触摸屏技术分类与应用

合集下载

触摸屏技术的原理及应用

触摸屏技术的原理及应用

触摸屏技术的原理及应用一、概述1. 触摸屏技术的发展历程触摸屏技术,作为一种直观、便捷的人机交互方式,已逐渐渗透到我们生活的各个角落。

其发展历程可谓是一部科技创新的史诗,从最初的电阻式触摸屏到现代的电容式、光学式以及声波式触摸屏,每一步的进展都极大地推动了人机交互方式的进步。

早在20世纪70年代,电阻式触摸屏就已出现。

这种触摸屏由两层导电材料组成,中间以隔离物隔开。

当用户触摸屏幕时,两层导电材料在触摸点处接触,形成电流,从而确定触摸位置。

电阻式触摸屏具有成本低、寿命长等优点,但触摸反应速度较慢,且不支持多点触控,限制了其在高端设备上的应用。

随着科技的进步,电容式触摸屏在20世纪90年代开始崭露头角。

电容式触摸屏通过在屏幕表面形成一个电场,当手指触摸屏幕时,会改变电场分布,从而确定触摸位置。

电容式触摸屏具有反应速度快、支持多点触控等优点,因此在智能手机、平板电脑等设备上得到了广泛应用。

进入21世纪,光学式触摸屏开始受到关注。

光学式触摸屏利用摄像头捕捉屏幕表面的光线变化,从而确定触摸位置。

这种触摸屏具有分辨率高、触摸体验好等优点,但由于其成本较高、易受环境光干扰等因素,目前在市场上的应用相对较少。

近年来,声波式触摸屏作为一种新型技术开始崭露头角。

这种触摸屏通过在屏幕表面产生声波,当手指触摸屏幕时,会改变声波的传播路径,从而确定触摸位置。

声波式触摸屏具有抗干扰能力强、使用寿命长等优点,未来有望在更多领域得到应用。

触摸屏技术的发展历程是一部不断创新、不断突破的历史。

从电阻式到电容式,再到光学式和声波式,每一种新技术的出现都为我们带来了更便捷、更高效的人机交互体验。

随着科技的不断发展,我们有理由相信,未来的触摸屏技术将会更加先进、更加普及,为我们的生活带来更多可能。

2. 触摸屏技术在现代生活中的重要性在现代生活中,触摸屏技术的重要性日益凸显。

随着智能手机、平板电脑、智能电视等设备的普及,触摸屏已经成为我们日常互动的主要界面。

触摸屏TP技术讲解

触摸屏TP技术讲解
触摸屏TP技术讲解
2.3、红外线触摸屏
红外线触摸屏原理很简单,只是在显 示器上加上光点距架框,无需在屏幕表 面加上涂层或接驳控制器。光点距架框 的四边排列了红外线发射管及接收管, 在屏幕表面形成一个红外线网。用户以 手指触摸屏幕某一点,便会挡住经过该 位置的横竖两条红外线,计算机便可即 时算出触摸点位置。因为红外触摸屏不 受电流、电压和静电干扰,所以适宜某 些恶劣的环境条件。其主要优点是价格 低廉、安装方便、不需要卡或其它任何 控制器,可以用在各档次的计算机上。 不过,由于只是在普通屏幕增加了框架, 在使用过程中架框四周的红外线发射管 及接收管很容易损坏。
1、定义:触摸屏简称TP( touch panel),是个可接收触头等输入讯
号的感应式液晶显示装置,当接触了屏幕上的图形按钮时,屏幕上的触 觉反馈系统可根据预先编程的程式驱动各种连结装置,可用以取代机械 式的按钮面板,并借由液晶显示画面制造出生动的影音效果。(一块接 收触摸讯号并能处理的面板)
2、功能:简单方便地实现人机交互
互电容:
互电容屏也是在玻璃表面用ITO制作横向电极与纵向电极,它与自电容屏的区别在于,两 组电极交叉的地方将会形成电容,也即这两组电极分别构成了电容的两极。
区别:单点触摸时无区别,多点触摸有鬼点 。
触摸屏TP技术讲解
电容式触摸屏优点(相对电阻式)
1. 反应灵敏操作更方便。电容式触摸屏支持多点触控,操作更加直观、更具 趣味性。 2. 不易误触。由于电容式触摸屏需要感应到人体的电流,只有人体才能对其 进行操作,用其他物体触碰时并不会有所相应,所以基本避免了误触的可能。 3. 耐用度高。比起电阻式触摸屏,电容式触摸屏在防尘、防水、耐磨等方面 有更好的表现。 4. 电容触摸屏只需要触摸,而不需要压力来产生信号。 5. 电容触摸屏在生产后只需要一次或者完全不需要校正,而电阻技术需要常 规的校正。 6. 电容方案的寿命会长些,因为电容触摸屏中的部件不需任何移动。电阻触 摸屏中,上层的ITO薄膜需要足够薄才能有弹性,以便向下弯曲接触到下面的 ITO薄膜。

触摸屏技术的原理及应用

触摸屏技术的原理及应用

触摸屏技术的原理及应用1. 引言触摸屏是一种常见的输入设备,它使用触摸方式来实现用户和计算机之间的交互。

触摸屏技术已经在各个领域得到广泛应用,例如智能手机、平板电脑、个人电脑、自动取款机等。

本文将介绍触摸屏技术的基本原理以及其应用领域。

2. 触摸屏的原理触摸屏技术的基本原理是利用电场感应、压力感应、光学感应等方式,实现对用户触摸动作的检测和解析。

2.1 电容触摸屏电容触摸屏是一种常见的触摸屏技术,它利用两层导电层之间的电容变化来感知用户触摸动作。

当用户触摸屏幕时,触摸位置会形成一个电容,通过测量这个电容的变化,可以确定用户的触摸位置。

电容触摸屏可以分为电容静电式触摸屏和电容电阻式触摸屏两种类型。

静电式触摸屏是在显示屏上加上一层导电材料,通过测量屏幕上的静电信号来确定触摸位置。

电阻式触摸屏是在显示屏上加上一层压敏材料,通过测量触摸屏的电阻变化来确定触摸位置。

2.2 电阻触摸屏电阻触摸屏是另一种常见的触摸屏技术,它利用两层导电层之间的电阻变化来感知用户触摸动作。

当用户触摸屏幕时,触摸位置会导致导电层之间的电阻发生变化,通过测量这个电阻的变化,可以确定用户的触摸位置。

电阻触摸屏通常由玻璃或塑料屏幕、涂有导电涂层的玻璃或塑料层以及一些连接电路组成。

当用户触摸屏幕时,上下两层导电层之间的电阻会发生变化,通过测量电阻的变化,可以确定触摸位置。

2.3 光学触摸屏光学触摸屏是利用光学传感器来感知用户触摸动作的触摸屏技术。

光学触摸屏通常由一个光学传感器和一个玻璃或塑料屏幕组成。

光学传感器在触摸屏的一侧发射红外线或激光光束,并在另一侧接收反射的光束。

当用户触摸屏幕时,触摸位置会导致光束的路径发生变化,通过测量光束的变化,可以确定用户的触摸位置。

光学触摸屏具有较高的精度和可靠性,适用于一些对精确触摸定位要求较高的应用场景。

3. 触摸屏的应用触摸屏技术在各个领域都有广泛的应用。

3.1 智能手机和平板电脑智能手机和平板电脑是最常见的触摸屏应用之一。

触摸屏技术及其应用

触摸屏技术及其应用

触摸屏技术及其应用触摸屏是一种特殊的计算机外设,提供了目前最简单、方便、自然的新型人机交互输入方式。

本文介绍了目前主流的触控技术种类、特点和基本原理及其应用,并提出未来可能会出现的触控技术。

标签:触摸屏触控技术电容屏电阻屏一、引言触摸屏又称为“触控屏”、“触控面板”,是一种代替了鼠标和键盘的与计算机沟通的设备。

触摸屏作为一种最新的电脑输入设备,它是目前最简单、方便、自然的一种人机交互方式。

触摸屏在全球范围内有广泛的应用领域,从工厂设备、电子查询设施,到移动电话、数码相机、手机等都可看到触控屏幕的身影。

其广泛应用也标志着计算机应用普及时代的真正到来。

二、触控屏组成触摸屏由触摸检测部件和触摸屏控制器组成,触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器接收从触摸点检测装置上穿了送来的触摸信息,并将它处理转换成触点坐标,再通过接口传送给中央处理器CP同时能接收CPU发来的命令并加以执行。

触摸屏的基本组成如图1所示,包括以下几个部分:1.前面板或外框前面板或外框是终端产品的最表层。

在某些产品中,该外框将透明的盖板围起来,以免受到外部的恶劣气候或潮湿的影响,也防止下面的传感产品受到刻划以及破坏。

2.触控控制器通常,触控控制器是一个小型的微控制器芯片,它位于触控传感器和PC/或嵌入式系统控制器之间。

该芯片可以装配到系统内部的控制器板上。

该触控控制器将提取来自触控传感器的信息,并将其转换成PC或嵌入式系统控制器能够理解的信息。

3.触控传感器触控屏“传感器”是一个带有触控响应表面的透明玻璃板。

该传感器被安放到LCD上面,使得面板的触控区域能覆盖显示屏的可视区域。

基本上,这些技术都是在触控时,使电流流过面板,从而产生一个电压或信号的变化。

这个变化将被触控传感器感应并传输,从而确定屏幕上的触控位置。

4.液晶显示器(LCD)绝大多数的触控屏系统用于传统的LCD上。

用于触控产品的LCD选择方法与传统系统中基本相同,包括分辨率,清晰度,刷新速度,成本等。

触摸屏实验报告(一)2024

触摸屏实验报告(一)2024

触摸屏实验报告(一)引言:触摸屏作为一种常见的人机交互设备,已经广泛应用于各种电子产品中。

本文将对触摸屏技术的原理、分类、应用以及实验结果进行详细介绍和分析。

概述:触摸屏是一种基于感应和响应原理的人机交互设备,通过用户的触摸操作实现对电子产品的控制。

本文将从触摸屏的工作原理开始,介绍其分类、应用以及在实验中的应用结果。

正文:一、触摸屏的工作原理1. 电容式触摸屏的原理2. 电阻式触摸屏的原理3. 表面声波触摸屏的原理4. 负压传感器触摸屏的原理5. 其他类型触摸屏的原理二、触摸屏的分类1. 按触摸方式分类:电容式触摸屏、电阻式触摸屏、表面声波触摸屏等2. 按触摸点个数分类:单点触摸屏、多点触摸屏3. 按材质分类:玻璃触摸屏、塑胶触摸屏4. 按尺寸分类:小尺寸触摸屏、大尺寸触摸屏5. 按应用场景分类:手机触摸屏、平板电脑触摸屏、工控触摸屏等三、触摸屏的应用1. 智能手机和平板电脑2. 数字广告牌和信息亭3. 工控设备和仪器仪表4. 汽车导航和多媒体娱乐系统5. 其他领域的应用案例四、触摸屏实验设计和结果1. 实验目的和背景2. 实验设备和材料3. 实验步骤和方法4. 实验数据的采集和分析5. 结果和讨论五、总结通过本文的介绍和分析,我们可以了解触摸屏的工作原理、分类以及在不同领域的应用。

同时,通过实验结果的分析,可以进一步探讨触摸屏的性能和优化方法,为今后的研究和应用提供参考。

以上是关于触摸屏的实验报告(一)的概述和正文内容,该报告详细介绍了触摸屏的工作原理、分类、应用以及实验结果。

通过对触摸屏的深入研究和实验验证,可以为触摸屏技术的进一步发展和应用提供基础和指导。

华为触摸屏的原理和应用

华为触摸屏的原理和应用

华为触摸屏的原理和应用1. 触摸屏的原理触摸屏是一种输入设备,它允许用户通过触摸屏幕来与计算机进行交互。

华为触摸屏的原理主要基于电容触摸和压电触摸两种技术。

1.1 电容触摸技术电容触摸屏利用玻璃或者塑料表面贴附的电容层来实现触摸输入,主要有以下两种类型:•电阻式电容触摸屏:通过感应人体带电时的电容变化,实现手指位置的检测。

它可以准确地检测到触摸点的坐标,但对于多点触摸的支持性较差。

•投影式电容触摸屏:使用电容屏幕背后的传感器来实现触摸输入。

它支持多点触控,提供更好的用户体验和操作效率。

1.2 压电触摸技术压电触摸屏利用压电材料的特性来实现触摸输入,主要有以下两种类型:•表面声波触摸屏:利用表面声波将机械压力转化为电信号,通过检测信号的变化来定位触摸点。

它可以实现高精度的触摸检测,并具有较好的耐久性。

•压力感应触摸屏:利用内部电流和电压的变化来感知触摸输入。

它对压力和面积的检测非常敏感,能够追踪触摸点的压力变化,常见于绘图板等需要细致操作的场景。

2. 触摸屏的应用华为触摸屏在各个领域都有广泛的应用,包括但不限于手机、平板电脑、智能手表等消费电子产品,以及工业控制、医疗设备等专业领域。

2.1 消费电子产品华为触摸屏在手机、平板电脑等消费电子产品中得到广泛应用。

触摸屏的高精度和快速响应时间,使得用户可以通过简单的手指操作进行各种操作,如滑动、点击、缩放等。

同时,华为还利用多点触摸技术,实现了更多的手势操作,提供更友好的用户体验。

2.2 工业控制华为触摸屏在工业控制领域的应用越来越广泛。

工业触摸屏可以与PLC或者其他控制器连接,实现对工业设备的监控和控制。

它具备耐磨、防水、防尘等特性,适应各种复杂的工业环境。

同时,触摸屏还可以通过编程实现定制化的界面设计,提升工业系统的用户友好性和操作效率。

2.3 医疗设备在医疗领域,华为触摸屏的应用也日益增多。

触摸屏的灵敏度和快速响应时间使得医生和护士可以通过触摸屏轻松输入病人信息、查看医疗记录、监控病人状态等。

触摸屏TP技术讲解

触摸屏TP技术讲解

TP技术的应用领域
智能手机和平板电脑
01
触摸屏技术广泛应用于智能手机和平板电脑,为用户提供便捷
的操作方式。
公共信息查询
02
在公共场所,触摸屏信息查询系统提供方便的信息获取方式,
如公交车站、博物馆等。
商业展示
03
在商业展示中,触摸屏展示系统能够吸引顾客的注意力,提高
产品展示效果。
TP技术的发展趋势
耐用性好
电阻式触摸屏的耐用性较好,能够承受一定的压力和摩擦。
电阻式TP技术的优缺点
• 对湿手或戴手套操作敏感:电阻式触摸屏对湿手 或戴手套的操作比较敏感,能够保证良好的用户 体验。
电阻式TP技术的优缺点
01
02
ห้องสมุดไป่ตู้
03
精度低
电阻式触摸屏的精度相对 较低,可能无法满足一些 需要高精度操作的应用。
响应速度慢
新型TP技术的研发
柔性触摸屏技术
柔性触摸屏技术是未来TP技术的重要发展方向,能够实现屏幕 的弯曲和折叠,为智能终端带来更多创新形态。
透明触摸屏技术
透明触摸屏技术能够使屏幕在显示内容的同时保持透明,为智能 终端带来更广阔的视野和更丰富的交互方式。
多点触控技术
多点触控技术能够实现多个手指同时操作屏幕,提高智能终端的 交互体验和效率。
随着个人电脑和智能手机的普及,触 摸屏技术逐渐进入消费市场。
21世纪
随着移动设备的迅猛发展,触摸屏技 术得到了广泛应用,并不断更新换代 ,提高性能和用户体验。
触摸屏技术的分类
01
按工作原理
可以分为电阻式、电容式、红外式 、表面声波式等类型。
按结构形式
可以分为表面声波式、红外式、电 容式等类型。

触摸屏有哪些分类

触摸屏有哪些分类

一、触摸屏分为四种:电阻式触摸屏这种触摸屏利用压力感应进行控制。

电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。

当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后送触摸屏控制器。

控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。

这就是电阻技术触摸屏的最基本的原理。

所以电阻触摸屏可用较硬物体操作。

电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。

ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。

镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。

镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。

1、四线电阻屏四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。

总共需四根电缆。

特点:高解析度,高速传输反应。

表面硬度处理,减少擦伤、刮伤及防化学处理。

具有光面及雾面处理。

一次校正,稳定性高,永不漂移。

2、五线电阻屏五线电阻技术触摸屏的基层把两个方向的电压场通过精密电阻网络都加在玻璃的导电工作面上,我们可以简单的理解为两个方向的电压场分时工作加在同一工作面上,而外层镍金导电层只仅仅用来当作纯导体,有触摸后分时检测内层ITO接触点X轴和Y轴电压值的方法测得触摸点的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
触摸屏技术
《多媒体技术基础》
目录
简介 触摸屏原理 触摸屏技术分类 几种触摸屏的技术比较 各种触摸屏的应用 触摸屏发展方向
简介
触摸屏(touch screen)又称为“触控屏”、“触控面板”,是一种 可接收触头等输入讯号的感应式液晶显示装置,当接触了屏幕上的图 形按钮时,屏幕上的触觉反馈系统可根据预先编程的程式驱动各种连 结装置,可用以取代机械式的按钮面板,并借由液晶显示画面制造出 生动的影音效果。
光源寿命
受灰尘、油 污和水干扰
23"-65"
声学脉冲式 (APR) 较好
≥92%
4096×4096 (0.03mm)
≤10
手指或者触 笔需施压 不可

不怕刮擦
≥5000万次
不受任何影 响
1"-42"
三.几种触摸屏的技术比较
高度、车内安装、冲击、振动,断裂性和防打破的安全性。 电气和机械性能:电气和机械性能需要涵盖功率、浮动接地、静电
放电(ESD)、电磁干扰(EMI),尺寸大小,曲率等。 光学:影响技术选择的光学特性包括透光率、清晰度,色彩纯度和
反射。
三.几种触摸屏的技术比较
投射电容式 占优势
特性种类
清晰度 透光率 分辨率(定 位精度) 响应速度 触摸方式
二.触摸屏的技术分类
声学脉冲(APR)式触摸屏是由一个玻 璃显示器涂层或其他坚硬的基板组成, 背面安装了4个压电传感器。该传感器安 装在可见区域的两个对角上,通过一根 弯曲的电缆连接到控制卡。用户触摸屏 幕时,手指或者触笔和玻璃之间的拖动 发生了碰撞或摩擦,于是就产生了声波, 波辐射离开接触点传向传感器,按声波 的比例产生电信号。在控制卡中放大这 些信号,然后转换为数字数据流。比较 数据与事先存储的声音列表,可确定触 摸的位置 。
15‘-29’
红外式
一般 93%~100%
40×32 (1.5mm) 50~300ms 任何方式不 施加的压力 可/有限制
无 不怕刮擦
红外管寿命 受灰尘干扰
10.4"-150"
光学式 (CCD)
较好
93%~100%
40×32 (1.5mm) 50~300ms
任何方式不 施加的压力 可/有限制

不怕刮擦
三.几种触摸屏的技术比较
技术方面的选择主要取决于以下几个因素: 性能:性能包括诸如速度、灵敏度、精确度、分辨率、拖动、Z轴、
双/多触摸方式,视差角度和校准的稳定性。 输入灵活性:输入灵活性参数影响着人机交互的方式,诸如手套、
手套材料、指甲、触笔,手写识别和获取签名。 环境:环境因素为温度、湿度、耐化学性、耐划伤、防飞溅/液滴、
二.触摸屏的技术分类
投射电容触摸屏在两层ITO 涂层上蚀刻出不同的ITO模块 ,两层ITO模块交叉处可产生 寄生电容。触摸时手指和传感 器之间构成了电容,从改变的 传感器栅格的电气特性就可计 算出触摸位置 。
与表面电容屏相比,投射式 可以穿透较厚的覆盖层,而且 不需要校正。
二.触摸屏的技术分类
红外线触摸屏在显示器上加 上光点距框架,光点距框架的 四边排列了红外线发射管及接 收管,在屏幕表面形成一个红 外线网。用户以手指触摸屏幕 某一点,便会挡住经过该位置 的横竖两条红外线,CPU以此 可算出触摸点位置。它主要由 装在触摸屏外框上的红外线发 射与接收感测元件构成。
二.触摸屏的技术分类
表面电容触摸屏采用单层的 ITO , 在 触 摸 屏 四 边 均 镀 上 狭 长的电极,在导电体内形成一 个低电压交流电场。当手指触 摸屏表面时,手指与导体层间 会形成一个耦合电容,就会有 一定量的电荷转移到人体。为 了恢复这些电荷损失,电荷从 屏幕的四角补充进来,各方向 补充的电荷量和触摸点的距离 成比例,由此可以推算出触摸 点的位置。
怕敲击
≥5000万次 不受任何影
响 .4"-21"
投射电容式
好 ≥85% 1024×1024
≤15ms 手指不施加
的压力 可 有
怕敲击
≥5000万次 受水汽干扰
1"-42"
声波式
很好 ≥92% 4096×4096 (0.03mm) ≤10ms 手指等不施 加的压力 可/有限制
无 不怕刮擦
≥5000万次 受灰尘、油 污和水干扰
主要应用于公共信息的查询、领导办公、工业控制、军事指挥、电子 游戏、点歌点菜、多媒体教学、房地产预售等。
一.触摸屏的原理
原理 : 触摸屏的基本原理是用手
指或其他物体触摸时,所触摸 的位置(以坐标形式)由触摸屏 控制器检测,并通过接口送到 CPU,从而确定输入的信息。按 照工作原理的不同,触摸屏可 以分为电阻式、表面电容式、 投射电容式、红外式、表面声 波式、光学式和声学脉冲式7大 类。
多点触摸 漂移 防刮擦
触摸寿命 工作环境
适合尺寸
电阻式
较好
72%~85%
4096×4096 (0.03mm)
≤10ms
手指或笔施 加压力 不可

3H硬度,局 部刮擦损害 仍能使用 ≥3500万次
不受任何影 响
1"-19"
表面电容式
差 ≥85% 1024×1024
15~24ms 手指不施加
的压力 不可 有
二.触摸屏的技术分类
电阻触摸屏以有机玻璃(硬 塑料)作为基层,表面涂有透 明的导电层ITO(氧化铟锡) ,上面再盖有PET保护层, PET是一层弹性薄膜,当表面 被触摸时它会向下弯曲,并使 得下面的两层ITO涂层能够相 互接触并连通该点的电路,使 电阻发生变化(两层中间用小 于千分之一英寸的透明隔离点 把它们隔开绝缘),控制器则 根据电阻的具体变化来判断接 触点的坐标并进行相应的操作 。电阻屏根据引线分为四线、 五线等多种 。
二.触摸屏的技术分类
表面声波触摸屏在显示 器表面加装声波发生器、 反射器和声波接受器(表 面声波是一种沿介质表面 传播的机械波),声波发 生器发送一种高频声波跨 越屏幕表面,当手指触及 屏幕时,触点上的声波即 被阻止,CPU由此确定坐 标点位置。
二.触摸屏的技术分类
光学式(CCD)触摸屏由设 置在显示器边角的光源平行发 射红外光线,红外光线经画面 周围四周安装的反射材料反射, 摄像头接收这些反射光线,画 面上有手指触摸时,红外光线 的前进方向会因手指造成的散 射发生变化,利用这一变化可 检测出手指的位置。它主要由 红外线光源、摄像头以及反射 材料构成。
相关文档
最新文档