以上数据的无序顺序表,表中可以仅存放记录的关键字,实现对该无序表进行希尔排序,给出每一趟希尔排序的结果。

3.建立一20个及以上数据的无序顺序表,表中可以仅存放记录的关键字,实现对该无序表进行快速排序,给出每一趟快速排序的结果。

二、仪器用具:

DevC++

三、实验方法与步骤:

#include

using namespace std;

#define OK 1

#define MAXSIZE 20

typedef int KeyType;

typedef int InfoType;

typedef struct

KeyType key;

InfoType otherinfo;

}RedType;

typedef struct

{

RedType R[MAXSIZE + 1];

int length;

}SqList;

int Search_Bin (SqList ST, KeyType key) {

KeyType low, high, mid;

low = 1;

high = ST.length;

while (low <= high)

{

mid = (low + high) / 2;

if (key == ST.R[mid].key)

return mid;

else if (key < ST.R[mid].key)

high = mid - 1;

else

low = mid + 1;

}

return OK;

}

void ShellInsert (SqList &L, int dk)

{

int i, j;

for (i = dk + 1; i <= L.length; ++i)

if (L.R[i].key < L.R[i - dk].key)

{

L.R[0] = L.R[i];

for (j = i - dk; j > 0 && L.R[0].key < L.R[j].key; j-= dk)

L.R[j + dk] = L.R[j];

L.R[j + dk] = L.R[0];

}

}

void ShellSort (SqList &L, int dt[], int t)

{

for (int k = 0; k < t; ++k)

{

ShellInsert (L, dt[k]);

for (int i = 1; i <= 20 ; i++)

cout << L.R[i].key << " ";

cout << endl;

}

}

int Partition (SqList &L, int low, int high)

{

KeyType pivotkey;

L.R[0] = L.R[low];

pivotkey = L.R[low].key;

while (low < high)

{

while (low < high && L.R[high].key >= pivotkey) --high;

L.R[low] = L.R[high];

while (low < high && L.R[low].key <= pivotkey) ++low;

L.R[high] = L.R[low];

}

L.R[low] = L.R[0];

for (int i = 1; i <= 20 ; i++)

cout << L.R[i].key << " ";

cout << endl;

return low;

}

void QSort (SqList &L, int low, int high)

{

KeyType pivotloc;

if (low < high)

{

pivotloc = Partition (L, low ,high);

QSort (L, low, pivotloc - 1);

QSort (L, pivotloc + 1, high);

}

}

void QuickSort (SqList &L)

{

QSort (L, 1, L.length);

}

int main ()

{

SqList ST, L1, L2;

ST.length = 0;

L1.length = L2.length = 0;

int dt[3] = {7, 5, 1}, dk = 10, t = 3;

int a, key;

cout << "请建立20个数据的有序顺序表:" << endl;

for (int i = 1; i <= 20; i++)

{

cin >> ST.R[i].key;

ST.length ++;

}

for (int i = 1; i <= 2; i++)

{

cout << "请输入想要查找的数值(折半查找):" << endl;

cin >> key;

a = Search_Bin (ST, key);

if (ST.R[a].key == key)

cout << "数值" << key << "查找成功!" << endl;

else

cout << "数值" << key << "查找失败!" << endl;

}

cout << "请建立20个数据的无序顺序表(输入数值):" << endl;

for (int i = 1; i <= 20; i++)

{

cin >> L1.R[i].key;

L1.length ++;

}

cout << "希尔排序结果为:" << endl;

ShellInsert (L1, dk);

ShellSort (L1, dt, t);

cout << "请建立20个数据的无序顺序表(输入数值):" << endl;

for (int i = 1; i <= 20; i++)

{

cin >> L2.R[i].key;

L2.length ++;

}

cout << "快速排序结果为:" << endl;

QuickSort (L2);

}

四、实验结果与数据处理:

五、讨论与结论

①InitList(SqList &L)可省,可以把RedType *R改成RedType R[MAXSIZE + 1];

②for (int i = 1; i <= 20 ; i++)

cout << L.r[i].key << " ";在递归的快速排序中放置位置需正确,应放到枢轴位置后;

③折半查找的查找成功与不成功两种形式可以用if表示。

六、指导教师评语及成绩:

评语:指导教师依据学生的实际报告内容,用简练语言给出本次实验报告的评价和价值

成绩:指导教师签名:

批阅日期

《数据结构》实验报告——排序.docx

《数据结构》实验报告排序实验题目: 输入十个数,从插入排序,快速排序,选择排序三类算法中各选一种编程实现。 实验所使用的数据结构内容及编程思路: 1. 插入排序:直接插入排序的基本操作是,将一个记录到已排好序的有序表中,从而得到一个新的,记录增一得有序表。 一般情况下,第i 趟直接插入排序的操作为:在含有i-1 个记录的有序子序列r[1..i-1 ]中插入一个记录r[i ]后,变成含有i 个记录的有序子序列r[1..i ];并且,和顺序查找类似,为了在查找插入位置的过程中避免数组下标出界,在r [0]处设置哨兵。在自i-1 起往前搜索的过程中,可以同时后移记录。整个排序过程为进行n-1 趟插入,即:先将序列中的第一个记录看成是一个有序的子序列,然后从第2 个记录起逐个进行插入,直至整个序列变成按关键字非递减有序序列为止。 2. 快速排序:基本思想是,通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。 假设待排序的序列为{L.r[s] ,L.r[s+1],…L.r[t]}, 首先任意选取一个记录 (通常可选第一个记录L.r[s])作为枢轴(或支点)(PiVOt ),然后按下述原则重新排列其余记录:将所有关键字较它小的记录都安置在它的位置之前,将所有关键字较大的记录都安置在它的位置之后。由此可以该“枢轴”记录最后所罗的位置i 作为界线,将序列{L.r[s] ,… ,L.r[t]} 分割成两个子序列{L.r[i+1],L.[i+2], …,L.r[t]}。这个过程称为一趟快速排序,或一次划分。 一趟快速排序的具体做法是:附设两个指针lOw 和high ,他们的初值分别为lOw 和high ,设枢轴记录的关键字为PiVOtkey ,则首先从high 所指位置起向前搜索找到第一个关键字小于PiVOtkey 的记录和枢轴记录互相交换,然后从lOw 所指位置起向后搜索,找到第一个关键字大于PiVOtkey 的记录和枢轴记录互相 交换,重复这两不直至low=high 为止。 具体实现上述算法是,每交换一对记录需进行3 次记录移动(赋值)的操作。而实际上,

(完整word版)查找、排序的应用 实验报告

实验七查找、排序的应用 一、实验目的 1、本实验可以使学生更进一步巩固各种查找和排序的基本知识。 2、学会比较各种排序与查找算法的优劣。 3、学会针对所给问题选用最适合的算法。 4、掌握利用常用的排序与选择算法的思想来解决一般问题的方法和技巧。 二、实验内容 [问题描述] 对学生的基本信息进行管理。 [基本要求] 设计一个学生信息管理系统,学生对象至少要包含:学号、姓名、性别、成绩1、成绩2、总成绩等信息。要求实现以下功能:1.总成绩要求自动计算; 2.查询:分别给定学生学号、姓名、性别,能够查找到学生的基本信息(要求至少用两种查找算法实现); 3.排序:分别按学生的学号、成绩1、成绩2、总成绩进行排序(要求至少用两种排序算法实现)。 [测试数据] 由学生依据软件工程的测试技术自己确定。 三、实验前的准备工作 1、掌握哈希表的定义,哈希函数的构造方法。 2、掌握一些常用的查找方法。 1、掌握几种常用的排序方法。 2、掌握直接排序方法。

四、实验报告要求 1、实验报告要按照实验报告格式规范书写。 2、实验上要写出多批测试数据的运行结果。 3、结合运行结果,对程序进行分析。 五、算法设计 a、折半查找 设表长为n,low、high和mid分别指向待查元素所在区间的下界、上界和中点,key为给定值。初始时,令low=1,high=n,mid=(low+high)/2,让key与mid指向的记录比较, 若key==r[mid].key,查找成功 若keyr[mid].key,则low=mid+1 重复上述操作,直至low>high时,查找失败 b、顺序查找 从表的一端开始逐个进行记录的关键字和给定值的比较。在这里从表尾开始并把下标为0的作为哨兵。 void chaxun(SqList &ST) //查询信息 { cout<<"\n************************"<=1;j--) if(ST.r[j].xuehao

算法排序问题实验报告

《排序问题求解》实验报告 一、算法的基本思想 1、直接插入排序算法思想 直接插入排序的基本思想是将一个记录插入到已排好序的序列中,从而得到一个新的, 记录数增1 的有序序列。 直接插入排序算法的伪代码称为InsertionSort,它的参数是一个数组A[1..n],包含了n 个待排序的数。用伪代码表示直接插入排序算法如下: InsertionSort (A) for i←2 to n do key←A[i] //key 表示待插入数 //Insert A[i] into the sorted sequence A[1..i-1] j←i-1 while j>0 and A[j]>key do A[j+1]←A[j] j←j-1 A[j+1]←key 2、快速排序算法思想 快速排序算法的基本思想是,通过一趟排序将待排序序列分割成独立的两部分,其中一 部分记录的关键字均比另一部分记录的关键字小,则可对这两部分记录继续进行排序,以达到整个序列有序。 假设待排序序列为数组A[1..n],首先选取第一个数A[0],作为枢轴(pivot),然后按照下述原则重新排列其余数:将所有比A[0]大的数都排在它的位置之前,将所有比A[0]小的数都排在它的位置之后,由此以A[0]最后所在的位置i 作为分界线,将数组A[1..n]分成两个子数组A[1..i-1]和A[i+1..n]。这个过程称作一趟快速排序。通过递归调用快速排序,对子数组A[1..i-1]和A[i+1..n]排序。 一趟快速排序算法的伪代码称为Partition,它的参数是一个数组A[1..n]和两个指针low、high,设枢轴为pivotkey,则首先从high 所指位置起向前搜索,找到第一个小于pivotkey 的数,并将其移到低端,然后从low 所指位置起向后搜索,找到第一个大于pivotkey 的数,并将其移到高端,重复这两步直至low=high。最后,将枢轴移到正确的位置上。用伪代码表示一趟快速排序算法如下: Partition ( A, low, high) A[0]←A[low] //用数组的第一个记录做枢轴记录 privotkey←A[low] //枢轴记录关键字 while low=privotkey do high←high-1 A[low]←A[high] //将比枢轴记录小的记录移到低端 while low

实验报告-排序与查找

电子科技大学实验报告 课程名称:数据结构与算法 学生姓名: 学号: 点名序号: 指导教师: 实验地点:基础实验大楼 实验时间: 5月20日 2014-2015-2学期 信息与软件工程学院

实验报告(二) 学生姓名学号:指导教师: 实验地点:基础实验大楼实验时间:5月20日 一、实验室名称:软件实验室 二、实验项目名称:数据结构与算法—排序与查找 三、实验学时:4 四、实验原理: 快速排序的基本思想是:通过一躺排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一不部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。 假设要排序的数组是A[1]……A[N],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一躺快速排序。一躺快速排序的算法是: 1)设置两个变量I、J,排序开始的时候I:=1,J:=N 2)以第一个数组元素作为关键数据,赋值给X,即X:=A[1]; 3)从J开始向前搜索,即(J:=J-1),找到第一个小于X的值,两者交换; 4)从I开始向后搜索,即(I:=I+1),找到第一个大于X的值,两者交换; 5)重复第3、4步,直到I=J。 二分法查找(折半查找)的基本思想: (1)确定该区间的中点位置:mid=(low+high)/2 min代表区间中间的结点的位置,low代表区间最左结点位置,high代表区间最右结点位置(2)将待查a值与结点mid的关键字(下面用R[mid].key)比较,若相等,则查找成功,否则确定新的查找区间: A)如果R[mid].key>a,则由表的有序性可知,R[mid].key右侧的值都大于a,所以等于a的关键字如果存在,必然在R[mid].key左边的表中,这时high=mid-1; B)如果R[mid].key

动态查找表实验报告材料

动态查找表实验报告 一. 1 、实验概要 实验项目名称: 抽象数据类型的实现 实验项目性质: 设计性实验 所属课程名称: 数据结构 实验计划学时: 6 2、实验目的 对某个具体的抽象数据类型,运用课程所学的知识和方法,设计合理的数据结构,并在此基础上实现该抽象数据类型的全部基本操作。通过本设计性实验,检验所学知识和能力,发现学习中存在的问题。进而达到熟练地运用本课程中的基础知识及技术的目的。 实验要求如下: 1.参加实验的学生应首先了解设计的任务,然后根据自己的基础和能力从中选择一题。一般来说,选择题目应以在规定的时间内能完成,并能得到应有的锻炼为原则。若学生对教材以外的相关题目较感兴趣,希望选作实验的题目时,应征得指导教师的认可,并写出明确的抽象数据类型定义及说明。 2. 实验前要作好充分准备,包括:理解实验要求,掌握辅助工具的使用,了解该抽象数据类型的定义及意义,以及其基本操作的算法并设计合理的存储结构。 3. 实验时严肃认真,要严格按照要求独立进行设计,不能随意更改。注意观察并记录各种错误现象,纠正错误,使程序满足预定的要求,实验记录应作为实验报告的一部分。 4. 实验后要及时总结,写出实验报告,并附所打印的问题解答、程序清单,所输入的数据及相应的运行结果。 所用软件环境或工具:DEV-C++5可视化编程环境. 3.动态查找表的抽象数据类型 ADT DynamicSearchTable { 数据对象D:D是具有相同特性的数据元素的集合。每个数据元素含有类型相同的关键字,可唯一 标识数据元素。 数据关系R:数据元素同属一个集合。 基本操作P: InitDSTable(&DT); 操作结果:构造一个空的动态查找表DT。 DestroyDSTable(&DT); 初始条件:动态查找表DT存在; 操作结果:销毁动态查找表DT。 SearchDSTable(DT, key); 初始条件:动态查找表DT存在,key为和关键字类型相同的给定值; 操作结果:若DT中存在其关键字等于key的数据元素,则函数值为该元素的值或在表中的

查找与排序实验报告

实验四:查找与排序 【实验目的】 1.掌握顺序查找算法的实现。 2.掌握折半查找算法的实现。 【实验内容】 1.编写顺序查找程序,对以下数据查找37所在的位置。 5,13,19,21,37,56,64,75,80,88,92 2.编写折半查找程序,对以下数据查找37所在的位置。 5,13,19,21,37,56,64,75,80,88,92 【实验步骤】 1.打开VC++。 2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。 至此工程建立完毕。 3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。给文件起好名字,选好路径,点OK。至此一个源文件就被添加到了你刚创建的工程之中。 4.写好代码 5.编译->链接->调试 #include "stdio.h" #include "malloc.h" #define OVERFLOW -1 #define OK 1 #define MAXNUM 100 typedef int Elemtype; typedef int Status; typedef struct {

Elemtype *elem; int length; }SSTable; Status InitList(SSTable &ST ) { int i,n; ST.elem = (Elemtype*) malloc (MAXNUM*sizeof (Elemtype)); if (!ST.elem) return(OVERFLOW); printf("输入元素个数和各元素的值:"); scanf("%d\n",&n); for(i=1;i<=n;i++) { scanf("%d",&ST.elem[i]); } ST.length = n; return OK; } int Seq_Search(SSTable ST,Elemtype key) { int i; ST.elem[0]=key; for(i=ST.length;ST.elem[i]!=key;--i); return i; } int BinarySearch(SSTable ST,Elemtype key) { int low,high,mid; low=1; high=ST.length;

排序操作实验报告

数据结构与算法设计 实验报告 (2016 — 2017 学年第1 学期) 实验名称: 年级: 专业: 班级: 学号: 姓名: 指导教师: 成都信息工程大学通信工程学院

一、实验目的 验证各种简单的排序算法。在调试中体会排序过程。 二、实验要求 (1)从键盘读入一组无序数据,按输入顺序先创建一个线性表。 (2)用带菜单的主函数任意选择一种排序算法将该表进行递增排序,并显示出每一趟排序过程。 三、实验步骤 1、创建工程(附带截图说明) 2、根据算法编写程序(参见第六部分源代码) 3、编译 4、调试 四、实验结果图 图1-直接输入排序

图2-冒泡排序 图3-直接选择排序 五、心得体会 与哈希表的操作实验相比,本次实验遇到的问题较大。由于此次实验中设计了三种排序方法导致我在设计算法时混淆了一些概念,设计思路特别混乱。虽然在理清思路后成功解决了直接输入和直接选择两种算法,但冒泡

排序的算法仍未设计成功。虽然在老师和同学的帮助下完成了冒泡排序的算法,但还需要多练习这方面的习题,平时也应多思考这方面的问题。而且,在直接输入和直接选择的算法设计上也有较为复杂的地方,对照书本做了精简纠正。 本次实验让我发现自己在算法设计上存在一些思虑不周的地方,思考问题过于片面,逻辑思维能力太过单薄,还需要继续练习。 六、源代码 要求:粘贴个人代码,以便检查。 #include #define MAXSIZE 100 typedef int KeyType; typedef int DataType; typedef struct{ KeyType key; DataType data; }SortItem,SqList[MAXSIZE]; /*******直接插入顺序表*******/ void InsertSort(SqList L,int n) { int i,j,x; SortItem p; for(i=1;i

顺序表的查找、插入与删除实验报告

《数据结构》实验报告一 学院:班级: 学号:姓名: 日期:程序名 一、上机实验的问题和要求: 顺序表的查找、插入与删除。设计算法,实现线性结构上的顺序表的产生以及元素的查找、插入与删除。具体实现要求: 1.从键盘输入10个整数,产生顺序表,并输入结点值。 2.从键盘输入1个整数,在顺序表中查找该结点的位置。若找到,输出结点的位置;若找 不到,则显示“找不到”。 3.从键盘输入2个整数,一个表示欲插入的位置i,另一个表示欲插入的数值x,将x插 入在对应位置上,输出顺序表所有结点值,观察输出结果。 4.从键盘输入1个整数,表示欲删除结点的位置,输出顺序表所有结点值,观察输出结果。 二、源程序及注释: #include #include /*顺序表的定义:*/ #include #define ListSize 100 /*表空间大小可根据实际需要而定,这里假设为100*/ typedef int DataType; /*DataType可以是任何相应的数据类型如int, float或char*/ typedef struct { DataType data[ListSize]; /*向量data用于存放表结点*/ int length; /*当前的表长度*/ }SeqList; void main() { SeqList L; int i,x; int n=10; /*欲建立的顺序表长度*/ L.length=0; void CreateList(SeqList *L,int n); void PrintList(SeqList L,int n); int LocateList(SeqList L,DataType x); void InsertList(SeqList *L,DataType x,int i); void DeleteList(SeqList *L,int i);

河南工业大学实验报告——查找和排序(排序)——张伟龙

河南工业大学实验报告 课程名称数据结构实验项目实验三查找和排序(二)——排序院系信息学院计科系专业班级计科1203 姓名张伟龙学号 201216010313 指导老师范艳峰日期 2013.6.5 批改日期成绩 一实验目的 掌握希尔排序、快速排序、堆排序的算法实现。 二实验内容及要求 实验内容:1.实现希尔排序。 2.实现快速排序。 3. 实现堆排序。 (三选一) 实验要求:1. 根据所选题目,用C语言编写程序源代码。 2. 源程序必须编译调试成功,独立完成。 三实验过程及运行结果 选择第三题: Source Code: #include #include using namespace std; void HeapAdjust(int *a,int i,int size) //调整堆 { int lchild=2*i; //i的左孩子节点序号

int rchild=2*i+1; //i的右孩子节点序号 int max=i; //临时变量 if(i<=size/2) //如果i是叶节点就不用进行调整 { if(lchild<=size&&a[lchild]>a[max]) { max=lchild; } if(rchild<=size&&a[rchild]>a[max]) { max=rchild; } if(max!=i) { swap(a[i],a[max]); HeapAdjust(a,max,size); //避免调整之后以max为父节点的子树不是堆 } } } void BuildHeap(int *a,int size) //建立堆 { int i; for(i=size/2;i>=1;i--) //非叶节点最大序号值为size/2 { HeapAdjust(a,i,size); } }

《数据结构》实验报告查找

实验四——查找 一、实验目的 1.掌握顺序表的查找方法,尤其是折半查找方法; 2.掌握二叉排序树的查找算法。 二、实验内容 1.建立一个顺序表,用顺序查找的方法对其实施查找; 2.建立一个有序表,用折半查找的方法对其实施查找; 3.建立一个二叉排序树,根据给定值对其实施查找; 4.对同一组数据,试用三种方法查找某一相同数据,并尝试进行性能分析。 三、实验预习内容 实验一包括的函数有:typedef struct ,创建函数void create(seqlist & L),输出函数void print(seqlist L),顺序查找int find(seqlist L,int number),折半查找int halffind(seqlist L,int number) 主函数main(). 实验二包括的函数有:结构体typedef struct,插入函数void insert(bnode * & T,bnode * S),void insert1(bnode * & T),创建函数void create(bnode * & T),查找函数bnode * search(bnode * T,int number),主函数main(). 四、上机实验 实验一: 1.实验源程序。 #include<> #define N 80 typedef struct { int number; umber; for(i=1;[i].number!=0;) { cin>>[i].name>>[i].sex>>[i].age; ++; cout<>[++i].number; } } umber<<"\t"<<[i].name<<"\t"<<[i].sex<<"\t"<<[i].age<

查找排序实验报告

《编程实训》 实验报告书 专业:计算机科学与技术 班级:151班 学号: 姓名: 指导教师: 日期:2016年6月30日

目录 一、需求分析 (3) 1.任务要求 (3) 2.软件功能分析 (3) 3.数据准备 (3) 二、概要设计 (3) 1.功能模块图 (4) 2.模块间调用关系 (4) 3.主程序模块 (5) 4.抽象数据类型描述 (5) 三、详细设计 (6) 1.存储结构定义 (6) 2.各功能模块的详细设计 (7) 四、实现和调试 (7) 1.主要的算法 (7) 2.主要问题及解决 (8) 3.测试执行及结果 (8) 五、改进 (9) 六、附录 (9) 1.查找源程序 (9) 2.排序源程序 (9)

目录 1 需求分析 1.1 任务要求 对于从键盘随机输入的一个序列的数据,存入计算机内,给出各种查找算法的实现; 以及各种排序算法的实现。 1.2 软件功能分析 任意输入n个正整数,该程序可以实现各类查找及排序的功能并将结果输出。 1.3 数据准备 任意输入了5个正整数如下: 12 23 45 56 78 2 概要设计(如果2,3合并可以省略2.4) 2.1 功能模块图(注:含功能说明) 2.2 模块间调用关系 2.3 主程序模块 2.4 抽象数据类型描述 存储结构:数据结构在计算机中的表示(也称映像)叫做物理结构。又称为存储结构。数据类型(data type)是一个“值”的集合和定义在此集合上的一组操作的总称。 3 详细设计 3.1 存储结构定义 查找: typedef int ElemType ; //顺序存储结构 typedef struct { ElemType *elem; //数据元素存储空间基址,建表时按实际长度分配,号单元留空 int length; //表的长度

各种排序实验报告

【一】需求分析 课程题目是排序算法的实现,课程设计一共要设计八种排序算法。这八种算法共包括:堆排序,归并排序,希尔排序,冒泡排序,快速排序,基数排序,折半插入排序,直接插入排序。 为了运行时的方便,将八种排序方法进行编号,其中1为堆排序,2为归并排序,3为希尔排序,4为冒泡排序,5为快速排序,6为基数排序,7为折半插入排序8为直接插入排序。 【二】概要设计 1.堆排序 ⑴算法思想:堆排序只需要一个记录大小的辅助空间,每个待排序的记录仅占有一个存储空间。将序列所存储的元素A[N]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的元素均不大于(或不小于)其左右孩子(若存在)结点的元素。算法的平均时间复杂度为O(N log N)。 ⑵程序实现及核心代码的注释: for(j=2*i+1; j<=m; j=j*2+1) { if(j=su[j]) break; su[i]=su[j]; i=j; } su[i]=temp; } void dpx() //堆排序 { int i,temp; cout<<"排序之前的数组为:"<=0; i--) { head(i,N); } for(i=N-1; i>0; i--) {

temp=su[i]; su[i]=su[0]; su[0]=temp; head(0,i-1); } cout<<"排序之后的数组为:"<

二叉排序树实验报告

二叉排序树的实现 实验内容与要求 1) 实现二叉排序树,包括生成、插入,删除; 2) 对二叉排序树进行先根、中根、和后根非递归遍历; 3) 每次对树的修改操作和遍历操作的显示结果都需要在屏 幕上用树的形状表示出来。 实验方案 1. 选择链表的方式来构造节点,存储二叉排序树的节点。// 树的结构struct BSTNode { // 定义左右孩子指针 struct BSTNode *lchild,*rchild; // 节点的关键字 TElemType key; }; int depth=0; // 定义一个struct BSTNode 类型的指针typedef BSTNode *Tree; 2. 对树的操作有如下方法: // 创建二叉排序树 Tree CreatTree(Tree T) ; // 二叉树的深度,返回一个int 值为该树的深度 int TreeDepth(Tree T) // 树状输出二叉树,竖向输出 void PrintTree(Tree T , int layer) ; // 查找关键字,如果关键字存在则返回所在节点的父节点,如果关键字不存在则返回叶子所在的节点 Status SearchBST(Tree T , TElemType key , Tree f,Tree &p) ; // 向树中插入节点 Status InsertBST(Tree &T , TElemType e) ; // 删除节点 Status Delete(Tree &T) ;

// 删除指定节点,调用Delete(Tree &T) 方法 Status DeleteData(Tree &T , TElemType key) ; // 非递归先序遍历void x_print(Tree T); // 非递归中序遍历 Void z_print(Tree T ); // 非递归后序遍历 void h_print(Tree T); 3. 对二叉排序树非递归先根、中根、后根遍历,采用栈来存储一次遍历过的节点的形式来辅助实现 // 自定义类型以SElemType 作为栈中指针返回的值的类型 // 也就是要返回一个节点的指针 typedef Tree SElemType; // 栈的结构 struct Stack { // 栈底指针SElemType *base; // 栈顶指针SElemType *top; // 栈的容量 int stacksize; }; 4. 栈的操作方法: // 创建一个空栈 Status InitStack(Stack &S) // 获取栈顶元素并删除栈中该位置的元素SElemType Pop(Stack &S,SElemType &elem) // 获取栈顶元素返回栈顶元素不对栈做任何修改SElemType getTop(Stack S,SElemType &elem) // 删除栈顶元素 Status DeleteTop(Stack &S) // 往栈中压入数据 Status Push(Stack &S,SElemType elem) // 判断栈是否为空 Status IsEmpty(Stack S) 三、代码实现 #include #include using namespace std;

查询与排序 实验报告

学院专业班学号 协作者_____________教师评定_________________ 实验题目查询与排序 综合实验评分表

实验报告 一、实验目的与要求 1、掌握散列表的构造及实现散列查找; 2、掌握堆排序的算法; 3、综合比较各类排序算法的性能。 二、实验容 #include"stdio.h" #include"stdlib.h" #include"string.h" #include"windows.h" #define MAX 20 typedef struct{ unsigned long key; int result; char name[30];}RNode; RNode t[MAX],r[MAX]; int h(unsigned long k) /*散列函数*/ { return((k-3109005700)%11); } void insert(RNode t[],RNode x) /*插入函数,以线性探查方法解决冲突*/ {

int i,j=0; i=h(x.key); while((j0)) j++; if(j==MAX) printf("full\n"); i=(i+j)%MAX; if(t[i].key==0) {t[i]=x;} else { if(t[i].key==x.key) printf("记录已存在!\n"); } } int search(RNode t[],unsigned long k) /*插入函数,以线性探查方法解决冲突*/ { int i,j=0; i=h(k); while((j

河南工业大学实验报告_实验三 查找和排序(一)——查找

xxx大学实验报告 课程名称数据结构实验项目实验三查找和排序(一)——查找 院系信息学院计类系专业班级计类1501 姓名学号 指导老师日期 批改日期成绩 一实验目的 1.掌握哈希函数——除留余数法的应用; 2. 掌握哈希表的建立; 3. 掌握冲突的解决方法; 4. 掌握哈希查找算法的实现。 二实验内容及要求 实验内容:已知一组关键字(19,14,23,1,68,20,84,27,55,11,10,79),哈希 函数定义为:H(key)=key MOD 13, 哈希表长为m=16。实现该哈希表的散列,并 计算平均查找长度(设每个记录的查找概率相等)。 实验要求:1. 哈希表定义为定长的数组结构;2. 使用线性探测再散列或链 地址法解决冲突;3. 散列完成后在屏幕上输出数组内容或链表;4. 输出等概率 查找下的平均查找长度;5. 完成散列后,输入关键字完成查找操作,要分别测 试查找成功与不成功两种情况。 注意:不同解决冲突的方法会使得平均查找长度不同,可尝试使用不同解决 冲突的办法,比较平均查找长度。(根据完成情况自选,但至少能使用一种方法 解决冲突) 三实验过程及运行结果 #include #include #include #define hashsize 16

#define q 13 int sign=2; typedef struct Hash { int date; //值域 int sign; //标记 }HashNode; void compare(HashNode H[],int p,int i,int key[]) //线性冲突处理{ p++; if(H[p].sign!=0) { sign++; compare(H,p,i,key); } else { H[p].date=key[i]; H[p].sign=sign; sign=2; } } void Hashlist(HashNode H[],int key[]) { int p; for(int i=0;i<12;i++) { p=key[i]%q; if(H[p].sign==0) { H[p].date=key[i]; H[p].sign=1; } else compare(H,p,i,key); } } int judge(HashNode H[],int num,int n) //查找冲突处理 {

数据结构内排序实验报告

一、实验目的 1、了解内排序都是在内存中进行的。 2、为了提高数据的查找速度,需要对数据进行排序。 3、掌握内排序的方法。 二、实验内容 1、设计一个程序e xp10—1.cpp实现直接插入排序算法,并输出{9,8,7,6,5,4,3,2,1,0}的排序 过程。 (1)源程序如下所示: //文件名:exp10-1.cpp #include #define MAXE 20 //线性表中最多元素个数 typedef int KeyType; typedef char InfoType[10]; typedef struct //记录类型 { KeyType key; //关键字项 InfoType data; //其他数据项,类型为InfoType } RecType; void InsertSort(RecType R[],int n) //对R[0..n-1]按递增有序进行直接插入排序 { int i,j,k; RecType temp; for (i=1;i=0 && temp.key

数据结构各种排序实验报告

目录 1.引言............................................................................................................................ 错误!未定义书签。 2.需求分析 (2) 3.详细设计 (2) 3.1 直接插入排序 (2) 3.2折半排序 (2) 3.3 希尔排序 (4) 3.4简单选择排序 (4) 3.5堆排序 (4) 3.6归并排序 (5) 3.7冒泡排序 (7) 4.调试 (8) 5.调试及检验 (9) 5.1 直接插入排序 (9) 5.2折半插入排序 (9) 5.3 希尔排序 (10) 5.4简单选择排序 (10) 5.5堆排序 (11) 5.6归并排序 (12) 5.7冒泡排序 (12) 6.测试与比较................................................................................................................ 错误!未定义书签。 6.1调试步骤......................................................................................................... 错误!未定义书签。 6.2结论 (13) 7.实验心得与分析 (13) 8.附录 (15) 8.1直接插入排序 (15) 8.2折半插入排序 (16) 8.3希尔排序 (18) 8.4简单选择排序 (20) 8.5堆排序 (21) 8.6归并排序 (24) 8.7冒泡排序 (27) 8.8主程序 (28)

查询与排序实验报告

_________ 学院_________ 专业____________ 班学号_______________ 姓名___________ 协作者______________ 师评定____________________ 实验题目查询与排序 综合实验评分表

实验报告 实验目的与要求 1、掌握散列表的构造及实现散列查找; 2、掌握堆排序的算法; 3、综合比较各类排序算法的性能。 二、实验内容 #include "stdio.h" #include "stdlib.h" #include "string.h" #include "windows.h" #define MAX 20 typedef struct{ unsigned long key; int result; char name[30]; }RNode; RNode t[MAX],r[MAX]; int h( unsigned long k) /* 散列函数*/ { return ((k - 3109005700)%11); } void insert(RNode t[],RNode x) /*插入函数,以线性探查方法解决冲突*/ { int i,j =0; i =h(x. key); while ((j 0)) j ++; if (j ==MAX) printf( "full\n"); i =(i +j) %/IAX; if (t[i] . key==0) {t[i] =x;} else { if (t[i] . key==x. key) printf( "记录已存在!\n"); } } int search(RNode t[], unsigned long k) /*插入函数,以线性探查方法解决冲突*/ {

实验报告_排序与查找

电子科技大学信息与软件工程学院实验报告 电子科技大学实验报告 课程名称:数据结构与算法 学生姓名: 学号: 点名序号: 指导教师: 实验地点:基础实验大楼 实验时间:5月20日 2014-2015-2 学期 信息与软件工程学院

实验报告(二) 学生姓名学号:指导教师: 实验地点:基础实验大楼实验时间:5月20日 一、实验室名称:软件实验室 二、实验项目名称:数据结构与算法—排序与查找 三、实验学时: 4 四、实验原理: 快速排序的基本思想是:通过一躺排序将要排序的数据分割成独立的两部分,其中一部分的 所有数据都比另外一不部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快 速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。 假设要排序的数组是A[1] ?? A[N],首先任意选取一个数据(通常选用第一个数据) 作为关键数据,然后将所有比它的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一躺快速排序。一躺快速排序的算法是: 1)设置两个变量I、 J,排序开始的时候I :=1, J: =N 2)以第一个数组元素作为关键数据,赋值给X ,即 X :=A[1] ; 3)从 J 开始向前搜索,即(J:=J-1),找到第一个小于X 的值,两者交换; 4)从 I 开始向后搜索,即(I : =I+1 ),找到第一个大于X 的值,两者交换; 5)重复第 3、 4 步,直到I=J 。 二分法查找(折半查找)的基本思想: (1)确定该区间的中点位置: mid= ( low+high )/2 min 代表区间中间的结点的位置,low 代表区间最左结点位置,high 代表区间最右结点位置 (2)将待查 a 值与结点 mid 的关键字(下面用 R[mid].key )比较,若相等,则查找成功,否则确定新的查找区间: A) 如果 R[mid].key>a ,则由表的有序性可知,R[mid].key 右侧的值都大于a,所以等于 a 的关键字如果存在,必然在R[mid].key 左边的表中 ,这时 high=mid-1; B) 如果 R[mid].key

相关文档
最新文档