网络体系结构的基本原理
网络体系结构及协议

问题亟待解决,向IPv6过渡成为必然趋势。
02
网络安全性问题
随着网络攻击手段不断升级,现有网络体系结构在安全性方面存在诸多
漏洞,如DDoS攻击、网络钓鱼等,需要加强安全防护。
03
网络可扩展性问题
现有网络体系结构在面对大规模数据传输和海量设备连接时,存在可扩
展性不足的问题,难以满足未来物联网、5G等应用场景的需求。
02
ICMP(互联网控制 消息协议)
用于在IP主机和路由器之间传递 控制消息,如网络不可达、超时 等。
03
IGMP(互联网组管 理协议)
用于IPv4网络中的多播组成员资 格管理。
数据链路层和物理层协议
数据链路层协议
如Ethernet、PPP等,负责将数据封装成 帧进行传输,并提供错误检测和流量控 制等功能。
内容过滤
检查数据包内容,拦截恶意代码、垃圾邮件等不良信息。
防火墙原理及功能介绍
日志记录
记录网络访问和数据传输情况,便于审计和 故障排查。
VPN支持
提供虚拟专用网络功能,保障远程访问的安 全性。
典型防火墙配置案例分析
案例一
小型企业网络防火墙配置
配置目标
保护内部网络免受外部攻击,限制员工上网行为。
典型防火墙配置案例分析
协议作用
网络协议是网络通信的基础,它使得 不同厂商生产的计算机和网络设备能 够相互通信,实现网络资源的共享和 信息的交换。
协议层次结构划分
OSI七层模型
01
物理层、数据链路层、网络层、传输层、会话层、表示层、应
用层。
TCP/IP四层模型
02
网络接口层、网络层、传输层、应用层。
五层模型
03
计算机网络(第二版)课后习题答案第三章

计算机网络参考答案第三章(高教第二版冯博琴)1 什么是网络体系结构?网络体系结构中基本的原理是什么?答:所谓网络体系就是为了完成计算机间的通信合作,把每个计算机互连的功能划分成定义明确的层次,规定了同层次进程通信的协议及相邻层之间的接口及服务。
将这些同层进程间通信的协议以及相邻层接口统称为网络体系结构。
网络体系结构中基本的原理是抽象分层。
2 网络协议的组成要素是什么?试举出自然语言中的相对应的要素。
答:网络协议主要由三个要素组成:1)语义协议的语义是指对构成协议的协议元素含义的解释,也即“讲什么”。
2)语法语法是用于规定将若干个协议元素和数据组合在一起来表达一个更完整的内容时所应遵循的格式,即对所表达的内容的数据结构形式的一种规定(对更低层次则表现为编码格式和信号电平),也即“怎么讲”。
3)时序时序是指通信中各事件发生的因果关系。
或者说时序规定了某个通信事件及其由它而触发的一系列后续事件的执行顺序。
例如在双方通信时,首先由源站发送一份数据报文,如果目标站收到的是正确的报文,就应遵循协议规则,利用协议元素ACK来回答对方,以使源站知道其所发出的报文已被正确接收,于是就可以发下一份报文;如果目标站收到的是一份错误报文,便应按规则用NAK元素做出回答,以要求源站重发该报文。
3 OSI/RM参考模型的研究方法是什么?答:OSI/RM参考模型的研究方法如下:1)抽象系统抽象实系统中涉及互连的公共特性构成模型系统,然后通过对模型系统的研究就可以避免涉及具体机型和技术实现上的细节,也可以避免技术进步对互连标准的影响。
2)模块化根据网络的组织和功能将网络划分成定义明确的层次,然后定义层间的接口以及每层提供的功能和服务,最后定义每层必须遵守的规则,即协议。
模块化的目的就是用功能上等价的开放模型代替实系统。
5 服务原语的作用是什么?试以有确认服务为例进行说明。
答:服务在形式上是用服务原语来描述的,这些原语供用户实体访问该服务或向用户实体报告某事件的发生。
计算机网络体系结构

计算机网络体系结构清点人数,组织教学。
复习:计算机网络的定义及系统的组成和功能授新:一、计算机网络体系结构的基本概念1.网络协议在计算机网络中用于规定信息的格式以及如何发送和接收信息的一套规则、标准或约定称为网络协议,简称协议。
协议组成的三个要素是语法、语义和时序。
语法规定了进行网络通信时,数据的传输和存储格式,以及通信中需要哪些控制信息,它解决了怎么讲的问题。
语义规定了控制信息的具体内容,以及发送主机或接收主机所要完成的工作,它主要解决“讲什么”的问题。
时序规定计算机操作的执行顺序,以及通信过程中的速度匹配,主要解决“顺序和速度”问题。
2.数据封装一台计算机要发送数据到另一台计算机,数据必须要先打包,打包的过程称为封装,如图10-10所示,封装就是在用户数据前面加上网络协议规定的头部和尾部,这些头信息包括数据包发送主机的源地址、数据接收主机的目的地址、数据包采用的协议类型、数据包大小、数据包的序号、数据包的纠错信息等内容。
而且,在网络通信中,数据往往是多层次的封装的。
3.网络协议的分层为了减少网络协议的复杂性,技术专家们把网络通信问题划分为许多小问题,然后为每一个问题设计一个通信协议。
这样使得每一个协议的设计、分析、编码和测试都比较容易。
协议分层就是按照信息的流动过程,将网络的整体功能划分为多个不同的功能层。
每一层都建立在它的下层之上,每一层的目的都是向它的上一层提供一定的服务。
4.分层原则层次结构虽然有它的优点,但是如果划分的不合理,反而会带来许多负面影响。
通常要遵循如下一些原则:网络协议层次的数量不能过多,真正需要的时候才能划分一个层次。
网络协议层次的数量也不能过少,层次的数量应该保证能从逻辑上将功能分开,不同的功能不要放在同一层。
功能类似的服务应当放在同一层。
在技术经常变化的地方可以适当增加层次。
层次边界的选择要合理,用于信号控制的额外信息流量要尽量少。
5.网络体系结构计算机网络协议的分层方法及其协议层与层之间接口的集合称为网络体系结构。
OSI模型七个层的作用及工作原理

OSI模型七个层的作用及工作原理OSI模型是计算机网络体系结构的理论模型,它将计算机网络分为七个不同的层次。
每一层都有自己的具体功能和任务,通过分层设计,可以清晰地描述计算机网络的工作原理与功能,并且每一层都可以独立地进行修改和更新。
下面将详细介绍OSI模型的七个层及它们的作用和工作原理。
1. 物理层(Physical Layer)物理层是OSI模型的最底层,它负责将原始的比特流发送到物理媒介上,管理数据的物理传输。
物理层的主要功能包括:数据的电子和光学传输、输入/输出端口的连接和控制、线缆和连接器的规范等。
物理层常见的媒介有双绞线、光纤和无线电波。
2. 数据链路层(Data Link Layer)数据链路层位于物理层之上,它负责在直接相连的两个节点之间传输数据。
数据链路层的主要功能是将不可靠的物理连接转化为可靠的数据传输,并进行流量控制和差错检测。
数据链路层通过将数据分成帧来传输,并在每一帧中添加必要的控制信息来保证通信的可靠和准确。
3. 网络层(Network Layer)网络层位于数据链路层之上,它负责将数据从源主机传输到目标主机。
网络层的主要功能是实现数据的路由选择和转发,在不同的网络之间选择最优路径,并通过IP地址进行端到端的数据传输。
网络层使用IP协议来进行数据分组和路由选择。
4. 传输层(Transport Layer)传输层位于网络层之上,它通过提供端到端的可靠数据传输来实现进程之间的通信。
传输层的主要功能是将应用层的数据分割成更小的数据块,并负责数据的传输和错误检测。
常见的传输层协议包括传输控制协议(TCP)和用户数据报协议(UDP)。
5. 会话层(Session Layer)会话层位于传输层之上,它负责建立、管理和终止应用程序之间的会话。
会话层的主要功能是为应用程序之间提供会话控制和同步服务,包括会话的建立、终止和管理、数据传输的同步和复位操作等。
会话层通过会话协议来实现会话的管理。
五层原理体系结构

五层原理体系结构第一层:物理层(Physical Layer)物理层是网络的最底层,它主要负责数据的传输和接收。
在物理层中,传输的数据是以比特(bit)为单位传输的,比特是最小的数字量,它代表了0或1两种状态。
物理层的主要任务是将比特转化为数据信号,并通过物理媒介传到下一层,例如使用光纤、铜缆等。
物理层的标准化使不同厂商的网络设备可以相互通信。
第二层:数据链路层(Data Link Layer)数据链路层是负责将已经传输的物理层数据,转化成适合传输的数据帧,并将其传输到下一层。
该层还能够纠错,保证数据的完整性和可靠性。
数据链路层还规定了一个严格的协议,以控制网络访问、数据包的发送顺序和错误纠正。
第三层:网络层(Network Layer)网络层是实现目标地址到源地址的路由、选路等功能的层次。
该层利用路由协议学习路由表信息,传输控制数据包的流向,同时进行差错控制和流量控制。
路由器就是运行在网络层的设备,它可以通过将数据包从一条链路传递到另一条链路,实现站点之间的连通。
传输层主要负责数据的传输控制,包括数据的分段、发包、重传等。
当数据在传输过程中出现错误,传输层会进行差错控制和恢复,保证数据完整性和可靠性。
传输层协议常见的有TCP、UDP等。
应用层是最高层,也是最接近用户的层次。
该层负责网络应用程序的编程接口,例如Web浏览器、电子邮件客户端等。
应用层通过应用程序协议,与另一台计算机上运行的应用程序进行通信。
常见的应用层协议有HTTP、SMTP、FTP等,它们规定了如何处理和传输数据。
总结五层原理体系结构是将计算机网络分成五个互相衔接的层次结构,每个层次完成特定的功能,实现了设备和网络之间的互操作性、互联性和可扩展性。
每一层都有对应的协议来进行规范化,因此任何厂商的设备都可以遵循同样的标准进行通信。
该体系结构是目前计算机网络中最常用的标准架构,有助于不同厂商之间的互操作性和兼容性。
除了上述五层原理体系结构之外,还存在其他体系结构,比如七层体系结构。
MMS网络基本结构及工作原理

MMS网络基本结构及工作原理1. MMS 网络基本结构移动多媒体信息业务系统涵盖了多种类型的网络,并可以集成这些网络中现有的信息业务系统。
移动终端在多媒体信息业务环境(MMSE)中进行操作。
此环境既包括2.5G和3G网络,也有网络间的相互漫游等情况。
MMSE提供了所有相关的业务成份,如:信息的发送、存储、通知。
它们既可位于同一网络中或分布于不同的网络中。
在MMS服务投放市场以前,很多关于网络的实际准备工作必须预先完成。
在软、硬件的准备上除了可以接收MMS的终端外,还需要MMS中心、WAP网关、数据库服务器、增值服务(VAS)等。
◆多媒体信息中心(MMSC)在整个在多媒体信息业务环境(MMSE)中,多媒体信息中心(MMSC)是系统的核心。
由MMS服务器、MMS中继、信息存储器和数据库组成。
MMSC是MMS网络结构的核心,它提供存储和操作支持,允许终端到终端和终端到电子邮件的即时多媒体信息传送,同时支持灵活的寻址能力。
MMSC是将MMS信息从发送者传递到接收者的存储和转发网络元素。
MMSC的概念与SMSC相似,即服务器只在查找接收者电话的期间存储信息。
在找到接收电话以后,MMSC立即将多媒体消息转发给接收者,并且从MMSC删除此消息。
由于MMSC在能够发送的情况下不存储消息,因此它不是一个邮箱服务器。
MMSC是提供MMS服务所需的一个新的网络元素。
由于传输容量和界面需求都不同,SMSC的软件不能直接升级到MMSC。
另外,MMSC需要运行很多连接其它网络(如Internet)接口,以及提供增值服务所需的外部应用接口,MMSC 还应具备到Email的接口。
◆ WAP网关尽管用户对MMS的使用与SMS类似,但是MMS不能在SMS的传输信道进行传送,SMS的传输信道对于传送多媒体内容来说太窄了。
在协议层,MMS使用WAP无线会话协议(WSP)作为传输协议。
为了在MMS信息传输中使用WAP协议,需要一个WAP网关连接MMSC和无线WAP网络。
路由器基本原理和结构体系

路由器基本原理和结构体系路由器是网络通信领域中的一种重要设备,它在互联网的发展和扩展中发挥着至关重要的作用。
本文将介绍路由器的基本原理和结构体系,帮助读者更好地理解和使用路由器。
一、路由器的基本原理路由器作为数据包在网络中的传递和转发设备,具有以下基本原理:1. 数据包转发原理路由器通过接收到达的数据包,并根据其目标地址进行转发。
路由器内部有一个路由表,记录了不同网络的地址信息以及对应的下一跳节点。
当收到数据包时,路由器根据目标地址查找路由表,确定下一跳节点,并将数据包发送到相应的输出接口。
2. 路由选择原理路由器通过路由选择协议(如OSPF、BGP等)来更新和维护路由表,实现网络中路由的动态调整和最优路径的选择。
路由选择原理的目标是实现网络的高效通信和负载均衡,使数据包能够快速准确地到达目标节点。
3. 包过滤和安全性原理路由器可以根据设置的ACL(Access Control List)进行包过滤,实现对网络中的数据包进行筛选和控制。
同时,路由器还能够通过防火墙等机制提供基本的安全性保护,抵御网络攻击和威胁。
路由器的结构体系包括硬件和软件两个层面,下面将对其进行介绍:1. 硬件结构(1)中央处理单元(CPU):负责路由器的整体控制和管理,包括运行操作系统、处理转发决策等。
(2)接口:用于与其他设备进行通信和连接,包括以太网接口、串口、光纤接口等。
(3)内存:用于存储路由器的操作系统和路由表等数据。
(4)高速缓存:用于临时存储最常用的数据包和路由表项,提高数据转发的效率。
(5)交换总线:用于连接各个硬件组件,实现数据的传输和交换。
2. 软件结构(1)操作系统:路由器的操作系统通常是专用的路由器操作系统,如Cisco的IOS、Juniper的Junos等。
操作系统负责路由器的整体管理、配置和控制。
(2)路由协议:路由器的软件包括各种路由协议的实现,如RIP、OSPF、BGP等。
路由协议用于路由表的更新和维护,实现路由的选择和转发。
五层原理体系结构

五层原理体系结构
五层原理体系结构(Five-layer Model)是一种计算机网络体系结构模型,也被称为TCP/IP五层模型。
它由五个层次组成,分别是物理层、数据链路层、网络层、传输层和应用层。
1. 物理层:该层是网络的最底层,负责将数据从一个节点传输到另一个节点。
它定义了数据传输的物理媒介,包括电缆、光纤、无线电波等,以及传输的基本单位比特(bit)。
2. 数据链路层:该层主要是将物理层传输的比特组成数据帧,通过物理链接将数据帧传输到目标节点。
该层还负责处理数据传输的错误控制和流量控制,保障数据的可靠传输。
3. 网络层:该层负责处理数据的路由和转发,以及处理不同网络之间的连接和通信。
该层的核心是IP协议,用于定义数据在网络中的传输规则和寻址方式。
4. 传输层:该层提供端到端的可靠数据传输和控制,包括错误控制、流量控制、连接控制和可靠数据传输。
该层的核心是TCP协议和UDP协议,TCP协议提供可靠的数据传输,UDP 协议则提供无连接的、不可靠的数据传输。
5. 应用层:该层是用户接口层,为用户提供网络服务和应用程序。
该层负责处理诸如电子邮件、文件传输、远程登录、Web 浏览器等应用程序的协议和接口。
五层原理体系结构是网络通信中最常用的体系结构,它提供了
一个标准化的网络通信模型,不同的网络设备和应用程序都可以在该模型中进行通信。
同时它也是TCP/IP协议族的基础,TCP/IP协议族中的各种协议都是基于该模型的不同层级进行设计的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5)接入控制:当多个节点共享通信链路时,确定在某一时间内由哪个节点发送数据
常见的数据链路层协议有两类:一是面向字符型传输控制规程BSC;一是面向比特的传输控制规程HDLC
流量控制技术
(1)停-等流量控制:发送节点在发送一帧数据后必须等待对方回送确认应答信息到来后再发下一帧.接收节点检查帧的校验序列,无错则发确认帧,否则发送否认帧,要求重发.
2)物理层的数据交换单元为二进制比特:对数据链路层的数据进行调制或编码,成为传输信号(模拟,数字或光信号)
3)比特的同步:时钟的同步,如异步/同步传输
4)线路的连接:点—点(专用链路),多点(共享一条链路)
5)物理拓扑结构:星型,环型,网状
6)传输方式:单工,半双工,全双工
典型的物理层协议有RS-232系列,RS449,V.24,V.28,X.20,X.21
功能:实现通信子网端到端的可靠传输(保证通信的质量)
信息传送的基本单位:报文
传输层采用的协议是ISO8072/3
会话层(Session Layer)
又称为会晤层,是利用传输层提供的端到端的服务向表示层或会话层用户提供会话服务.
功能:提供一个面向用户的连接服务,并为会话活动提供有效的组织和同步所必须的手段,为数据传送提供控制和管理.
功能:实现分别位于不同网络的源节点与目的节点之间的数据包传输(数据链路层只是负责同一个网络中的相邻两节点之间链路管理及帧的传输),即完成对通信子网正常运行的控制.
关键技术:路由选择
传送信息的基本单位:包(Packer)
网络层采用的协议是X.25分组级协议
网络层的服务:
面向连接服务:指数据传输过程为连接的建立,数传的维持与拆除连接三个阶段.如电路交换
计算机网络由多个互连的结点组成,结点之间要不断地交换数据和控制信息,要做到有条不紊地交换数据,每个结点就必须遵守一整套合理而严谨的结构化管理体系.计算机网络就是按照高度结构化设计方法采用功能分层原理来实现的,即计算机网络体系结构的内容.
网络体系结构及协议的概念
网络体系和网络体系结构
网络体系(Network Architecture):是为了完成计算机间的通信合作,把每台计算机互连的功能划分成有明确定义的层次,并规定了同层次进程通信的协议及相邻之间的接口及服务.
ISO发布的最著名的ISO标准是ISO/IEC 7498,又称为X.200建议,将OSI/RM依据网络的整个功能划分成7个层次,以实现开放系统环境中的互连性(interconnection),互操作性(interoperation)和应用的可移植性(portability).
分层原则
ISO将整个通信功能划分为7个层次,分层原则如下:
发送窗口
0123412345重源自13456756701
接收窗口
01(0对1错)
12(1等2对)
12(正确)
34(正确)
……
滑动窗口的大小与协议的关系:
WT >1,WR=1,协议为退回N步的ARQ(自动反馈请求)
WT >1,WR>1,协议为选择重传的ARQ
WT =1,WR=1,协议为停-等式的ARQ
网络层(Network Layer)
协议(Protocol)
网络中计算机的硬件和软件存在各种差异,为了保证相互通信及双方能够正确地接收信息,必须事先形成一种约定,即网络协议.
协议:是为实现网络中的数据交换而建立的规则标准或约定.
网络协议三要素:语法,语义,交换规则(或称时序/定时关系)
注:通信协议的特点是:层次性,可靠性和有效性.
实体(Entity)
Internet的体系结构
Internet是由无数不同类型的服务器,用户终端以及路由器,网关,通信线路等连接组成,不同网络之间,不同类型设备之间要完成信息的交换,资源的共享需要有功能强大的网络软件的支持,TCP/IP就是能够完成互联网这些功能的协议集.
OSI/RM中系统间的通信信息流动过程
在OSI/RM中系统间的通信信息流动过程如下:发送端的各层从上到下逐步加上各层的控制信息构成的比特流传递到物理信道,然后再传输到接收端的物理层,经过从下到上逐层去掉相应层的控制住信息得到的数据流最终传送到应用层的进程.
由于通信信道的双向性,因此数据的流向也是双向的.
实体:是通信时能发送和接收信息的任何软硬件设施
接口(Interface)
接口:是指网络分层结构中各相邻层之间的通信
开放系统互连参考模型(OSI/RM)
OSI/RM参考模型
基本概述
为了实现不同厂家生产的计算机系统之间以及不同网络之间的数据通信,就必须遵循相同的网络体系结构模型,否则异种计算机就无法连接成网络,这种共同遵循的网络体系结构模型就是国际标准——开放系统互连参考模型,即OSI/RM.
信息传送的基本单位:报文
表示层采用的协议是ISO8822/3/4/5
应用层(Application Layer)
应用层是计算机网络与最终用户间的接口,是利用网络资源唯一向应用程序直接提供服务的层.
功能:包括系统管理员管理网络服务所涉及的所有问题和基本功能.
信息传送的基本单位:用户数据报文
应用层采用的协议有:用于文件传送,存取和管理FTAM的ISO8571/1~4;用于虚终端VP的ISO9040/1;用于作业传送与操作协议JTM的ISO8831/2;用于公共应用服务元素CASE的ISO8649/50
两个计算机通过网络进行通信时,除了物理层之外(说明了只有物理层才有直接连接),其余各对等层之间均不存在直接的通信关系,而是通过各对等层的协议来进行通信,如两个对等的网络层使用网络层协议通信.只有两个物理层之间才通过媒体进行真正的数据通信.
当通信实体通过一个通信子网进行通信时,必然会经过一些中间节点,通信子网中的节点只涉及到低三层的结构.
存在问题:双方无休止等待(数据帧或确认帧丢失),解决办法发送后使用超时定时器;重帧现象(收到同样的两帧),解决办法是对帧进行编号
适用:半双工通信
(2)滑动窗口流量控制:是指对于任意时刻,都允许发送端/接收端一次发送/接收多个帧,帧的序号个数称为发送/接收窗口大小
适用:全双工
工作原理:以帧控制段长为8位,则发送帧序号用3bit表示,发送窗口大小为WT=5,接收窗口大小为WR=2为例来说明
计算机网络结构采用结构化层次模型,有如下优点:
各层之间相互独立,即不需要知道低层的结构,只要知道是通过层间接口所提供的服务
灵活性好,是指只要接口不变就不会因层的变化(甚至是取消该层)而变化
各层采用最合适的技术实现而不影响其他层
有利于促进标准化,是因为每层的功能和提供的服务都已经有了精确的说明
网络协议
流量控制:
拥塞控制:是指在通信子网中由于出现过量的数据包而引起网络性能下降的现象.
传输层(Transport Layer)
是计算机网络中的资源子网和通信子网的接口和桥梁,完成资源子网中两节点间的直接逻辑通信.
传输层下面的三层属于通信子网,完成有关的通信处理,向传输层提供网络服务;传输层上面的三层完成面向数据处理的功能,为用户提供与网络之间的接口.由此可见,传输层在OSI/RM中起到承上启下的作用,是整个网络体系结构的关键.
面向无连接服务:指传输数据前后没有连接的建立,拆除,分组依据目的地址选择路由.如存储转发
网络层的内容:
逻辑地址寻址:是指从一个网络传输到另一个网络的源节点和目的节点的逻辑地址NH(数据链路层中的物理地址是指在同一网络中)
路由功能:路由选择是指根据一定的原则和算法在传输通路中选出一条通向目的节点的最佳路由.有非适应型(有随机式,扩散式,固定式路选法)和自适应型(有孤立的,分布的,集中的路选法)两种选择算法
网络中各结点都有相同的层次
不同结点的同等层具有相同的功能
同一结点内相邻层之间通过接口通信
每一层使用下层提供的服务,并向其上层提供服务
不同结点的同等层按照协议实现对等层之间的通信
第七层
应用层
第六层
表示层
第五层
会话层
第四层
传输层
第三层
网络层
第二层
数据链路层
第一层
物理层
OSI/RM参考模型
OSI/RM的配置管理主要目标就是网络适应系统的要求.
比特流的构成:
数据DATA应用层(DATA+报文头AH,用L7表示)表示层(L7+控制信息PH)会话层(L6+控制信息SH)传输层(L5+控制信息TH)网络层(L4+控制信息NH)数据链路层(差错检测控制信息DT+L3+控制信息DH)物理层(比特流)
OSI/RM各层概述
物理层(Physical Layer)
低三层可看作是传输控制层,负责有关通信子网的工作,解决网络中的通信问题;高三层为应用控制层,负责有关资源子网的工作,解决应用进程的通信问题;传输层为通信子网和资源子网的接口,起到连接传输和应用的作用.
ISO/RM的最高层为应用层,面向用户提供应用的服务;最低层为物理层,连接通信媒体实现数据传输.
层与层之间的联系是通过各层之间的接口来进行的,上层通过接口向下层提供服务请求,而下层通过接口向上层提供服务.
数据链路层(Data Link Layer)
通过物理层提供的比特流服务,在相邻节点之间建立链路,对传输中可能出现的差错进行检错和纠错,向网络层提供无差错的透明传输.
主要负责数据链路的建立,维持和拆除,并在两个相邻机电队线路上,将网络层送下来的信息(包)组成帧传送,每一帧包括一定数量的数据和一些必要的控制信息.为了保证数据帧的可靠传输应具有差错控制功能.
直接与物理信道直接相连,起到数据链路层和传输媒体之间的逻辑接口作用.
功能:提供建立,维护和释放物理连接的方法,实现在物理信道上进行比特流的传输.