触摸屏的原理与应用

合集下载

触摸屏技术的原理及应用

触摸屏技术的原理及应用

触摸屏技术的原理及应用一、概述1. 触摸屏技术的发展历程触摸屏技术,作为一种直观、便捷的人机交互方式,已逐渐渗透到我们生活的各个角落。

其发展历程可谓是一部科技创新的史诗,从最初的电阻式触摸屏到现代的电容式、光学式以及声波式触摸屏,每一步的进展都极大地推动了人机交互方式的进步。

早在20世纪70年代,电阻式触摸屏就已出现。

这种触摸屏由两层导电材料组成,中间以隔离物隔开。

当用户触摸屏幕时,两层导电材料在触摸点处接触,形成电流,从而确定触摸位置。

电阻式触摸屏具有成本低、寿命长等优点,但触摸反应速度较慢,且不支持多点触控,限制了其在高端设备上的应用。

随着科技的进步,电容式触摸屏在20世纪90年代开始崭露头角。

电容式触摸屏通过在屏幕表面形成一个电场,当手指触摸屏幕时,会改变电场分布,从而确定触摸位置。

电容式触摸屏具有反应速度快、支持多点触控等优点,因此在智能手机、平板电脑等设备上得到了广泛应用。

进入21世纪,光学式触摸屏开始受到关注。

光学式触摸屏利用摄像头捕捉屏幕表面的光线变化,从而确定触摸位置。

这种触摸屏具有分辨率高、触摸体验好等优点,但由于其成本较高、易受环境光干扰等因素,目前在市场上的应用相对较少。

近年来,声波式触摸屏作为一种新型技术开始崭露头角。

这种触摸屏通过在屏幕表面产生声波,当手指触摸屏幕时,会改变声波的传播路径,从而确定触摸位置。

声波式触摸屏具有抗干扰能力强、使用寿命长等优点,未来有望在更多领域得到应用。

触摸屏技术的发展历程是一部不断创新、不断突破的历史。

从电阻式到电容式,再到光学式和声波式,每一种新技术的出现都为我们带来了更便捷、更高效的人机交互体验。

随着科技的不断发展,我们有理由相信,未来的触摸屏技术将会更加先进、更加普及,为我们的生活带来更多可能。

2. 触摸屏技术在现代生活中的重要性在现代生活中,触摸屏技术的重要性日益凸显。

随着智能手机、平板电脑、智能电视等设备的普及,触摸屏已经成为我们日常互动的主要界面。

触摸屏实验报告(一)2024

触摸屏实验报告(一)2024

触摸屏实验报告(一)引言:触摸屏作为一种常见的人机交互设备,已经广泛应用于各种电子产品中。

本文将对触摸屏技术的原理、分类、应用以及实验结果进行详细介绍和分析。

概述:触摸屏是一种基于感应和响应原理的人机交互设备,通过用户的触摸操作实现对电子产品的控制。

本文将从触摸屏的工作原理开始,介绍其分类、应用以及在实验中的应用结果。

正文:一、触摸屏的工作原理1. 电容式触摸屏的原理2. 电阻式触摸屏的原理3. 表面声波触摸屏的原理4. 负压传感器触摸屏的原理5. 其他类型触摸屏的原理二、触摸屏的分类1. 按触摸方式分类:电容式触摸屏、电阻式触摸屏、表面声波触摸屏等2. 按触摸点个数分类:单点触摸屏、多点触摸屏3. 按材质分类:玻璃触摸屏、塑胶触摸屏4. 按尺寸分类:小尺寸触摸屏、大尺寸触摸屏5. 按应用场景分类:手机触摸屏、平板电脑触摸屏、工控触摸屏等三、触摸屏的应用1. 智能手机和平板电脑2. 数字广告牌和信息亭3. 工控设备和仪器仪表4. 汽车导航和多媒体娱乐系统5. 其他领域的应用案例四、触摸屏实验设计和结果1. 实验目的和背景2. 实验设备和材料3. 实验步骤和方法4. 实验数据的采集和分析5. 结果和讨论五、总结通过本文的介绍和分析,我们可以了解触摸屏的工作原理、分类以及在不同领域的应用。

同时,通过实验结果的分析,可以进一步探讨触摸屏的性能和优化方法,为今后的研究和应用提供参考。

以上是关于触摸屏的实验报告(一)的概述和正文内容,该报告详细介绍了触摸屏的工作原理、分类、应用以及实验结果。

通过对触摸屏的深入研究和实验验证,可以为触摸屏技术的进一步发展和应用提供基础和指导。

手机触摸屏原理

手机触摸屏原理

手机触摸屏原理手机触摸屏是一种能够实现用户与手机交互操作的重要部件,它的原理是通过一定的技术手段将用户的触摸动作转化为电信号,从而实现对手机的控制。

在现代手机中,触摸屏已经成为了标配,它的原理和技术也在不断地发展和改进。

本文将从手机触摸屏的工作原理、类型以及未来发展趋势等方面进行介绍。

首先,我们来了解一下手机触摸屏的工作原理。

手机触摸屏主要通过电容、电阻、红外线和声波等方式来实现触摸操作的识别。

其中,电容触摸屏是目前应用最为广泛的一种技术。

它利用了人体的电容特性,当手指触摸屏幕时,屏幕上的电场会发生变化,通过检测这种变化就可以确定触摸的位置。

而电阻触摸屏则是利用了两层导电膜之间的电阻变化来实现触摸位置的识别。

红外线触摸屏则是通过红外线传感器来检测触摸位置,而声波触摸屏则是利用声波传感器来实现触摸位置的识别。

不同类型的触摸屏原理各有优劣,但都能够满足手机用户的基本操作需求。

其次,我们来了解一下手机触摸屏的类型。

按照技术原理的不同,手机触摸屏可以分为电容触摸屏、电阻触摸屏、红外线触摸屏和声波触摸屏等几种类型。

其中,电容触摸屏因为其高灵敏度和快速响应而成为了目前手机主流的触摸屏技术。

而电阻触摸屏由于其结构简单、成本低廉而被广泛应用于一些低端手机和工业设备中。

红外线触摸屏和声波触摸屏则在特殊环境下有着独特的应用优势。

随着科技的不断发展,未来可能还会出现更多新型的触摸屏技术。

最后,我们来探讨一下手机触摸屏的未来发展趋势。

随着5G、人工智能、虚拟现实等新技术的不断涌现,手机触摸屏也将迎来新的发展机遇。

未来,手机触摸屏可能会更加注重用户体验,提高触摸精度和灵敏度,实现更多的手势操作和多点触控。

同时,触摸屏的耐久性和抗污能力也将得到进一步的提升。

另外,随着柔性显示技术的发展,未来手机触摸屏可能会呈现出更加柔韧、可折叠的特点,为手机设计带来更多可能性。

总的来说,手机触摸屏作为手机的重要输入设备,其原理和技术一直在不断发展和完善。

触摸屏的应用和原理

触摸屏的应用和原理

触摸屏的应用和原理1. 触摸屏的简介触摸屏是一种人机交互的输入装置,可以通过直接触摸屏幕上的图标、按钮或文字来操控设备。

触摸屏的应用广泛,包括智能手机、平板电脑、电子书阅读器、汽车导航系统等。

2. 触摸屏的原理触摸屏的原理主要分为电阻式、电容式和表面声波式三种。

2.1 电阻式触摸屏电阻式触摸屏是由两层薄膜电阻层组成,两层电阻层之间采用绝缘层隔开。

当手指触摸屏幕时,触摸点会产生微小的电流,通过测量电流的变化来确定触摸位置。

由于电阻式触摸屏可以使用任何物体触摸,所以触摸精度较低,适用于一般的交互操作。

2.2 电容式触摸屏电容式触摸屏是由一层电阻膜和一层透明的导电玻璃构成,触摸时人体的电容改变了电流的分布,通过测量电流的变化来确定触摸位置。

电容式触摸屏对触摸物体有一定要求,只能使用带电荷的物体触摸,如手指、电容笔等。

相比电阻式触摸屏,电容式触摸屏具有更高的灵敏度和精度。

2.3 表面声波式触摸屏表面声波式触摸屏利用声波的传播特性来实现触摸功能。

触摸屏上方和下方分别放置发送器和接收器,发送器发出声波信号,当有物体触摸屏幕时,声波会被阻挡或散射,接收器会检测到信号的变化从而确定触摸位置。

表面声波式触摸屏对物体的触摸没有要求,可以使用手指、手套等。

它具有高透光率和耐划伤的特点,广泛应用于交互娱乐设备。

3. 触摸屏的应用领域触摸屏作为一种方便、直观的输入方式,在众多领域得到了广泛应用。

3.1 智能手机和平板电脑触摸屏是智能手机和平板电脑的主要输入方式,用户可以通过手指在屏幕上滑动、点击来进行各种操作,如打开应用、切换页面、输入文字等。

3.2 汽车导航系统汽车导航系统中的触摸屏可以让驾驶员通过触摸屏来操作导航功能,输入目的地、切换地图视图等。

3.3 电子书阅读器电子书阅读器的触摸屏可以让读者通过手指滑动屏幕翻页、调整字体大小、搜索关键词等。

3.4 游戏机和游戏终端游戏机和游戏终端中的触摸屏可以让玩家通过手指触摸屏幕来进行游戏操作,如点击屏幕发射子弹、滑动屏幕控制角色移动等。

触摸屏原理及应用实例

触摸屏原理及应用实例

触摸屏原理及应用实例一、触摸屏的结构及工作原理触摸屏从工作原理上可以分为电阻式、电容式、红外线式、矢量压力传感器式等,以四线电阻式触摸屏为例。

1、触摸屏的结构典型触摸屏的工作部分一般由三部分组成,如下图所示:两层透明的阻性导体层、两层导体之间的隔离层、电极。

阻性导体层选用阻性材料,如铟锡氧化物(ITO)涂在衬底上构成,上层衬底用塑料,下层衬底用玻璃。

隔离层为粘性绝缘液体材料,如聚脂薄膜。

电极选用导电性能极好的材料(如银粉墨)构成,其导电性能大约为ITO(一种N型氧化物半导体氧化铟锡,ITO薄膜即铟锡氧化物半导体透明导电膜,通常有两个重要的性能指标:电阻率和光透过率)的1000倍。

触摸屏结构触摸屏工作时,上下导体层相当于电阻网络,如下图所示。

2、触摸屏的测量过程工作原理电阻式触摸屏有四线和五线两种,四线最具有代表性。

在外ITO 层的上、下两边各渡一个狭长电极,引出端为Y +、Y -,在内IT0层的左、右两边分别渡上狭长电极,引出端为X +、X -。

为了获得触摸点在X 方向的位置信号,在内IT0层的两电极X +,X -上别加REF V ,0 V 电压,使内IT0层上形成了从了从0-REF V 的电压梯度,触摸点至X -端的电压为该两端电阻对REF V 的分压,分压值代表了触摸点在X 方向的位置,然后将外lT0层的一个电极(如Y -)端悬空,可从另一电极(Y +)取出这一分压,将该分压进行A/D 转换,并与REF V 进行比较,便可得到触摸点的X 坐标。

为了获得触摸点在y 方向的位置信号,需要在外ITO 层的两电极Y +,Y -上分别加REF V ,0 V 电压,将内lT0层的一个电极(X -)悬空,从另一电极上取出触摸点在y 方向的分压。

四线电阻触摸屏测量原理测量电压与测量点关系等效电路测量触摸点P处测量结果计算如下:212CC y V V R R R =⨯+ 434CC x V V R R R =⨯+二、触摸屏的硬件设计液晶触摸屏包含图形液晶显示模块和附着在显示屏上的触摸屏两部分,借助于触摸屏控制器ADS7846与单片机AT89S51实现软硬件接口,通过检测用户在触摸屏上的触摸位置,实现显示与控制功能。

华为触摸屏的原理和应用

华为触摸屏的原理和应用

华为触摸屏的原理和应用1. 触摸屏的原理触摸屏是一种输入设备,它允许用户通过触摸屏幕来与计算机进行交互。

华为触摸屏的原理主要基于电容触摸和压电触摸两种技术。

1.1 电容触摸技术电容触摸屏利用玻璃或者塑料表面贴附的电容层来实现触摸输入,主要有以下两种类型:•电阻式电容触摸屏:通过感应人体带电时的电容变化,实现手指位置的检测。

它可以准确地检测到触摸点的坐标,但对于多点触摸的支持性较差。

•投影式电容触摸屏:使用电容屏幕背后的传感器来实现触摸输入。

它支持多点触控,提供更好的用户体验和操作效率。

1.2 压电触摸技术压电触摸屏利用压电材料的特性来实现触摸输入,主要有以下两种类型:•表面声波触摸屏:利用表面声波将机械压力转化为电信号,通过检测信号的变化来定位触摸点。

它可以实现高精度的触摸检测,并具有较好的耐久性。

•压力感应触摸屏:利用内部电流和电压的变化来感知触摸输入。

它对压力和面积的检测非常敏感,能够追踪触摸点的压力变化,常见于绘图板等需要细致操作的场景。

2. 触摸屏的应用华为触摸屏在各个领域都有广泛的应用,包括但不限于手机、平板电脑、智能手表等消费电子产品,以及工业控制、医疗设备等专业领域。

2.1 消费电子产品华为触摸屏在手机、平板电脑等消费电子产品中得到广泛应用。

触摸屏的高精度和快速响应时间,使得用户可以通过简单的手指操作进行各种操作,如滑动、点击、缩放等。

同时,华为还利用多点触摸技术,实现了更多的手势操作,提供更友好的用户体验。

2.2 工业控制华为触摸屏在工业控制领域的应用越来越广泛。

工业触摸屏可以与PLC或者其他控制器连接,实现对工业设备的监控和控制。

它具备耐磨、防水、防尘等特性,适应各种复杂的工业环境。

同时,触摸屏还可以通过编程实现定制化的界面设计,提升工业系统的用户友好性和操作效率。

2.3 医疗设备在医疗领域,华为触摸屏的应用也日益增多。

触摸屏的灵敏度和快速响应时间使得医生和护士可以通过触摸屏轻松输入病人信息、查看医疗记录、监控病人状态等。

触摸屏的原理和应用有哪些

触摸屏的原理和应用有哪些

触摸屏的原理和应用有哪些1. 触摸屏的原理触摸屏是一种通过人体或者物体的接触来实现输入和操作的设备。

它的原理可以分成以下几种类型:1.1 电阻式触摸屏电阻式触摸屏是最早出现的触摸屏技术之一。

它由两层透明的导电层组成,中间夹层放置有微小间隙。

当用户用手指或者触摸笔触摸屏幕时,导电层之间的电压发生变化,从而检测到触摸位置。

这种触摸屏的优点是价格相对较低,适用于大面积触摸屏的制造。

但是由于涉及到多层结构,所以光透过率不高,对细微触摸操作的响应不够敏感。

1.2 电容式触摸屏电容式触摸屏利用对触摸面积上人体电容的变化来实现触摸操作。

触摸屏上涂有透明导电层,当用户触摸屏幕时,人体电荷会和导电层产生电互作用,改变触摸区域的电容量。

通过控制电流和电压的变化,可以计算出触摸位置。

电容式触摸屏的优点是对触摸的反应速度快,对多点触摸敏感。

但是它需要与人体接触才能实现触摸,所以不适用于戴手套等情况。

1.3 表面声波触摸屏表面声波触摸屏利用超声波传感器来检测触摸位置。

在触摸屏上安装发射器和接收器,发射器发出超声波,当有物体触摸屏幕时,触摸区域会发生声波的反射和散射,接收器可以检测到这些声波的变化,并计算出触摸位置。

表面声波触摸屏的优点是具有极高的精准度和对多点触摸的支持。

但是由于受限于声波传播的速度,所以相比其他触摸屏技术,反应速度稍慢。

1.4 电磁感应触摸屏电磁感应触摸屏通过感应筆尖内的电流变化来检测触摸位置。

屏幕上安装了一个网格,当手持电磁笔触摸屏幕时,电磁笔内的线圈和网格之间产生电感耦合。

根据电感变化可以计算出触摸位置。

电磁感应触摸屏的优点是对触摸位置的识别精度非常高,适用于需要精细操作的场景。

但是它需要专用的电磁笔来操作,换电池的频率也会相对较高。

2. 触摸屏的应用2.1 智能手机和平板电脑智能手机和平板电脑是最常见的应用触摸屏技术的设备之一。

通过触摸屏,用户可以进行图标点击、滑动、缩放等多种操作,实现快速的输入和导航。

触摸屏的基本原理及应用

触摸屏的基本原理及应用

触摸屏的基本原理及应用1 触摸屏原理和主要结构:触摸屏技术方便了人们对计算机的操作使用,是一种极有发展前途的交互式输入技术,触摸屏通常与显示器相结合,通过触摸屏上的传感元件(可以是电学的,光学的,声学的)来感应出触摸物在触摸屏上或显示器上的位置,从而达到无需键盘,鼠标即可直观地对设备或机器进行信息输入或操作的目的。

触摸屏根据不同的原理而制作的触摸屏可分为以下几类:1.1电阻触摸屏电阻触摸屏由上下两片ITO相向组成一个盒,盒中间有很小的间隔点将两片基板隔开,上板ITO是由很薄的PET ITO薄膜或很薄的ITO 基板构成,当触摸其上板时形成其变形,形成其电学上的变化,即可到触摸位置。

电阻式触摸屏又可分为数字式电阻式触摸屏和模拟式电阻触摸屏:数字式电阻触摸屏将上下板的ITO分为X及Y方向的电极条,当在某一个方向的电极上施加电压时,则在另一方向某条位置上电极可探测到的电压变化。

由于数字式电阻触摸屏是在一个方向输入信号,在另一个方向检测信号,理论上可以实现多点触摸的检测。

数字式电阻触摸屏最常见用于机器设备控制面板,自动售票机的人机输入界面。

其优点为:成本低,适合应用于低分辨率的场合。

单点控制IC成熟,商品化高。

其缺点为:耐用性不好(PET不够耐磨)光学透过率不高(有15%-20%的光损失)模拟式电阻触摸屏是由上下两面ITO相向组成盒,上下两面的ITO 分别在X及Y方向引出长条电极,在一个方向的电极上施加一个电压,用另一面的ITO检测其电压,所测得的电压与触摸点的位置有关。

模拟式电阻式触摸屏只能进行单点触摸,尤其适合用笔尖进行触摸,可进行书写输入。

由于测量值是模拟值,其精度可以很高,主要取决于ITO的线性度。

模拟式电阻式触摸屏应用范围为中小尺寸2"-26"其优点为:成本低,应用范围广。

控制IC成熟,商品化高。

其缺点为:耐用性不好(PET不够耐磨)光学透过率不高(有15%-20%的光损失)需校准,不能实现多点触摸1.2 电容式触摸屏电容式触摸屏分为表面电容式和投射电容式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

触摸屏的原理与应用触摸屏又称为“触控屏”、“触控面板”,是一种可接收触头等输入讯号的感应式液晶显示装置,当接触了屏幕上的图形按钮时,屏幕上的触觉反馈系统可根据预先编程的程式驱动各种连结装置,可用以取代机械式的按钮面板,并借由液晶显示画面制造出生动的影音效果。

触摸屏原理:主要由其二大特性决定。

第一:绝对坐标系统,第二:传感器。

首先先来区别下,鼠标与触摸屏的工作原理有何区别?借此来认识绝对坐标系统和相对坐标系统的区别。

鼠标的工作原理是通过检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的鼠标箭头的移动,属于相对坐标定位系统。

而绝对坐标系统要选哪就直接点那,与鼠标这类相对定位系统的本质区别是一次到位的直观性。

绝对坐标系的特点是每一次定位坐标与上一次定位坐标没有关系,触摸屏在物理上是一套独立的坐标定位系统,每次触摸的数据通过校准数据转为屏幕上的坐标。

第二:定位传感器
检测触摸并定位,各种触摸屏技术都是依靠各自的传感器来工作的,甚至有的触摸屏本身就是一套传感器。

各自的定位原理和各自所用的传感器决定了触摸屏的反应速度、可靠
性、稳定性和寿命。

通过以上两个特性,触摸屏工作时,首先用手指或其它物体触摸安装
在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置(即绝对坐标系统)来定位选择信息输入。

触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器(即传感器);而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU它同时能接收CPU发来的命令并加以执行。

触摸屏传感器技术从触摸屏传感器技术原理来划分:有可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。

其中矢量压力传感技术触摸屏已退出历史舞台;红外线技术触摸屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容技术触摸屏设计构思合理,但其图像失真问题很难得到根本解决;电阻技术触摸屏的定位准确,但其价格颇高,且怕刮易损;表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰不容易被损坏,适于各种场合,缺点是屏幕表面如果有水滴和尘土会使触摸屏变的迟钝,甚至不工作。

按照触摸屏的工作原理和传输信息的介质,把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。

每一类触摸屏都有其各自的优缺点,要了解哪种触摸屏适用于哪种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。

下面对上述的各种类型的触摸屏进行简要介绍一下:
1、表面声波屏
声波屏的三个角分别粘贴着X,Y 方向的发射和接收声波的换能器(换
能器:由特殊陶瓷材料制成的,分为发射换能器和接收换能器。

是把控制器通过触摸屏电缆送来的电信号转化为声波能和由反射条纹汇聚成的表面声波能变为电信号。

),四个边刻着反射表面超声波的反射条纹。

当手指或软性物体触摸屏幕,部分声波能量被吸收,于是改变了接收信号,经过控制器的处理得到触摸的X,Y 坐标。

2、四线电阻屏四线电阻屏在表面保护涂层和基层之间覆着两层透明电导
层ITO (ITO:氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10 米)以下时会突然变得透明,再薄下去透光率反而下降,到300 埃厚度时透光率又上升。

是所有电阻屏及电容屏的主要材料。

),两层分别对应X 丫轴,它门之间用细微透明绝缘颗粒绝缘,当触摸时产生的压力使两导电层接通,由于电阻值的变化而得到触摸的X,丫坐标。

3、五线电阻屏
五线电阻屏的基层之上覆有把X,丫两方向的电压场加在同
一层的透明电导层ITO,最外层镍金导电层(镍金导电层:
五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命。

)只用来作纯导体,当触摸时,用分时检测接触点X轴和丫轴电压值的方法测得触摸点的位置。

内层ITO 需四条引线,外层一条,共5根引线。

4、电容屏
电容屏表面涂有透明电导层ITO,电压连接到四角,微小直
流电散部在屏表面,形成均匀之电场,用手触屏时,人体作为耦合电容一极,电流从屏四角汇集形成耦合电容另一极,通过控制器计算电流传到碰触位置的相对距离得到触摸的坐标。

5、红外屏
红外触摸屏是利用X、丫方向上密布的红外线矩阵来检测并定位用户的触摸。

红外触摸屏在显示器的前面安装一个电路板外框,电路板在屏幕四边排布红外发射管和红外接收管,一一对应形成横竖交叉的红外线矩阵。

用户在触摸屏幕时,手指就会挡住经过该位置的横竖两条红外线,因而可以判断出触摸点在屏幕的位置。

任何触摸物体都可改变触点上的红外线而实现触摸屏操作。

触摸屏的应用
当今触摸屏的应用很广泛,主流产品为苹果开发的ipad 平第 4 页
板电脑、iphone4s手机。

另外触摸屏已在手机市场大量普及,摩托罗拉,三星,诺基亚等品牌手机商纷纷推出新品。

包括银行ATM取款机也应用触摸屏,各行各业层出不穷。

触摸屏定位系统,打开程序,链接网络,实现了更快捷的人机交互性。

伴随着触摸屏的发展,在游戏开发上也给了我们很多启示与灵感,如水果忍者,愤怒的小鸟,三国杀,涂鸦跳跃,拳皇,还有办公软件的图片编辑也是用触摸屏实现的。

总之触摸屏给我们带来了便利,人机交互体现更快捷方便灵活,使机器设备操作更加简单化,人性化。

相关文档
最新文档