运筹学_单纯形法_的应用举例

合集下载

运筹学单纯形法

运筹学单纯形法

只要取 x5=min{-,8/2,12}=4 就有上式成立。 x5=4时, x4=0,故决定用x5换x4 x1 =4- 1/4 x4 x5 =4-1/2 x4 +2 x3 x2 =2+1/8 x4–1/2 x3 代入得 z=14-3/2 x3 –1/8 x4 ,令x3 ,x4=0得z=14。新基可 行解为 X(3) =(4,2,0,0,4) T –为最优解,新顶点Q2 最优目标值z=14 。
§3.4 最优性检验和判别定理
线性规划解的四种可能: 1、有唯一解; 2、无穷多最优解; 3、无界解; 4、无可行解。 何时达最优解, 何种最优解?
将基本可行解X(0)和X(1)分别代入目标函数得
z z
(0)
= ∑ ci xi0
i =1 m
mቤተ መጻሕፍቲ ባይዱ
(1)
= ∑ ci [ xi0 − θ aij ] + θ ci
§3.3 从初始基可行解转换为另一基可行解
0 0 记初始基可行解为X(0),有 X ( 0 ) = (x10 x 2 L x m 0 L 0
)
Pi xi0 = b 该解满足约束方程, 即 ∑
i =1
m
(1)
非基向量可以用基向量的线性组合表示
Pj = ∑ aij Pj
i =1 m
m
(2) (3)
Pj − ∑ aij Pj = 0
从实际例子中分析单纯形法原理的基本框架为 •第一步:将LP线性规划变标准型,确定一个初始可行解 (顶点)。 •第二步:对初始基可行解最优性判别,若最优,停止;否 则转下一步。 •第三步:从初始基可行解向相邻的基可行解(顶点)转 换,且使目标值有所改善—目标函数值增加,重复第二和 第三步直到找到最优解。

运筹学单纯形法的例题

运筹学单纯形法的例题

可行域在x1+3x2=7与4x1+2x2=9之下__
3
.
05.07.2020
练习㈠用图解法
5
4 4x1+x2=9
3
2
1 (2.25,0)
0
1
2
3
4
5
6
7
4
.
05.07.2020
练习㈠. 单纯形表
1 31 0 7 4 20 1 9
填入第一个约束的数据.
填入第二个约束的数据.
5
.
05.07.2020
❖至少有一个非基变量的检验数为正,但它的系 数全为非正,则无有限最优解;
❖所有非基变量的检验数全为非正,已有最优解, 但若其中至少有一个的检验数为0,且它的系 数中有2正4 的,则可能有. 无穷多个最优0解5.07.。2020
基变量列中_x_5_换为_x_1_,
改CB列,_-_M__换为_4__.
Excel
17
.
05.07.2020
练习㈢用图解法和单纯形法求 如下线性规划问题的最优解:
Max z =4 x1 + x2 x1 + 3x2 ≥ 7
s.t. 4x1 + 2x2 ≥ 9 x1 , x2 ≥ 0
可行域在直线 x1+3x2=7之上__
s.t. 4x1 + 2x2 -x4+x6=9
基引是进谁两?个这 理x“1里?,x人“2 ,工x-”3 如变,x4何量,x5处”,x6≥0
x5 ,x620
.
05.07.2020
练习㈢.用单纯形法
Max z=4x1+x2+0x3+0x4 -Mx5 –Mx6

15单纯形法(运筹学)

15单纯形法(运筹学)
几点说明: 几点说明: (1)、 (1)、例 maxZ=X1 +2X2 X1 ≤ 4 X2 ≤ 3 X1+2X2 ≤ 8 X1 , X2 ≥0 X1+X3 = 4 X2+X4 = 3 X1+2X2+X5= 8 X1 … X5 ≥0
1
2
3
4
X(1)= (2,3) X(2)= (4,2)
全部解: 全部解:X=α
(1) -4 0 1 -2 0
14
15
本问题无界。 本问题无界。 X2
O
X1
Z=0
16
1.5.4 初始基本可行解的求法 (一)、大M法: 一、 法 例1 : maxZ= 6X1 +4X2 2X1 +3X2 ≤ 100 4X1 +2X2 ≤ 120 X1 X1 X2 ≥0
=14
X2 ≥ 22
17
λj <0
8
(3)、 (3)、maxZ=10X1 + 12X2 3X1+4X2 ≤ 6 4X1+ X2 ≤ 2 3X1 +2X2 ≤ 3 X1 , X2 ≥0
9
10
X =(0, 3/2, 0, 1/2, 0)T Zmax=18
退化解
*
11
例:maxZ= -3/4X4+20X5 -1/2X6+6X7 X1+1/4X4 -8X5 -X6+9X7 =0 X2+1/2X4-12X5 -1/2X6+3X7 =0 X3+X6 =1 X1 … X7 ≥0 (P1 P2 P3) → (P4 P2 P3) → (P1 P2 P3) → (P4 P5 P3) → (P6 P5 P3) → (P6 P7 P3) → (P1 P7 P3)

运筹学及其应用4.3 对偶单纯形法

运筹学及其应用4.3 对偶单纯形法
3
min w= 2x1+3x2+4x3+0x4+0x5 x1+2x2+ x3-x4= 1 2x1- x2+3x3– x5=4 x1,x2,x3,x4,x5≥ 0
min w= 2x1+3x2+4x3+0x4+0x5 -x1-2x2- x3+x4= -1 -2x1+x2-3x3+x5= -4 x1,x2,x3,x4,x5≥ 0
4
234 000
0
x1 x2 x3 x4 -1 -2 -1
x4 x5 b 1 0 -1
max

2 −2
4 ,
−3

=
−1
0 x5 -2* 1 -3 0 1 -4
σ 234 000
0 x4 0 -2.5 0.5 1 -0.5 1
2 x1 1 -0.5 1.5 0 -0.5 2
σ 0 4 1 0 1 -4
步骤:(1)保持σj ≥ 0,j= 1,···,n,确定XB,建立计算表格; (2)判别XB = B-1b ≥ 0是否成立? ①若成立,XB为最优基变量; ②若不成立,转(3);
1
步骤:(1)保持σj ≥ 0,j= 1,···,n,确定XB,建立计算表格;
(2)判别XB = B-1b ≥ 0是否成立? ①若成立,XB为最优基变量; ②若不成立,转(3);
5
• 作业 • P81 1.12(1)
6
§3 对偶单纯形法
单纯形法:由 XB = B-1b ≥ 0,使σj ≥ 0,j = 1,···,m 对偶单纯形法:由σj ≥ 0(j= 1,···,n),使XB = B-1b ≥ 0 相同点:都用于求解原问题

单纯形法的几种特殊情况

单纯形法的几种特殊情况

达不到最优解。
下面一个是由E.Beale给出的循环的例子。
例5
目标函数
min f =-(3/4)x4+20x5-(1/2)x6+6x7.
约束条件:x1+(1/4)x4-8x5-x6+9x7=0,
x2+(1/2)x4-12x5-(1/2)x6+3x7=0,
x3+x6=1,
x1,x2,x3,x4,x5,x6,x7≥0.
50 150 250
12500
50/1 150/2 —
50 50 250
15000
— 50/1 250/1
8
§4 几种特殊情况
这样我们求得了最优解为x1=50,x2=250,s1=0,s2=50,s3=0,此线性规划的 最优值为15000。这个最优解是否是惟一的呢?由于在第2次迭代的检验数
中除了基变量的检验数 1,2,4 等于零外,非基变量s3的检验数也等
30 0 20 1 -M 0
1
1/10
-3/10
0
0
0
-7/10
-1
1
zj
20
30
3+M/10 11+7M/10
M
-M
cj-zj
0
0
-3-M/10 -11-7M/10
-M
0
管理运筹学
b
比值
150 30 40
-40M
150/10 — 40/1
15
15/(3/10)
30
30/1
25
25/(7/10)
例4.用单纯形表,求解下列线性规划问题。
解:加上松驰变量s1,s2,s3化为标准形式后,

运筹学应用案例

运筹学应用案例

运筹学应用案例运筹学是一门应用数学,研究如何在资源有限的情况下,最优地组织和管理这些资源。

运筹学的应用范围非常广泛,涉及到各个领域。

以下是一个关于运筹学应用的实际案例。

某公司是一家制造业企业,主要生产产品A和产品B。

这家公司有两个生产车间和一个物流中心,每个车间配备了不同的生产设备。

公司的目标是最大化利润。

产品A在车间1中生产,车间1的生产设备可以在一小时内生产5个单位的产品A。

产品B在车间2中生产,车间2的生产设备可以在一小时内生产4个单位的产品B。

物流中心负责将产品A和产品B运送到市场,物流中心的运输能力为每小时20个单位。

同时,公司还面临一个资源的限制,即每天生产的产品A和产品B的总数不能超过400个单位。

另外,公司还有一个库存的限制,即每天生产的产品A和产品B的总数不能超过600个单位。

为了系统地解决这个问题,公司决定使用运筹学的方法进行决策。

首先,公司需要确定目标函数。

由于公司的目标是最大化利润,所以可以将目标函数定义为利润函数。

假设公司每个单位的产品A的利润为10美元,每个单位的产品B的利润为8美元。

那么公司的目标函数可以定义为:Z=10A+8B。

然后,公司需要确定约束条件。

根据资源的限制,可以得到以下约束条件:A≤5×小时数(车间1的生产能力)B≤4×小时数(车间2的生产能力)A+B≤400(每天生产的总数限制)A+B≤600(库存的限制)20A+20B≤600(物流中心的运输能力)接下来,公司需要确定变量的取值范围。

由于产量和库存数量为实数,所以可以将A和B的取值范围定义为非负实数。

最后,公司需要使用线性规划算法来求解最优解。

线性规划算法可以通过求解目标函数的最大值来找到最优解。

在这个案例中,可以使用单纯形法来求解最优解。

通过使用运筹学的方法,公司可以得到最优的生产和运输计划,以最大化利润。

对于公司而言,这个案例展示了如何在资源有限的情况下,通过合理的规划和管理,实现最优的生产和销售策略。

运筹学单纯形法

运筹学单纯形法

单纯形表
max z=x1+2x2 s.t. x1+x23 x2 1 x1, x2 0
Cj CB XB b 0 0 Z X3 3 X4 1 0 1 2 0 0
标准化
max z=x1+2x2 s.t. x1+x2+ x3 =3 x2 +x4=1 x1, x2 ,x3, x40
X1 X2 X3 X4 1 0 1 1 1 2 1 0 0 0 1 0
Z=x1+2x2 x1+x2+ x3 =3 x2 +x4=1 单纯形表
Cj
1
2
0
0
单纯形法原理 单纯形表 CB XB b
z=x1+2x2 x3 =3-x1-x2 x4=1 -x2
x2进基,x4离基
X1 X2 X3 X4

3/1 11
0
1 0
1 1
1 1
2 2 0 1 0 2 0 1 0 0 1 0 -1 0
max z=x1+2x2 s.t. x1+x2+x3 =3 x2 +x4=1 x1, x2, x3, x40
x1=0
(x1,x2,x3,x4)= (0,1,2,0), z=2 C (x1,x2,x3,x4)= (2,1,0,0), z=4,最优解
B
x4=0 x3=0
(x1,x2,x3,x4)= (0,0,3,1), z=0
1 0
0 0
0 1
0
CB XB b 0 2 Z Cj CB XB b 1 2 Z X1 2 X2 1 4 X3 2 X2 1 2 1 1 0 0
X1 X2 X3 X4 1 0 1 1 0 0 0 -1 1 -1

应用运筹学基础:线性规划(4)-对偶与对偶单纯形法

应用运筹学基础:线性规划(4)-对偶与对偶单纯形法

应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。

引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。

现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。

但假如现在我们不⽣产产品,⽽是要把原料都卖掉。

设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。

对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设司机和乘务人员分别在各时间段一开始时上班,并 连续工作八小时,问该公交线路怎样安排司机和乘务人员, 既能满足工作需要,又配备最少司机和乘务人员?
2010年8月
管理工程学院
《运筹学》
16
解:设 xi 表示第i班次时开始上班的司机和乘务人
员数, 这样我们建立如下的数学模型。
x1 + x2 + x3 + x4 + x5 + x6 约束条件:s.t. x1 + x6 ≥ 60 x1 + x2 ≥ 70 x2 + x3 ≥ 60 x3 + x4 ≥ 50 x4 + x5 ≥ 20 x5 + x6 ≥ 30 x1 ,x2 ,x3 ,x4 ,x5 ,x6 ≥ 0
x11+ x12+ x13+
x21 + x22 + x23 +
x31 ≤ 100 x32 ≤ 100 x33 ≤ 60
(供应量限制) (供应量限制) (供应量限制)
xij ≥ 0 , i = 1,2,3; j = 1,2,3
2010年8月
管理工程学院
《运筹学》
12
例.汽油混合问题。一种汽油的特性可用两种指标描述,用“辛烷数”来定 量描述其点火特性,用“蒸汽压力”来定量描述其挥发性。某炼油厂有1、2、 3、4种标准汽油,其特性和库存量列于表4-6中,将这四种标准汽油混合, 可得到标号为1,2的两种飞机汽油,这两种汽油的性能指标及产量需求列于 表4-7中。问应如何根据库存情况适量混合各种标准汽油,既满足飞机汽油 的性能指标,又使2号汽油满足需求,并使得1号汽油产量最高?
(x11+x21+x31)≤100
(x12+x22+x32)≤100
(x13+x23+x33)≤60
通过整理,得到以下模型:
2010年8月
管理工程学院
《运筹学》
11
目标函数:Max z = -15x11+25x12+15x13-30x21+10x22-40x31-10x33 约束条件: s.t. 0.5 x11-0.5 x12 -0.5 x13 ≥ 0 (原材料1不少于50%) -0.25x11+0.75x12 -0.25x13 ≤ 0 (原材料2不超过25%) 0.75x21-0.25x22 -0.25x23 ≥ 0 (原材料1不少于25%) -0.5 x21+0.5 x22 -0.5 x23 ≤ 0 (原材料2不超过50%)
2010年8月 管理工程学院
《运筹学》
丙使用的原料单价*原料数量,故有 目标函数
9
利润=总收入-总成本=甲乙丙三种产品的销售单价*产品数量-甲乙
Max 50(x11+x12+x13)+35(x21+x22+x23)+25(x31+x32+x33) -65(x11+x21+x31)-25(x12+x22+x32)-35(x13+x23+x33) = -15x11+25x12+15x13-30x21+10x22-40x31-10x33
不小于 100 2010年8月
《运筹学》
解:设xij为飞机汽油i中所用标准汽油j的数量(L)。 x11 x12 x13 x14 目标函数为飞机汽油1的总产量: 库存量约束为: x11 x21 380000 x12 x22 265200
13
x13 x23 408100 x14 x24 130100
《运筹学》
1
要制作100套钢筋架子,每套有长2.9m、2.1 m和1.5m的钢筋各一根。已知原材料长7.4m, 应如何切割,使用原材料最节省。 解:所谓合理利用原材料,就是要使料头总 长最少。表1.14是节省材料的几种较好方案。
2010年8月
管理工程学院
《运筹学》
2
设按Ⅰ种方案下料的原材料数x1根,方案Ⅱ 用x2根,方案Ⅲ用x3根,方案Ⅳ用x4根,方 案Ⅴ用x5根, 根据表1-14可列出约束条件:
解:设 xij 表示第 i 种(甲、乙、丙)产品中原料 j 的含量。这样 我们建立数学模型时,要考虑: 对于甲: x11,x12,x13; 对于乙: x21,x22,x23; 对于丙: x31,x32,x33; 对于原料1: x11,x21,x31; 对于原料2: x12,x22,x32; 对于原料3: x13,x23,x33; 目标函数: 利润最大,利润 = 收入 - 原料支出 约束条件: 规格要求 4 个; 供应量限制 3 个。
11 12 13 14
j 1
2.85 x21 1.42 x22 4.27 x23 18.49 x24 0
2010年8月
管理工程学院
《运筹学》
综上所述,得该问题的数学模型为:
14
max
x11 x12 x13 x14
x21 x22 x23 x24 250000 x x 380000 21 11 x12 x22 265200 408100 x13 x23 x x 130100 14 24 2.85 x11 1.42 x12 4.27 x13 18.49 x14 0 2.85 x21 1.42 x22 4.27 x23 18.49 x24 0 16.5 x11 2 x12 4 x13 17 x14 0 7.5 x 7 x 13 x 8 x 0 21 22 23 24 xij 0, (i 1, 2; j 1, 2, 3, 4)
目标是使用料最少,即
2010年8月 管理工程学院
《运筹学》
3
◆ 方案选择。 某厂计划期分为n各阶段,在第j(j=1,…,n)个 阶段,生产上要用rj个专用工具。到阶段末, 凡在这个阶段内使用过的工具都应该送去修 理后才能再使用。修理分两种,一是慢修, 即等某种规格工具积压到一定批量后集中修, 每件b元,需要p个阶段能取回。二是送去后 立即修,这样费用贵一些,每件c(c>b)元, q(q>p)个阶段可取回。新购一个这样的工具 需a(a>c)元。
2010年8月 管理工程学院
《运筹学》
5
所以上述问题可描述为下面线性规划模型:
xj= rj
(j=1,…,q+1)
xj+ zj-q-1= rj
(j=q+2,…,p+1)
xj+ zj-q-1 +yj-p-1 = rj (j=p+2,…,n) yj+ zj + sj + sj-1 = rj (j=1,…,n) yj=0 zj=0 (j≥n -p) (j≥n-q)
标准汽 油

辛烷数
107.5 93.0
蒸汽压力(g/cm2)
7.11×10-2 11.38 ×10-2
库存量(L)
380000 265200
1 2

4---6
3
4 飞机汽 油 1 2
4---7
87.0
108.0 辛烷数 不小于91
5.69×10-2
28.45 ×10-2
408100
130100
蒸汽压力(g/cm2) 产量需求 不大于9.96 ×10-2 不大于9.96 ×10-2 越多越好 不少于 250000 管理工程学院
2010年8月 管理工程学院
《运筹学》
4
用xj表示第j个计划阶段新购的工具数; yj表示第j阶段末送去慢修的工具数; zj表示第j阶段末送去快修的工具数; sj表示j阶段木工具的存储数。 则每个阶段需用的工具数rj有以下关系式 rj= yj+ zj + sj + sj-1 (j=1,…,n) rj= xj (j=1,…,q+1) rj= xj+ zj-q-1 (j=q+2,…,p+1) rj= xj+ zj-q-1 +yj-p-1 (j=p+2,…,n) 且yn-p= yn-p+1=…= yn=0 zn-q= zn-q+1=…= zn=0
x2 + x3 + x4 + x5 ≥ 28 x3 + x4 + x5 + x6 ≥ 15 x4 + x5 + x6 + x7 ≥ 24 x5 + x6 + x7 + x1 ≥ 25 x6 + x7 + x1 + x2 ≥ 19 x7 + x1 + x2 + x3 ≥ 31 x1 + x2 + x3 + x4 ≥ 28 x1 ,x2 ,x3 ,x4 ,x5 ,x6 ,x7 ≥ 0
2010年8月
管理工程学院
《运筹学》
18
解:设 xi ( i = 1,2,…,7)表示星期一至日开始 休息的人数,这样我们建立如下的数学模型。 目标函数: Min x1 + x2 + x3 + x4 + x5 + x6 +
x7
约束条件:s.t.
x1 x2 x3 x4 x5 x6 x7
+ + + + + + +
管理工程学院
2010年8月
《运筹学》
19
◆生产问题 某公司面临一个是外包协作还是自行生产的 问题。该公司生产甲、乙、丙三种产品,都需要经过 铸造、机加工和装配三个车间。甲、乙两种产品的铸 件可以外包协作,亦可以自行生产,但产品丙必须本 厂铸造才能保证质量。数据如表。问:公司为了获得 最大利润,甲、乙、丙三种产品各生产多少件?甲、 乙两种产品的铸造中,由本公司铸造和由外包协作各 应多少件?
相关文档
最新文档