高中物理双星问题

合集下载

双星问题

双星问题
“双星”专题
双星系统:
宇宙中两颗靠得比较近的恒星称为双星,它们离其它 星球都较远,因此其它星球对它们的万有引力可以忽 略不计。它们绕两者连线上某固定点做匀速圆周运动。
双星

•双星运动的特点:
m1
m2
r2
o
r1
m1
m2
规律:
m1m2 2 G m r 1 1 2 L
1.两恒星间相互作用的万有引 力提供二者的向心力,即两 颗恒星受到的向心力大小相等。 2.两颗恒星与旋转中心时刻三 点共线,即两颗恒星角速度相 同,周期相同。 3.两颗恒星间的距离等于双星 做圆周运动的轨道半径的和。
a O a O r
m1m2 2 G m r 2 2 2 L
L r1 r2
•确定双星的旋转中心:
离旋转中心越近。
质量 m 越大,旋转半径越小,
特别注意:求两星间万有引力时,两星距离不 能带成两星做圆周运动的轨道半径,式中的r表 示星体间的距离L。力作用下,绕连线上某点做周期相同 的匀速圆周运动。现测得两星中心距离为 R,其运动 周期为T,求两星的总质量。
解:设两星质量分别为M1和M2,都绕连线上O点作周期为T 的 圆周运动,星球1和星球2到O 的距离分别为l 1和 l2 .由万 有引力定律和牛顿第二定律及几何条件可得
G
联立解得
M 1M 2 2 2 G M 1 ( ) r1 2 R T M 1M 2 2 2
R r 1 + r2 = R
2
M2(
分析:如图所示,两颗恒星分 别以转动中心O作匀速圆周运动, 角速度 ω 相同,设 M1 的转动半 径为 r1 , M2 的转动半径为 r2=Lr1 ;它们之间的万有引力是各 自的向心力。

物理双星问题精析

物理双星问题精析

物理双星问题精析一、 要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提 供。

由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小.二、 要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等 的,所以线速度与两子星的轨道半径成正比。

三、 要明确两子星圆周运动的动力学关系。

设双星的两子星的质量分别为M 1和M 2,相距L ,M 1和M 2的线速度分别为v 1和v 2,角 速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:M 1: 22121111121M M v G M M r Lr ω==M 2: 22122222222M M v G M M r Lr ω== 在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。

四、“双星”问题的分析思路质量m 1,m 2;球心间距离L ;轨道半径 r 1 ,r 2 ;周期T 1,T 2 ;角速度ω1,ω2 线速度V 1 V 2角速度相同:(参考同轴转动问题)ω1 =ω2(由于在双星运动问题中,忽略其他星体引力的情况下向心力由双星彼此间万有引力提供,可理解为一对作用力与反作用力)m 1ω2r 1=m 2ω2r 2m 1r 1=m 2r 2 r 1:r 2=m 2:m 1线速度之比与质量比相反:(由半径之比推导) V 1=ωr 1 V 2=ωr 2 V 1:V 2=r 1:r 2=m 2:m 1两颗质量可以相比的恒星相互绕着旋转的现象,叫双星.双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。

【例题1】两颗靠得很近的天体称为双星,它们都绕两者连线上某点做匀速圆周运动,因而不至于由于万有引力而吸引到一起,以下说法中正确的是:A 、它们做圆周运动的角速度之比与其质量成反比。

高一物理【双星问题】专题

高一物理【双星问题】专题

高一物理【双星问题】专题1.双星模型宇宙中往往会有相距较近、质量相当的两颗星球,它们离其他星球都较远,因此其他星球对它们的万有引力可以忽略不计。

在这种情况下,它们将各自围绕它们连线上的某一固定点O 做同周期的匀速圆周运动。

这种结构叫作双星模型(如图所示)。

2.双星的特点(1)由于双星和该固定点O 总保持三点共线,所以在相同时间内转过的角度必然相等,即双星做匀速圆周运动的角速度必然相等,因此周期也必然相等。

(2)由于每颗星球的向心力都是由双星间相互作用的万有引力提供的,因此大小必然相等,即m 1ω2r 1=m 2ω2r 2,又r 1+r 2=L (L 是双星间的距离),可得r 1=m 2m 1+m 2L ,r 2=m 1m 1+m 2L ,即固定点离质量大的星球较近。

(3)列式时需注意:万有引力定律表达式中的r 表示双星间的距离,该处按题意应该是L ,而向心力表达式中的r 表示它们各自做圆周运动的轨道半径。

宇宙中两颗相距较近的天体称为双星,它们以二者连线上的某一点为圆心做匀速圆周运动,而不至于因相互之间的引力作用吸引到一起。

设两者相距为L ,质量分别为m 1和m 2。

(1)试证明它们的轨道半径之比、线速度之比都等于质量的反比; (2)试写出它们角速度的表达式。

[解析] 双星之间相互作用的引力满足万有引力定律,即F =G m 1m 2L 2,双星依靠它们之间相互作用的引力提供向心力,又因为它们以二者连线上的某点为圆心,所以半径之和为L 且保持不变,运动中角速度不变,如图所示。

(1)分别对m 1、m 2应用牛顿第二定律列方程, 对m 1有G m 1m 2L 2=m 1ω2r 1①对m 2有G m 1m 2L 2=m 2ω2r 2②由①②得r 1r 2=m 2m 1;由线速度与角速度的关系v =ωr ,得v 1v 2=r 1r 2=m 2m 1。

(2)由①得r 1=Gm 2L 2ω2,由②得r 2=Gm 1L 2ω2,又L =r 1+r 2,联立以上三式得ω=G (m 1+m 2)L 3。

高中物理复习 双星问题,天体追击

高中物理复习 双星问题,天体追击

一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。

2.模型条件: (1)两颗星彼此相距较近。

(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。

(3)两颗星绕同一圆心做圆周运动。

3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。

(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。

(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。

(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。

②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。

(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。

②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。

二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。

(完整版)“双星”问题及天体的追及相遇问题

(完整版)“双星”问题及天体的追及相遇问题
(2)根据两星追上或相距最近时满足两星运行的角度差等于2π的整数倍,相距最远时,两星运行的角度差等于π的奇数倍。
在与地球上物体追及时,要根据地球上物体与同步卫星角速度相同的特点进行判断。
题型一 双星规律的应用
【例题】2017年6月15日,我国在酒泉卫星发射中心用长征四号乙运载火箭成功发射硬X射线调制望远镜卫星“慧眼”。“慧眼”的成功发射将显著提升我国大型科学卫星研制水平,填补我国国X射线探测卫星的空白,实现我国在空间高能天体物理领域由地面观测向天地联合观测的超越。“慧眼”研究的对象主要是黑洞、中子星和射线暴等致密天体和爆发现象。在利用“慧眼”观测美丽的银河系时,若发现某双黑洞间的距离为L,只在彼此之间的万有引力作用下做匀速圆周运动,其运动周期为T,引力常量为G,则双黑洞总质量为()
【例题】太阳系中某行星运行的轨道半径为 ,周期为 .但科学家在长期观测中发现,其实际运行的轨道与圆轨道总存在一些偏离,且周期性地每隔 时间发生一次最大的偏离.天文学家认为形成这种现象的原因可能是该行星外侧还存在着一颗未知行星,则这颗未知行星运动轨道半径为 ( )
A. B.
C. D.
【解析】:由题意可知轨道之所以会偏离那是因为受到某颗星体万有引力的作用相距最近时
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型
(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.
(2)三星模型: ①三颗ቤተ መጻሕፍቲ ባይዱ位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).
【解析】已知地球绕太阳的公转周期为 设火星的公转周期为 根据开普勒第三定律 得 又根据 化简得

高中物理双星问题和卫星变轨考点归纳

高中物理双星问题和卫星变轨考点归纳

高中物理双星问题和卫星变轨考点归纳考点1:双星问题一、 要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供。

由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。

二、 要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,所以线速度与两子星的轨道半径成正比。

三、 要明确两子星圆周运动的动力学关系。

设双星的两子星的质量分别为M 1和M 2,相距L ,M 1和M 2的线速度分别为v 1和v 2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得: M 1: 22121111121M M v G M M r L r ω== M 2: 22122222222M M v G M M r L r ω== 在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。

四、“双星”问题的分析思路质量m 1,m 2;球心间距离L ;轨道半径 r 1 ,r 2 ;周期T 1,T 2 ;角速度ω1,ω2 线速度V 1 V 2;角速度相同:(参考同轴转动问题)ω1 =ω2(由于在双星运动问题中,忽略其他星体引力的情况下向心力由双星彼此间万有引力提供,可理解为一对作用力与反作用力)m 1ω2r 1=m 2ω2r 2m 1r 1=m 2r 2 r 1:r 2=m2:m 12 2线速度之比与质量比相反:(由半径之比推导)V 1=ωr 1 V 2=ωr 2V 1:V 2=r 1:r 2=m 2:m 1两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。

双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。

考点2:卫星变轨一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。

(完整版)“双星”问题及天体的追及相遇问题

(完整版)“双星”问题及天体的追及相遇问题

②三颗质量均为 m 的星体位于等边三角形的三个顶点上 ( 如图乙所示 ).双星”问题及天体的追及相遇问题一、双星问题1. 模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、 周期相同的匀速圆周运动的恒星称为双星。

2.模型条件: (1) 两颗星彼此相距较近(2) 两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。

(3) 两颗星绕同一圆心做圆周运动。

3.模型特点 : (1) “向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。

(2) “周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。

(3) 三个反比关系: m 1r 1=m 2r 2;m 1v 1=m 2v 2;m 1a 1=m 2a 2推导:根据两球的向心力大小相等可得, m 1ω2r 1=m 2ω2r 2,即 m 1r 1=m 2r 2;等式 m 1r 1=m 2r 2两边同乘以角速度 ω,得 m 1r 1ω=m 2r 2 ω,即 m 1v 1= m 2v 2;由 m 1ω r 1=m 2ω r 2直接可得, m 1a 1=m 2a 2。

4. 解答双星问题应注意“两等” “两不等”(1) “两等” : ①它们的角速度相等。

②双星做匀速圆周运动向心力由它们之间的万有引力提供, 即它们受到的向心力大小总是相等。

(2) “两不等” : ①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它 们的轨道半径之和才等于它们间的距离。

②由 m 1ω2r 1= m 2ω2r 2知由于 m 1与m 2一般不相等,故 r 1与 r 2一般也不相等。

、多星模型(1) 定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(4) 巧妙求质量和: G Lm2m=m 1ω r 1① G Lm 2m= m 2ω r 2② 由①+②得:G mL 2 m=ω L∴m 1+m 2ω2L3(2) 三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为 R的圆形轨道上运行(如图甲所示) .②三颗质量均为 m的星体位于等边三角形的三个顶点上( 如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙) .②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心 O,外围三颗星绕 O做匀速圆周运动( 如图丁所示) .三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。

高中物理双星问题.doc

高中物理双星问题.doc

“双星”问题的分析思路两颗质量可以相比的恒星相互绕着旋转的现象, 叫双星。

双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。

一、 要明确双星中两颗子星做匀速圆周运动的向心力来源 双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供。

由于力的作用是相互的, 所以两子星做圆周运动的向心力大小是相等的, 利用万有引力定律可以求得其大小。

二、 要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,所以线速度与两子星的轨道半径成正比。

三、 要明确两子星圆周运动的动力学关系。

设双星的两子星的质量分别为 M 1 和 M 2,相距 L , M 1 和 M 2 的线速度分别为 v 1 和 v 2,角速度分别为 ω 1 和 ω 2,由万有引力定律和牛顿第二定律得:1:M 1M 2 v 122MG L 2M 1r 1 M 1r1 1ω1M Mv 22:22221rGM 2 M 2r 2 21r 2MLr 2Lω 2在这里要特别注意的是在求两子星间的万有引力时两子星 间的距离不能代成了两子星做圆周运动的轨道半径。

【例题一 】两颗靠得很近的天体称为双星,它们都绕两者连线上某点做匀速圆周运动,因而不至于由于万有引力而吸引到一起,以下说法中正确的是:A 、它们做圆周运动的角速度之比与其质量成反比。

B 、它们做圆周运动的线速度之比与其质量成反比。

C 、它们做圆周运动的半径与其质量成正比。

D 、它们做圆周运动的半径与其质量成反比。

解析:两子星绕连线上的某点做圆周运动的周期相等,角速度也相等。

由v=r ω 得线速度与两子星圆周运动的半径是成正比的。

因为两子星圆周运动的向心力由两子星间的万有引力提供,向心力大小相等,由GM 1M2M 1r 1 2, GM 1M 2M 2r 2 2 可知: M 1r 12M 2r 2 2 ,L 2L 2所以它们的轨道半径与它们的质量是成反比的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“双星”问题的分析思路
两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。

双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。

一、 要明确双星中两颗子星做匀速圆周运动的向心力来源
双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提 供。

由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。

二、 要明确双星中两颗子星匀速圆周运动的运动参量的关系
两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等 的,所以线速度与两子星的轨道半径成正比。

三、 要明确两子星圆周运动的动力学关系。

设双星的两子星的质量分别为M 1和M 2,相距L ,M 1和M 2的线速度分别为v 1和v 2,角 速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:
M 1: 2
2121111121M M v G M M r L r ω== M 2: 2
21
22222222M M v G M M r L r ω== 在这里要特别注意的是在求两子星间的万有引力时两子星
间的距离不能代成了两子星做圆周运动的轨道半径。

【例题一】两颗靠得很近的天体称为双星,它们都绕两者连线上某点做匀速圆周运动,因而不至于由于万有引力而吸引到一起,以下说法中正确的是:
A 、它们做圆周运动的角速度之比与其质量成反比。

B 、它们做圆周运动的线速度之比与其质量成反比。

C 、它们做圆周运动的半径与其质量成正比。

D 、它们做圆周运动的半径与其质量成反比。

解析:两子星绕连线上的某点做圆周运动的周期相等,角速度也相等。

由v=r ω得线速度与两子星圆周运动的半径是成正比的。

因为两子星圆周运动的向心力由两子星间的万有引力提供,向心力大小相等,由212112M M G M r L ω=,212222M M G M r L
ω=可知:221122M r M r ωω=,所以它们的轨道半径与它们的质量是成反比的。

而线速度又与轨道半径成正比,所以线速度与它们的质量也是成反比的。

正确答案为:BD 。

2 2
【例题二】用天文望远镜长期观测,人们在宇宙中发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质存在的形式和分布有了较深刻的认识,双星系统是由两个星体构成,其中每个星体的线度都小于两星体间的距离,一般双星系统距离其它星体很远,可以当做孤立系统处理,现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M ,两者相距L ,它们正围绕两者连线的中点做圆周运动。

(1)计算该双星系统的运动周期T 计算。

(2)若实验上观测到的运动周期为T 观测,且T 观测:T 计算=1 (N>1),为了解释T 观测
与T 计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质,作为一种简化模型,我们假定在这两个星体边线为直径的球体内均匀分布着暗物质,而不考虑其它暗物质的影响,试根据这一模型和上述观测结果确定该星系间这种暗物质的密度。

解析:(1)双星绕它们的连线中点做圆周运动,由万有引力提供向心力,根据万有引力和牛顿第二定律得:22
22
M M L G L ω=,而2T πω=。

解得:T π计算= (2)因为
T T 观测计算计算<,这个差异是以双星连线为直径的球体内均匀分布着的暗物
质引起的,设这种暗物质质量为M ′,位于两星连线中点处的质点对双星的影响相同,这时双星做圆周运动的向心力由双星的万有引力和M ′对双星的万有引力提供,所以有:
()
22/222/2M L M MM G G L L ω=观测+,又2T πω=观测观测 解得暗物质的质量为:/N 1/4M M =(-) 而暗物质的体积为:34L V 32
π=() 所以暗物质的密度为:/3M 3(1)/(2)V
N M L ρπ=-=
(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档