高一数学集合试题基础版

合集下载

通用版高一数学集合经典大题例题

通用版高一数学集合经典大题例题

(每日一练)通用版高一数学集合经典大题例题单选题1、已知集合U=R,集合A={x∈R|x≤1},B={x∈R||x−2|≤1},则(C U A)∩B=()A.(1,3)B.(1,3]C.[1,3]D.[1,3)答案:B解析:利用集合的补集和交集运算求解.因为集合U=R,且A={x∈R|x≤1},所以∁R A={x∈R|x>1},又B={x∈R||x−2|≤1}={x∈R|1≤x≤3},所以(C U A)∩B=(1,3],故选:B2、已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}答案:A解析:首先进行并集运算,然后进行补集运算即可.由题意可得:M∪N={1,2,3,4},则∁U(M∪N)={5}.故选:A.3、若集合A={1,m2},集合B={2,4},若A∪B={1,2,4},则实数m的取值集合为()A.{−√2,√2}B.{2,√2}C.{−2,2}D.{−2,2,−√2,√2}答案:D解析:由题中条件可得m2=2或m2=4,解方程即可.因为A={1,m2},B={2,4},A∪B={1,2,4},所以m2=2或m2=4,解得m=±√2或m=±2,所以实数m的取值集合为{−2,2,−√2,√2}.故选:D.解答题4、在“①A∩B=∅,②A∩B≠∅”这两个条件中任选一个,补充在下列横线中,求解下列问题:已知集合A={x|2a−3<x<a+1},B={x|0<x≤1}.(Ⅰ)若a=0,求A∪B;(Ⅱ)若________(在①,②这两个条件中任选一个),求实数a的取值范围.注:如果选择多个条件分别解答,按第一个解答记分.答案:(1){x|−3<x≤1};(2)若选①,(−∞,−1]∪[2,+∞);若选②,(−1,2)解析:(1)由a=0得到A={x|−3<x<1},然后利用并集运算求解.(2)若选A∩B=∅,分A=∅和A≠∅两种情况讨论求解;若选A∩B≠∅,则由{2a−3<a+12a−3<1a+1>0求解.(1)当a=0时,A={x|−3<x<1},B={x|0<x≤1};所以A ∪B ={x|−3<x ≤1}(2)若选①,A ∩B =∅,当A =∅时,2a −3≥a +1,解得a ≥4,当A ≠∅时,{a <42a −3≥1 或{a <4a +1≤0,解得:2≤a <4或a ≤−1, 综上:实数a 的取值范围(−∞,−1]∪[2,+∞).若选②,A ∩B ≠∅,则{2a −3<a +12a −3<1a +1>0 ,即{a <4a <2a >−1,解得:−1<a <2,所以实数a 的取值范围(−1,2).小提示:易错点睛:本题考查利用集合子集关系确定参数问题,易错点是要注意:∅是任何集合的子集,所以要分集合B =∅和集合B ≠∅两种情况讨论,考查学生的逻辑推理能力,属于中档题.5、已知集合A ={x |ax 2+2x +1=0,a ∈R },(1)若A 只有一个元素,试求a 的值,并求出这个元素;(2)若A 是空集,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围.答案:(1)详见解析;(2)a >1;(3)a =0或a ≥1解析:(1)根据方程为一次方程与二次方程分类讨论,对应求解得结果,(2)根据方程无解条件列不等式,解得结果,(3)A 中至多只有一个元素就是A 为空集,或有且只有一个元素,所以求(1)(2)结果的并集即可.(1)若A 中只有一个元素,则方程ax 2+2x +1=0有且只有一个实根,当a =0时,方程为一元一次方程,满足条件,此时x =-12,当a≠0,此时△=4-4a=0,解得:a=1,此时x=-1,(2)若A是空集,则方程ax2+2x+1=0无解,此时△=4-4a<0,解得:a>1.(3)若A中至多只有一个元素,则A为空集,或有且只有一个元素,由(1),(2)得满足条件的a的取值范围是:a=0或a≥1.小提示:本题考查方程的解与对应集合元素关系,考查基本分析求解能力,属基础题.。

人教A版高中数学必修一1.1 集合的概念专练(含解析)(23)

人教A版高中数学必修一1.1 集合的概念专练(含解析)(23)

1.1 集合的概念一、单选题1.已知集合{}14A x Z x =∈-<<,则集合A 的非空子集个数是( )A .7B .8C .15D .16 2.下列式子表示正确的是( )A .{}0∅⊆B .{}{}22,3∈C .{}1,2∅∈D .{}01,2⊆ 3.下列各对象可以组成集合的是A .与1非常接近的全体实数B .某校全体高一学生C .高一年级视力比较好的同学D .与无理数相差很小的全体实数 4.设集合{}1,0,2A =-,集合{}|2B x x A x A 且=-∈-∉,则B =A .{}1B .{}2-C .{}1,2--D .{}1,0- 5.集合{}2|(3)2(1)0(2)A x N x m x m m =∈-+++<>的真子集的个数为15个,则实数m 的范围( )A .∅B .{6}C .(5,6]D .(6,7] 6.集合(x ,y)|y =2x -1}表示( ) A .方程y =2x -1B .点(x ,y)C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图像上的所有点组成的集合7.已知集合{|,A x x Z =∈且32Z x ⎫∈⎬-⎭,则集合A 中的元素个数为( ) A .1 B .2 C .3 D .48.下列描述正确的有( )(1)很小的实数可以构成集合;(2)集合{}2y y x =与(){}2,x y y x =集合是同一个集合;(3)3611,,,,0.5242-这些数组成的集合有5个元素; (4)偶数集可以表示为{}2,x x k k Z =∈.A .0个B .1个C .2个D .3个9.集合{}|(31)(4)0x Z x x ∈--=可化简为( )A .13⎧⎫⎨⎬⎩⎭ B .{}4 C .1,43⎧⎫⎨⎬⎩⎭ D .1,43⎧⎫--⎨⎬⎩⎭10.一次函数1y x =+与26y x =+的图像的交点所组成的集合是( )A .{}5,4--B .5,6C .(){}5,4--D .(){}5,6二、填空题1.设⊕是集合A 上的一个运算,若对任意,a b A ∈,有a b A ⊕∈,则称A 对运算⊕封闭,若集合A 是由正整数的平方组成的集合,即1,4,9,16,25,{}A =⋅⋅⋅.若⊕分别是:①加法,②减法,③乘法,④除法,则A 对运算⊕封闭的序号有________.2.方程组2422230x y z x y z x y z +-=⎧⎪-+=-⎨⎪++=⎩的解集是________. 3.1∈a 2−a −1,a ,−1},则a 的值是_________.4.已知集合A=x|-2<x<2,x∈Z},B=y|y=x 2+1,x∈A},则集合B 用列举法表示是_____.5.设-5∈x|x 2-ax -5=0},则集合x|x 2+ax +3=0}=________.三、解答题1.已知集合(){}21210A x R a x x =∈--+=,a 为实数.(1)若集合A 是空集,求实数a 的取值范围;(2)若集合A 是单元素集,求实数a 的值;(3)若集合A 中元素个数为偶数,求实数a 的取值范围.2.若{}{}6,0,2,51,2,P Q ==,定义集合{|},P Q a b a P b Q ++∈∈=,用列举法表示集合P Q +.3.已知集合{}2210,A x ax x a R =++=∈.(1)若A 中没有元素,求实数a 的取值集合;(2)若A 中只有一个元素,求实数a 的取值集合.4.已知集合A=x|ax 2-3x -4=0,x∈R}.(1)当A 中有且只有一个元素时,求a 的值,并求此元素;(2)当A 中有两个元素时,求a 满足的条件;(3)当A 中至少有一个元素时,求a 满足的条件.5.设全集U =R ,集合{}13A x x =-≤<,{}242B x x x =-≥-.(1)求()U A B ;(2)若集合{}0C x x a =->,满足C C =B ∪,求实数a 的取值范围.参考答案一、单选题1.C解析:利用列举法表示集合A ,确定集合A 中元素的个数,进而可求得集合A 的非空子集个数.详解:{}{}140,1,2,3A x Z x =∈-<<=,集合A 中共4个元素,因此,集合A 的非空子集个数是42115-=.故选:C.2.A解析:利用元素与集合之间的关系和集合与集合之间的关系即可判断.详解:对于选项A :空集是任何集合的子集,所以{}0∅⊆正确;对于选项B :集合与集合之间是包含与不包含的关系,所以{}{}22,3∈不正确;对于选项C :空集是集合{}1,2的子集,而不是属于,所以{}1,2∅∈不正确;对于选项D :0是元素,不是集合{}1,2的元素,记作:{}01,2∉,所以{}01,2⊆不正确; 故选:A点睛:本题主要考查了元素与集合和集合与集合之间的关系,属于基础题.3.B详解:略4.A详解:试题分析:根据集合B 的定义可得,当1x =-时,23x A -=∉,所以1x B -=∈;当0x =时,22x A -=∈,所以0x B -=∉;当2x =时,20x A -=∈,所以2x B -=-∉;所以{}1B =.考点:集合的基本运算.5.C解析:由集合A 有15个真子集,可得集合A 中有4个元素,解出集合A 中的一元二次不等式,可得21x m <<+,分析即可得解.详解:由2(3)2(1)0x m x m -+++<,可得(1)(2)0x m x ---<,又因为2m >,故:21x m <<+假设集合A 中有n 个元素,因此集合A 有2115n -=个真子集,即4n =,故617m <+≤,所以56m <≤故选:C点睛:本题考查了一元二次不等式的解法,集合的真子集的个数等知识点,考查了学生综合分析,数学运算的能力,属于中档题.6.D解析:由集合中的元素的表示法可知集合(x ,y )|y=2x ﹣1}表示函数y=2x ﹣1图象上的所有点组成的集合.详解:集合(x ,y )|y=2x ﹣1}中的元素为有序实数对(x ,y ),表示点,所以集合(x ,y )|y=2x ﹣1}表示函数y=2x ﹣1图象上的所有点组成的集合.故选D .点睛:本题考查了集合的分类,考查了集合中的元素,解答的关键是明确(x ,y )表示点,是基础题.7.D解析:根据整数与整除的方法枚举即可.详解: 因为32Z x∈-,故23,1,1,3x -=--,即5,3,1,1x =-共四种情况.故集合A 中元素个数为4. 故选:D点睛:本题主要考查了利用整除求解集合中元素的个数问题.属于基础题.8.B解析:利用集合的确定性判断(1);集合的元素的属性判断(2);集合的元素的互异性判断(3);集合的含义判断(4),即可得出正确选项.详解:对于(1),很小的实数可以构成集合;不满足集合的确定性,故不正确;对于(2),集合{}2y y x =中的元素为实数;集合(){}2,x y y x =中的元素为点的坐标,集合的属性不同,故不是同一个集合,故不正确;对于(3),3611,,,,0.5242-这些数组成的集合中, 由于3624=,10.52-=,由集合元素的互异性, 集合中的元素不是5个,故不正确;对于(4),偶数集可以表示为{}2,x x k k Z =∈,正确,符合集合的含义;故选:B点睛:本题主要考查集合的特征,需理解并掌握集合的特征,属于基础题.9.B解析:通过解方程,根据Z 的含义进行求解即可.详解:解方程(31)(4)0x x --=,得121,43x x ==,因为x ∈Z ,所以{}|(31)(4)0x Z x x ∈--={}4=,故选:B10.C解析:联立1y x =+与26y x =+即可求出交点,然后用集合表示出来.详解:联立方程126y x y x =+⎧⎨=+⎩,解得5,4x y ,即交点为()5,4--,则用集合表示为(){}5,4--.故选:C.点睛:本题考查用集合表示点的集合,属于基础题.二、填空题1.③解析:举反例判断①②④,由当a ,b 是正整数时,ab 也是正整数可判断③.详解:设a ,b 是两个正整数,则22,a b 的和不一定属于A ,如22125A +=∉;22,a b 的差也不一定属于A ,如22123A -=-∉;22,a b 的商也不一定属于A ,如222439A =∉; 但由于222()a b ab ⋅=,并且当a ,b 是正整数时,ab 也是正整数,所以222()a b ab A ⋅=∈,故③满足条件.故答案为:③点睛:本题考查集合新定义,属于基础题.2.{(1,1,1)}-解析:联立方程组,运用消项法或代入法解方程组即可.详解:2 4......(1)2 2......(2)230......(3)x y z x y z x y z +-=⎧⎪-+=-⎨⎪++=⎩(1)-(2): 326y z -=(1)-(3): 54y z --=联立两式得到:1z =-,代入得到:1,1x y ==.故答案为: {(1,1,1)}-.点睛:本题考查了三元一次不等式的解法,考查了学生数学运算的能力,属于基础题.3.2解析:分211a a --=和1a =两种情况求出a 的值,并检验是否符合集合的互异性,可得答案. 详解:当211a a --=时,解得2a =或1-若2a =,则集合为{}1,2,1-,符合题意;若1a =-,不满足集合的互异性,舍去;当1a =时,不满足集合的互异性,舍去;则a 的值是2故答案为:24.1,2}解析:由题意知A=-1,0,1},而B=y|y=x 2+1,x∈A},所以B=1,2}.故答案为1,2}5.1,3}详解:由题意知,5-是方程250x ax --=的一个根,所以2(5)550a -+-=,得4a =-,则方程2x ax 30++=,即2430x x -+=,解得1x =或3x =,所以{}{}2|301,3x x ax ++==.点睛:本题主要考查了集合的表示方法,其中解答中涉及到元素与集合的关系,一元二次方程方程的求解和集合的表示方法等知识点的综合应用,解答中正确理解元素与集合的关系,和集合的表示方法是解答的关键,试题比较基础属于基础题.三、解答题1.(1)2a >;(2)1a =或2a =;(3)2a ≠且1a ≠解析:(1)根据一元二次方程没有实数根,判别式小于零列不等式组,解不等式组求得a 的取值范围.(2)当10a -=时,求得12A ⎧⎫=⎨⎬⎩⎭,符合题意.当10a -≠,根据一元二次方程有一个根,判别式为零列方程,求得a 的值,此时{}1A =符合题意.(3)根据(1)求得a 的一个可能取值.当A 中有2个元素时,根据一元二次方程有两个不相等的实数根,判别式大于零列不等式,解不等式求得a 的取值范围.详解:(1)若集合A 是空集,则()()210,2410,a a -≠⎧⎪⎨∆=---<⎪⎩解得2a >.故实数a 的取值范围为2a >. (2)若集合A 是单元素集,则①当时10a -=,即1a =时,{}12102A x R x ⎧⎫=∈-+==⎨⎬⎩⎭,满足题意;②当10a -≠,即1a ≠时,()()22410a ∆=---=,解得2a =, 此时{}{}22101A x R x x =∈-+==. 综上所述,1a =或2a =.(3)若集合A 中元素个数为偶数,则A 中有0个或2个元素.当A 中有0个元素时,由(1)知2a >;当A 中有2个元素时,()()210,2410,a a -≠⎧⎪⎨∆=--->⎪⎩解得2a <,且1a ≠. 综上所述,实数a 的取值范围为2a ≠且1a ≠.点睛:本小题主要考查方程20ax bx c ++=解的个数问题,考查集合元素的概念,考查分类讨论的数学思想方法,属于中档题.2.{}1,2,3,4,6,7,8,11解析:根据题意,结合P Q +的计算方法,可得P Q +,即可得答案.详解:∵当0a =时,b 依次取1,2,6,得a b +的值分别为1,2,6;当2a =时,b 依次取1,2,6,得a b +的值分别为3,4,8;当5a =时,b 依次取1,2,6,得a b +的值分别为6,7,11.∴{}1,2,3,4,6,7,8,11P Q +=.点睛:本题考查集合的运算,是新定义题型,关键是理解集合P Q +的含义,并注意集合中元素的性质.3.(1){}1a a >;(2){}0,1.解析:(1)分0a =和0a ≠两种情况讨论,当0a ≠时,由一元二次方程中根的判别式建立不等式解之可得答案.(2)分0a =和0a ≠两种情况讨论,当0a ≠时,由一元二次方程中根的判别式建立方程解之可求得实数a 的取值集合.详解:(1)对于方程2210ax x ++=,若0a =,则12x =-,不合题意,故0a ≠,此时方程是关于x 的一元二次方程.集合A 中没有元素,则440a ∆=-<,即1a >.所以实数a 的取值集合为{}1a a >.(2)对于方程2210ax x ++=,若0a =,则12x =-,符合题意;若0a ≠,方程是关于x 的一元二次方程.A 中只有一个元素,即440a ∆=-=,即1a =. 综上,实数a 的取值集合为{}0,1.4.(1)答案见解析;(2)a>-916且a≠0;(3)a≥-916. 解析:(1)分a=0和a≠0两种情况讨论即可,(2)由A 中有两个元素可知方程为二次方程,且判别式大于零,从而可求出a 的范围,(3)A 中至少有一个元素包括(1)、(2)的情况,所以a 的范围是(1)(2)所求的a 的范围的并集详解:解:(1)①当a=0时,方程-3x -4=0的根为x=-43. 故A=-43}. ②当a≠0时,由Δ=(-3)2-4a·(-4)=0,得a=-916,此时方程的两个相等的根为x 1=x 2=-83. 综上,当a=0时,集合A 中的元素为-43; 当a= -916时,集合A 中的元素为-83. (2)集合A 中有两个元素,即方程ax 2-3x -4=0有两个不相等的实根.所以09160a a ≠⎧⎨∆=+>⎩,, 解得a>-916且a≠0. (3)集合A 中有一个元素或两个元素.当集合A 中有两个元素时,由(2)得a>-916且a≠0; 当集合A 中有一个元素时,由(1)得a=0或a=-916. 综上,当A 中至少有一个元素时,a 满足的条件是a≥-916.5.(1)(){|2U C A B x x ⋂=<或3}x ≥;(2)(),2-∞.解析:(1)先求得集合B ,再利用集合的交集、补集运算求得答案;(2)由C C =B ∪得:B C ⊆,再根据集合间的包含关系可求得实数a 的取值范围. 详解:(1)解不等式242x x -≥-可得:2x ≥,{}2B x x ∴=≥, 又集合{}13A x x =-≤<, 故{}23A B x x ⋂=≤<,又U =R ,从而(){|2U C A B x x ⋂=<或3}x ≥;(2)因为集合{}{}0C x x a x x a =->=>,又C C =B ∪可得:B C ⊆, 故有2a <,即所求实数a 的取值范围是(),2-∞.点睛:本题考查集合的交、补集运算,由集合的包含关系求参数的值,属于基础题.。

2022版数学人教A版必修1基础训练:集合的含义与表示含解析

2022版数学人教A版必修1基础训练:集合的含义与表示含解析

第一章集合与函数概念1.1集合1.1.1集合的含义与表示基础过关练题组一集合的含义与元素的特征1.(2021辽宁阜新二中高一月考)下列各组对象不能构成集合的是()A.中国古代四大发明B.2020年高考数学难题C.所有有理数D.小于π的正整数2.(2021山东省实验中学高一月考)下列各组中的集合P与Q表示同一个集合的是()A.P是由元素1,√3,π构成的集合,Q是由元素π,1,|-√3|构成的集合B.P是由元素π构成的集合,Q是由元素3.141 59构成的集合C.P是由元素2,3构成的集合,Q是由有序实数对(2,3)构成的集合D.P是由满足不等式-1≤x≤1的整数构成的集合,Q是由方程x2=1的解构成的集合3.已知集合S中的三个元素a,b,c是△ABC的三边长,那么△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.设x∈R,集合A中含有三个元素3,x,x2-2x.(1)求实数x应满足的条件;(2)若-2是集合A中的元素,求实数x的值.题组二元素与集合的关系5.下列所给关系中正确的个数是()①π∈R;②√3∉Q;③0∈N*;④|-4|∉N*.A.1B.2C.3D.46.已知集合A中元素x满足x=3k-1,k∈Z,则下列表示正确的是()A.-1∉AB.-11∈AC.3k2-1∈AD.-34∉A7.已知集合A中有三个元素:a-3,2a-1,a2+1,集合B中也有三个元素:0,1,x.(1)若-3∈A,求a的值;(2)是否存在实数a,x,使集合A与集合B中的元素相同?题组三集合的表示方法8.下列各组集合中,表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={3,2},N={(3,2)}9.(2020河南周口项城三高高一第一次月考)用描述法表示函数y=3x+1图象上的所有点为()A.{x|y=3x+1}B.{y|y=3x+1}C.{(x,y)|y=3x+1}D.{y=3x+1}∈N,m∈N,m≤10.(2021上海嘉定高一上学期期中)用列举法表示集合{m|m-2310}=.11.用适当的方法表示下列集合:(1)所有能被3整除的整数;(2)图中阴影部分的点(含边界)的坐标的集合;(3)满足方程x=|x|,x∈Z的所有x的值构成的集合B.能力提升练一、选择题 1.()实数1不是下面哪一个集合中的元素( )A.整数集ZB.{x |x =|x |}C.{x ∈N|-1<x <1}D.{x ∈R|x -1x+1≤0}2.(2020山东烟台龙口高一调研,)设集合B ={x |x 2-4x +m =0},若1∈B ,则B =( ) A.{1,3}B.{1,0}C.{1,-3}D.{1,5}3.(2019山西大同一中高一上第一次月考,)方程组{x +y =2,x -y =0的解构成的集合是( )A.{(1,1)}B.{1,1}C.(1,1)D.{1}4.(2020广西南宁三中高一上月考,)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b∈B },则M 中元素的个数为 ( )A.3B.4C.5D.65.(2020山西吕梁中学高一上期中,)设集合A ={x ∈N|3≤x <6},B ={3,4},若x ∈A 且x ∉B ,则x 等于 ( )A.3B.4C.5D.66.(2020山东潍坊一中高一上期中,)已知集合M ={x |x =k 2+14,k ∈Z},N ={x |x =k 4+12,k ∈Z},若x 0∈M ,则x 0与N 的关系是 ( )A.x 0∈NB.x 0∉NC.x 0∈N 或x 0∉ND.不能确定7.(2019四川成都实验外国语学校高一上期中,)已知集合A ={a ,|a |,a -2},若2∈A ,则实数a 为 ( ) A.±2或4 B.2 C.-2 D.4 8.(2020上海洋泾中学高一月考,)给定集合A ,B ,定义A*B ={x |x =m -n ,m ∈A ,n ∈B },若A ={4,5,6},B ={1,2,3},则集合A*B 中的所有元素之和为( )A.15B.14C.27D.-149.(2021山东济宁鱼台第一中学高一月考,)给定集合S ={1,2,3,4,5,6,7,8},对于x ∈S ,如果x +1∉S ,x -1∉S ,那么x 是S 的一个“好元素”,由S 的3个元素构成的所有集合中,不含“好元素”的集合共有 ( ) A.6个 B.12个 C.9个D.5个二、填空题10.(2020河北承德一中高一上月考,)已知集合A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示B = .11.(2020山东济南外国语学校第一次段考,)设a ,b ,c 为非零实数,m =a |a |+b |b |+c |c |+abc |abc |,则m 的所有值组成的集合为 .三、解答题12.(2020江西赣州赣县中学高一上月考,)已知集合M ={1,a ,b },N ={a ,a 2,ab },且集合M 与N 相等,求a ,b 的值.13.(2020上海金山中学高一期中,)设数集A 由实数构成,且满足:若x ∈A (x ≠1且x ≠0),则11-x ∈A.(1)若2∈A ,试证明A 中还有另外两个元素; (2)判断集合A 是不是双元素集合,并说明理由;(3)若A 中元素个数不超过8,所有元素的和为143,且A 中有一个元素的平方等于所有元素的积,求集合A 中的所有元素.答案全解全析第一章 集合与函数概念1.1 集合1.1.1 集合的含义与表示基础过关练1.B2.A3.D 5.B 6.C 8.B 9.C1.B 根据集合的概念,可知集合中的元素具有确定性,可得选项A 、C 、D 中的元素都是确定的,能构成集合,但B 选项中“难题”的标准不明确,不满足集合中元素的确定性,不能构成集合.故选B . 方法技巧判断一组对象的全体能否构成集合的重要依据是元素的确定性,若考查的对象是确定的,就能构成集合,否则不能构成集合.2.A 由于选项A 中集合P ,Q 的元素完全相同,所以P 与Q 表示同一个集合,而B ,C ,D 中P ,Q 的元素不相同,所以P 与Q 不能表示同一个集合.故选A .3.D 因为集合中的元素必须是互异的,所以三角形的三边互不相等,故选D .4.解析(1)根据集合中元素的互异性,可知{x ≠3,x ≠x 2-2x ,x 2-2x ≠3,解得x ≠0且x ≠3且x ≠-1.(2)因为x 2-2x =(x -1)2-1≥-1,且-2是集合A 中的元素,所以x =-2.此时集合A ={3,-2,8},符合题意.5.B 由常见数集的定义知①②正确,③④错误.故选B.6.C 令3k -1=-1,解得k =0∈Z ,∴-1∈A ; 令3k -1=-11,解得k =-103∉Z ,∴-11∉A ; ∵k 2∈Z ,∴3k 2-1∈A ;令3k -1=-34,解得k =-11∈Z ,∴-34∈A. 故选C .7.解析 (1)由-3∈A 且a 2+1≥1, 可知a -3=-3或2a -1=-3, 当a -3=-3时,a =0; 当2a -1=-3时,a =-1.经检验,0与-1都符合要求. ∴a =0或a =-1. (2)易知a 2+1≠0.若集合A 与集合B 中元素相同, 则a -3=0或2a -1=0.若a -3=0,则a =3,此时集合A 包含的元素为0,5,10,与集合B 包含的元素不相同.若2a -1=0,则a =12,此时集合A 包含的元素为0,-52,54,与集合B 包含的元素不相同.故不存在实数a ,x ,使集合A 与集合B 中元素相同.8.B A 中,集合M 表示点(3,2),集合N 表示点(2,3),故M 与N 不是同一集合;B 中,由于集合中的元素具有无序性,故{3,2}与{2,3}是同一集合;C 中,集合M 表示点集,集合N 表示数集,故M 与N 不是同一集合;D 中,集合M 表示数集,集合N 表示点集,故M 与N 不是同一集合.9.C 因为集合是点集,所以代表元素是(x ,y ),所以用描述法表示为{(x ,y )|y =3x +1}.故选C .10.答案 {2,5,8}解析 由m ∈N ,m ≤10得m =0,1,2, (10)经检验,可知当m =2时,2-23=0∈N ,当m =5时,5-23=1∈N ,当m =8时,8-23=2∈N ,所以{m|m -23∈N ,m ∈N ,m ≤10}={2,5,8}.11.解析 (1){x |x =3n ,n ∈Z }.(2)(x ,y )-1≤x ≤2,-12≤y ≤1,且xy ≥0. (3)B ={x |x =|x |,x ∈Z }.能力提升练1.C2.A3.A4.B5.C6.A7.C8.A9.A一、选择题1.C 1∉{x ∈N|-1<x <1},故选C.2.A ∵集合B ={x |x 2-4x +m =0},1∈B , ∴1-4+m =0,解得m =3.∴B ={x |x 2-4x +3=0}={1,3}.故选A .3.A 解方程组{x +y =2,x -y =0得{x =1,y =1,用集合表示为{(1,1)},故选A . 4.B 由题意知x =a +b ,a ∈A ,b ∈B ,列表如下:a +b a 1 2 3 b 4 5 6 7 5 6 7 8则x 的可能取值为5,6,7,8.因此集合M 中共有4个元素,故选B . 5.C A ={x ∈N|3≤x <6}={3,4,5}, B ={3,4},由x ∈A 且x ∉B ,知x =5. 6.A M ={x|x =2k+14,k ∈Z}, N ={x |x =k+24,k ∈Z}, ∵2k +1(k ∈Z )是一个奇数,k +2(k ∈Z )是一个整数,∴x 0∈M 时,一定有x 0∈N ,故选A . 7.C 由条件2∈A 可知,a =2或|a |=2或a -2=2,解得a =±2或a =4.由集合中元素的互异性可知a <0,所以满足条件的只有a =-2,故选C . 解题模板由集合中元素的特征求解字母的值的步骤:8.A 由题可知,m =4,5,6,n =1,2,3, 当m =4,n =1,2,3时,m -n =3,2,1; 当m =5,n =1,2,3时,m -n =4,3,2; 当m =6,n =1,2,3时,m -n =5,4,3.所以A*B ={1,2,3,4,5},元素之和为15,故选A .9.A 要不含“好元素”,说明这三个数必须相连,故不含“好元素”的集合有{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6种可能.故选A . 二、填空题10.答案 {4,9,16}解析 ∵集合A ={-2,2,3,4},B ={x |x =t 2,t ∈A },∴t =±2时,x =4;t =3时,x =9;t =4时,x =16,∴B ={4,9,16}. 11.答案 {-4,0,4}解析 因为a ,b ,c 为非零实数,所以当a >0,b >0,c >0时,m =a |a |+b |b |+c |c |+abc|abc |=1+1+1+1=4;当a ,b ,c 中有一个小于0(不妨设a <0,b >0,c >0)时,m =a |a |+b |b |+c |c |+abc |abc |=-1+1+1-1=0;当a ,b ,c 中有两个小于0(不妨设a <0,b <0,c >0)时,m =a |a |+b |b |+c |c |+abc |abc |=-1-1+1+1=0; 当a <0,b <0,c <0时,m =a |a |+b |b |+c |c |+abc |abc |=-1-1-1-1=-4.所以m 的所有值组成的集合为{-4,0,4}. 三、解答题12.解析 由集合M 与N 相等得{1=a 2,b =ab或{1=ab ,b =a 2,解得{a =-1,b =0或{a =1,b =1, 经检验,{a =1,b =1不满足集合中元素的互异性,故舍去. 综上,a =-1,b =0.13.解析 (1)证明:∵2∈A ,∴11-2=-1∈A. ∵-1∈A ,∴11-(-1)=12∈A. 又∵当12∈A 时,11-12=2∈A , ∴A ={2,-1,12}.∴A 中还有另外两个元素,分别为-1,12. (2)不是双元素集合.理由:由题意得,若x ∈A (x ≠1且x ≠0),则11-x∈A ,11-11-x=x -1x ∈A ,且x ≠11-x ,11-x ≠x -1x ,x ≠x -1x, 故集合A 中至少有3个元素,不是双元素集合.(3)由(2)可知若x ∈A (x ≠1且x ≠0),则11-x ,x -1x 都为A 中的元素,∵x ·11-x ·x -1x=-1,且A 中有一个元素的平方等于所有元素的积,∴A 中元素个数不为3,又∵A 中元素个数不超过8,∴A 中有6个元素,且(11-x )2=1或(x -1x)2=1,解得x =2或x =12.结合(1)可知此时A 中有2,-1,12这三个元素.设A 中其他三个元素分别为m ,11-m ,m -1m (m ≠1且m ≠0),则A =2,-1,12,m ,11-m ,m -1m .∵A 中所有元素之和为143,∴12+2-1+m +11-m +m -1m =143⇒m =-12,3,23, ∴A 中的所有元素为12,2,-1,-12,3,23.。

高中数学必修一人教A版1.1 集合的概念-单选专项练习(含答案及解析)(25)

高中数学必修一人教A版1.1 集合的概念-单选专项练习(含答案及解析)(25)

1.1 集合的概念1.集合M =x|x 2-x -6=0},则以下正确的是( )A .-2}∈MB .-2⊆MC .-3∈MD .3∈M答案:D解析:∵集合{}2|60M x x x =--= ∴集合{}2,3M =-∴2M -∈,3M ∈故选D.2.给定{}1,2,3,4,5,6,7,8S =对于x S ∈,如果11x S x S +∉-∉,,那么x 是S 的一个“好元素”,由S 的3个元素构成的所有集合中,不含“好元素”的集合共有个A .6个B .12个C .9个D .5个答案:A解析:要不含“好元素”,说明这三个数必须连在一起,列举可得.详解:解:要不含“好元素”,说明这三个数必须连在一起(要是不连在一起,分开的那个数就是“好元素”)故不含“好元素”的集合共有1,2,3},2,3,4},3,4,5},4,5,6},5,6,7},6,7,8}共6种可能故选A .点睛:本题考查新定义,读懂新定义并列举是解决问题的关键,属基础题.3.设集合{}A 4,8=,则集合A 的子集个数是A .1个B .2个C .3个D .4个答案:D解析:对于集合A 的子集个数,由于A 中元素个数较少,故可以直接枚举出每个子集,或者根据知识点:若集合中有n 个元素,则子集的个数为2n ,进行求解.详解:集合A 中元素的个数为2,故子集的个数为22=4 个.分别为∅,{}4,{}8和{}48,.故选D . 点睛:本题考查知识点:若集合中有n 个元素,则子集的个数为2n ,非空子集有21n -个,非空真子集有22n -个.4.设集合{}1,0,1,2A =-,{}1,2B =,{},,C x x ab a A b B ==∈∈,则集合C 中元素的个数为( )A .5B .6C .7D .8答案:B解析:分别在集合,A B 中取,a b ,由此可求得x 所有可能的取值,进而得到结果.详解:当1a =-,1b =时,1ab =-;当1a =-,2b =时,2ab =-;当0a =,1b =或2时,0ab =;当1a =,1b =时,1ab =;当1a =,2b =或2a =,1b =时,2ab =;当2a =,2b =时,4ab =;{}2,1,0,1,2,4C ∴=--,故C 中元素的个数为6个. 故选:B.5.若1{0,}a ∈,则实数a =( )A .1-B .0C .1D .0或1答案:C解析:根据集合的确定性,互异性,即可求得答案.详解:因为1{0,}a ∈,根据集合性质可得:1a =.故选:C6.下列叙述正确的是( )A .集合x|x<3,x∈N}中只有两个元素B .x|x 2-2x +1=0}=1}C .整数集可表示为Z}D .有理数集表示为x|x 为有理数集}答案:B解析:根据集合与元素的关系,以及集合的表示方法,判断选项.详解:A.集合中元素有0,1,2,错;B.{}{}22101x x x -+==,正确;C.整数集表示为Z ,错;D.有理数集表示为x|x 为有理数},错.故选:B.7.下列元素的全体不能组成集合的是( )A .中国古代四大发明B .地球上的小河流C .方程210x -=的实数解D .周长为10的三角形答案:B解析:根据集合元素的确定性,即可得答案;详解:地球上的小河流没有一个明确的标准,∴无法构成集合, 故选:B.8.用d (A )表示集合A 中的元素个数,若集合A=0,1},B=x|(x 2-ax )(x 2-ax+1)=0},且|d (A )-d (B )|=1.设实数a 的所有可能取值构成集合M ,则d (M )=( )A .3B .2C .1D .4答案:A解析:根据题设条件,可判断出d (B )的值为1或3,然后研究(x 2﹣ax )(x 2﹣ax+1)=0的根的情况,分类讨论出a 可能的取值.详解:解:由题意,|d (A )-d (B )|=1,d (A )=2,可得d (B )的值为1或3若d (B )=1,则x 2-ax=0仅有一根,必为0,此时a=0,则x 2-ax+1=x 2+1=0无根,符合题意 若d (B )=3,则x 2-ax=0有一根,必为0,此时a=0,则x 2-ax+1=x 2+1=0无根,不合题意 故x 2-ax=0有二根,一根是0,另一根是a ,所以x 2-ax+1=0必仅有一根,所以△=a 2-4=0,解得a=±2此时x 2-ax+1=0为1或-1,符合题意综上实数a 的所有可能取值构成集合M=0,-2,2},故d (M )=3.故选:A .点睛:本题考查方程的根的个数的判断以及集合中元素个数,综合性较强,考查了分类讨论的思想及一元二次方程根的个数的研究方法,难度中等.9.下列式子表示正确的有( )Q ;②N Z =;③Q R ⊆;④Q π∉A .4个B .3个C .2个D .1个答案:C解析:根据集合,,,N Z Q R 的意义即可做出判断.详解:因为集合Z 中有负数,N 中没有负数,所以②错误;③Q R ⊆正确;因为π是无理数,所以④正确,故选C.点睛:本题考查常用数集及其关系,属基础题.10.若{}2213,1,1a a a -∈---,则a=( )A .1-B .0C .1D .0或1答案:C 解析:根据元素与集合的关系,分类讨论,根据所等到的方程,解方程,最后符合集合元素的互异性即可.详解:因为{}2213,1,1a a a -∈---,所以有211a a --=-或211a -=-.当211a a --=-时,解得0a =或1a =,当0a =时,2211a a a --=-,不符合集合元素的互异性,故舍去,所以1a =.当211a -=-时,解得0a =,由上可知舍去,综上:1a =.故选:C点睛:本题考查已知集合的元素求参数问题,考查了集合元素的互异性,属于基础题.11.已知集合M =2|1x x =},N =|1x ax =},若N M ⊆,则实数a 等于( )A .1B .1-C .±1D .±1或0答案:D解析:先求出集合M =2|1x x =}=﹣1,1},当a=0时,N=∅,成立;当a≠0时,N=1a },由N M ⊆得11a =-或1a =1.由此能求出实数a 的取值集合. 详解:∵集合M =2|1x x =}=﹣1,1},N =|1x ax =},N M ⊆,∴当a=0时,N=∅,成立;当a≠0时,N=1a },∵N M ⊆,∴11a=-或1a =1.解得a=﹣1或a=1, 综上,实数a 的取值集合为1,﹣1,0}.故选:D .点睛:易错点点睛:本题考查实数的取值范围的求法,考查子集、不等式性质等基础知识,容易漏考虑N =∅的情况.12.已知集合(){}223A x y x y x Z y Z =+≤∈∈,,,,则A 中元素的个数为( ) A .9B .8C .5D .4答案:A 解析:根据枚举法,确定圆及其内部整点个数.详解:223x y +≤23,x ∴≤x Z ∈1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.13.下列四个关系中,正确的是A .{},a a b ∈B .{}{},a a b ∈C .{}a a ∉D .{},a a b ∉答案:A解析:根据集合与元素的关系和集合与集合的关系可以选出正确答案.详解: 元素a 与集合{}{}a a b 、,是属于关系,故A 对,C 、D 错误,而{}{},a a b 、之间是包含关系,所以B 错误,故本题选A.点睛:本题考查了元素与集合之间以及集合与集合之间的关系,掌握属于关系和包含关系是解题的关键.14.下列关系中正确的是( )A .0∈∅B QC .0N ∈D .{}1(0,1)∈答案:C解析:根据空集是不含有任何元素的集合,得到A B 不正确; 由元素与集合的关系,得到D 不正确,即可求解.详解:由题意,A 中,空集是不含有任何元素的集合,所以不正确;Q 不正确;根据元素与集合的关系,{}1(0,1)∈不正确,又由0是自然数,所以0N ∈,故选C.点睛:本题主要考查了元素与集合的关系,着重考查了分析问题和解答问题的能力,属于基础题.15.已知集合{}{}{}0,2,3,4,5,7,1,2,3,4,6,|,A B C x x A x B ===∈∉,则C 的元素的个数为A .2B .3C .4D .5答案:B详解:试题分析:由题意可知{}{}|,0,5,7C x x A x B =∈∉=,即集合C 中有三个元素,故选B. 考点:集合的表示及运算.16.方程组3231x y x y +=⎧⎨-=⎩的解的集合是( ) A .x=2,y=1}B .2,1}C .(2,1)}D .∅答案:C 解析:先解方程组,再利用列举法表示.详解:方程组3231x y x y +=⎧⎨-=⎩,解得21x y =⎧⎨=⎩, 所以方程组的解的集合是(2,1)},故选:C点睛:本题主要考查集合的表示,属于基础题.17.已知集合(){}22,|2,,A x y x y x y =+≤∈∈N N ,则A 中元素的个数为( )A .4B .9C .8D .6答案:A 解析:根据题中条件,分别讨论0x =和1x =两种情况,即可得出结果.详解:因为222x y +≤,x N ∈,y ∈N ,当0x =时,0y =,1;当1x =时,0y =,1,所以共有4个元素,故选:A.点睛:本题主要考查判断集合中元素的个数,属于基础题型.18.如果集合中的元素是三角形的边长,那么这个三角形一定不可能是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形答案:D解析:由集合元素的互异性可得解.详解:根据集合元素的互异性可知,该三角形一定不可能是等腰三角形.故选:D.19.若集合{}2|(2)210A x k x kx =+++=有且仅有1个真子集,则实数k 的值是( ). A .2-B .1-或2C .1-或2±D .1-或2-答案:C 解析:集合A 中有且只有1个真子集,等价为集合A 只有一个元素,然后分20k +=、20k +≠两种情况讨论即可.详解:集合2{|(2)210}A x k x kx =+++=有且仅有1个真子集,∴集合A 只有一个元素.若20k +=,即2k =-时,方程等价为410x -+=,解得14x =,满足条件.若20k +≠,即2k ≠-时,则方程满足△0=,即244(2)0k k -+=,220k k ∴--=,解得2k =或1k =-. 综上:2k =-或2k =或1k =-.故选:C20.下列各组对象不能构成集合的是( )A .拥有手机的人B .某校高一(1)班成绩优秀的学生C .所有有理数D .小于π的正整数答案:B解析:根据集合元素的“确定性”,可知B 项中的对象不符合集合的定义,而其它各项都有明确的定义,符合集合元素的特征,由此可得正确选项.详解:对于A ,“拥有手机的人”其中的对象是明确的,能构成集合;对于B ,“成绩优秀的学生”其中对象是不明确的,不能构成集合;对于C ,“所有有理数”其中对象是明确的,能构成集合;对于D ,“小于π的正整数”其中对象是明确的,能构成集合.故选:B.点睛:本题考查了集合的定义和集合元素的性质等知识,属于基础题.。

高中数学必修一人教A版1.1 集合的概念练习(含解析)(73)

高中数学必修一人教A版1.1 集合的概念练习(含解析)(73)

1.1 集合的概念一、单选题1.设集合{}0,1,2,3M =,则下列关系正确的是( )A .1M ⊆B .2M ∉C .{}3M ⊆D .{}0M ∈2.有下列说法:(1)与表示同一个集合; (2)由组成的集合可表示为{}1,2,3或{}3,2,1; (3)方程2(1)(2)0x x --=的所有解的集合可表示为{}1,1,2;(4)集合{}|45x x <<是有限集.其中正确的说法是A .只有(1)和(4)B .只有(2)和(3)C .只有(2)D .以上四种说法都不对3.已知集合{}{}2|00,1x x ax +==,则实数a 的值为.A .1-B .0C .1D .2 4.已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2} 5.已知集合(){}21220A x R a x x =∈+-+=,且A 中只有一个元素,则实数a 的值为A .12- B .0或12 C .1- D .1-或12- 6.把集合2|450{}x x x --=用列举法表示为( )A .{|1,5}x x x =-=B .{|15}x x x =-=或C .2{450}x x --=D .{-1,5} 7.在“①高一数学课本中的难题;②所有的正三角形; ③方程220x +=的实数解”中,能够表示成集合的是A .②B .③C .②③D .①②③8.以下各组对象不能组成集合的是( )A .中国古代四大发明B .地球上的小河流C .方程270x -=的实数解D .周长为10cm 的三角形 9.{}|10P m m =-<<,2{|440Q m R mx mx =∈+-<对于任意实数x 恒成立},则下列关系中立的是A .P Q ≠⊂B .Q P ≠⊂C .P Q =D .P Q φ=二、填空题1.下列命题正确的个数__(1)很小的实数可以构成集合;(2)集合y|y =x 2﹣1}与集合(x ,y )|y =x 2﹣1}是同一个集合;(3)1,361,,||,0.5242-,这些数组成的集合有5个元素;(4)集合(x ,y )|xy≤0,x ,y∈R}是指第二和第四象限内的点集.2.若集合{}2(,)1A x y y ax ==-,集合{}(,)33B x y y x ==-,若A B 中元素只有一个,则实数a 组成的集合为______.3.设1234,,,a a a a 是4个互不相同的实数,且{}{}|,1411,21,30,39,49i j x x a a i j =+≤<≤=,则集合{}1234,,,a a a a =____________.4.用符号“∈”或“∉”填空:0______N ;3-______N ;0.5______Z ______Z ;13______Q ;π______R.5.若{}20,2m m m ∈-则实数m 的值为_____. 三、解答题1.若集合{}2|10,A x ax bx x R =++=∈.(1)若{}1,1A =-,求,a b 的值;(2)若{}1A =-,求,a b 的值.2.用列举法表示下列集合:(1)不大于10的非负偶数组成的集合;(2)方程x 2=2x 的所有实数解组成的集合;(3)直线y =2x +1与y 轴的交点所组成的集合;(4)由所有正整数构成的集合.3.用列举法表示下列集合(1)由大于3且小于10的所有整数组成的集合(2)方程290x的所有实数解组成的集合参考答案一、单选题1.C解析:根据元素与集合的关系和集合与集合的关系即可判断.详解:因为{}0,1,2,3M =,所以{}3M ⊆,故选:C.2.C详解:试题分析:(1)不正确:0是数字不是集合,但{}00∈;(2)正确:集合元素满足无序性,即{}{}1,2,33,2,1=;(3)不正确:集合元素具有互异性,方程的解集应为{}1,2;(4)不正确:满足不等式45x <<的x 有无数个,所以集合{}|45x x <<是无限集.故C 正确.考点:1元素与集合的关系;2集合元素的特性.3.A详解:依题意,有{}{}0,0,1a -=,所以,1a =-.选A.4.C解析:由题意先解出集合A,进而得到结果.详解:解:由集合A 得x 1≥,所以{}A B 1,2⋂=故答案选C.点睛:本题主要考查交集的运算,属于基础题.解析:由条件可得方程()21220a x x +-+=只有一个实数解,对二次项系数是否为0,结合根的判别式,即可求解.详解:A 中只有一个元素,所以方程()21220a x x +-+=只有一个实数解, 当10,1a a +==-时,方程为220,1x x -+==,满足题意;当10,1a a +≠≠-时,148(1)840,2a a a ∆=-+=--==-,所以1a =-或12a =-.故选:D.点睛:本题考查集合的表示,以及对集合元素的理解,属于基础题.6.D解析:先解一元二次方程2450x x --=的根,然后直接利用列举法表示集合.详解:解方程2450x x --=得1x =-或5x =,因此集合2|450{}x x x --=用列举法表示为{1,5}-. 故选:D.点睛:本题考查了一元二次方程的求解和集合列举法的应用,属于基础题.7.C解析: 高一数学中的难题的标准不确定,因而构不成集合,而正三角形标准明确,能构成集合,方程x 2-2=0的解也是确定的,能构成集合,故选C.点睛:集合元素的特性:确定性、互异性、无序性.对于一个元素,其要么属于集合,要么不属于这个集合,二者选一,不可不选.对于集合中任意两个元素,它们必不相等.8.B解析:根据集合的元素特征,逐个判断即可得解.详解:根据集合元素的确定性,易知:B 答案中的小河流,是不确定的,故不能构成集合,而A ,C ,D 项中集合的元素均确定,故选:B.本题考查了集合的确定性,是概念题,属于基础题.9.A解析:首先化简集合Q ,2440mx mx +-<对任意实数x 恒成立,则分两种情况:(1)0m =时,易知结论成立,(2)0m <时,2440mx mx +-=无根,则由∆<0求得m 的范围. 详解:{}2|440Q m R mx mx x =∈+-<对任意实数恒成立, 对m 分类:(1)0m =时,40-<恒成立;(2)0m <时,需要2(4)160m m ∆=+<,解得10m -<<,综合(1)(2)知10m -<≤,所以{}|10Q m m =-<≤,因为{}|10P m m =-<<,所以P Q ≠⊂,故选A. 点睛:该题考查的是有关判断集合间的关系的问题,涉及到的知识点有恒成立问题对应参数的取值范围的求法,真子集的概念问题,属于简单题目.二、填空题1.0解析:利用集合元素的特征,集合中元素的含义逐一判断可得答案.详解:解:对于(1)很小的实数不满足集合中元素的确定性,所以(1)不正确.对于(2)集合y|y =x 2﹣1}表示的是函数y =x 2﹣1的值域,而集合(x ,y )|y =x 2﹣1}表示的是y =x 2﹣1图象上的点,故(2)不正确;对于(3):因为3624=,10.52-=,不满足集合中的元素是互异的,故(3)不正确; 对于(4)集合(x ,y )|xy≤0,x ,y∈R}是指第二和第四象限内的点集及两个坐标轴上的点,故(4)不正确,故答案为:0.2.90,8⎧⎫⎨⎬⎩⎭解析:将问题转化为2320ax x -+=只有一个解,分类讨论a 可求得结果.因为A B 中元素只有一个,所以2133y ax y x ⎧=-⎨=-⎩只有一组解, 所以2320ax x -+=只有一个解,当0a =时,23x =符合题意;当0a ≠时,2(3)80a ∆=--=,解得98a =,故实数a 组成的集合为90,8⎧⎫⎨⎬⎩⎭. 故答案为:90,8⎧⎫⎨⎬⎩⎭.点睛:本题考查了根据交集中元素个数求参数,考查了分类讨论思想,属于基础题.3.{}1,10,20,29解析:不妨设1234a a a a <<<,集合{}|,14i j x x a a i j =+≤<≤中至多有6个数,确定i j a a +中的最小和最大的数,再确定次小与次大的数,然后还有两个相等为中间的数,由此可得解. 详解:不妨设1234a a a a <<<,则在集合{}|,14i j x x a a i j =+≤<≤中,12a a +最小,34a a +最大,即1211a a +=,3449a a +=,第二小的数是13a a ,第二大的数是24a a +,即1321a a +=,2439a a +=,从而有142330a a a a +=+=,由1211a a +=,3449a a +=,1321a a +=,2439a a +=,142330a a a a +=+=,可解得11a =,210a =,320a =,429a =,故答案为:{}1,10,20,29点睛:本题考查求集合中的元素,解题时根据集合的定义,把i j a a +排列,再根据集合的定义得出结论后可求解.考查了逻辑推理能力,运算求解能力.4.∈∉∉∉∈∈解析:根据自然数,整数,有理数,实数的定义即可判断.详解:0是自然数,则0N ∈;3-不是自然数,则3N -∉;0.5Z Z ∉;13是有理数,则13Q ∈;π是无理数,则R π∈故答案为:(1)∈;(2)∉;(3)∉;(4)∉;(5)∈;(6)∈点睛:本题主要考查了元素与集合间的关系,属于基础题.5.2解析:由已知中若0∈m,m 2﹣2m},根据元素与集合之间的关系,可得m =0或m 2﹣2m =0,分类讨论,结合集合元素的互异性排除掉不满足条件的m 值,即可得到答案.详解:解:∵0∈m,m 2﹣2m},∴m=0或m 2﹣2m =0当m =0时,m 2﹣2m =0,这与集合元素的互异性矛盾,当m 2﹣2m =0时,m =0(舍去)或m =2故答案为:2点睛:本题考查的知识点是元素与集合关系的判断,其中根据0∈m,m 2﹣2m},得到关于m 的方程是解答本题的关键,但解答过程中易忽略集合元素的互异性,而错解为m =0或m =2三、解答题1.(1)1,0a b =-=;(2)1,2a b ==或01a b ==,解析:(1)若{}1,1A =-,则210ax bx ++=的两个根分别为1,1-,根据韦达定理求得参数值.(2)若{}1A =-,分0a =和0a ≠两种情况进行讨论,从而求得参数值.详解:(1)若{}1,1A =-,则210ax bx ++=的两个根分别为1,1-, 由韦达定理可得110a b ⎧-=⎪⎨⎪=⎩,故1,0a b =-=. (2)若{}1A =-,则01a b =⎧⎨=⎩或0112a ab a⎧⎪≠⎪⎪=⎨⎪⎪-=-⎪⎩,故1,2a b ==. 综上若{}1A =-,则1,2a b ==或0,1a b ==2.(1)0,2,4,6,8,10};(2)0,2};(3)(0,1)};(4)1,2,3,…}.解析:根据题意求得集合的元素,然后用列举法表示集合.详解:解 (1)因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是 0,2,4,6,8,10}.(2)方程x 2=2x 的解是x =0或x =2,所以方程的解组成的集合为0,2}.(3)将x =0代入y =2x +1,得y =1,即交点是(0,1),故交点组成的集合是(0,1)}.(4)正整数有1,2,3,…,所求集合为1,2,3,…}.3.(1){}4,5,6,7,8,9;(2){}3,3-.解析:(1)用列举法,直接写出结果;(2)先解方程,即可得出对应的集合.详解:(1)由大于3且小于10的所有整数组成的集合为{}4,5,6,7,8,9;(2)解方程290x 得3x =±, 所以方程290x 的所有实数解组成的集合为{}3,3-. 点睛:本题主要考查列举法表示集合,属于基础题型.。

人教新课标版数学高一-数学必修1练习集合的基本运算—补集

人教新课标版数学高一-数学必修1练习集合的基本运算—补集

课时作业 5一、选择题1.设全集U={a,b,c,d},集合M={a,c,d},N={b,d},则(∁U M)∩N等于() A.{b} B.{d}C.{a,c} D.{b,d}解析:由题意可知,∁U M={b},∴(∁U M)∩N={b},选A.答案:A2.设全集U=M∪N={1,2,3,4,5},M∩(∁U N)={2,4},则N等于()A.{1,2,3} B.{1,3,5}C.{1,4,5} D.{2,3,4}解析:∵M∩(∁U N)={2,4},∴2,4∈M且2,4∉N,又∵M∪N={1,2,3,4,5},∴N={1,3,5},选B.答案:B3.[2014·杭州七校高一联考]已知全集U={-1,1,3},集合A={a+2,a2+2},且∁U A ={-1},则a的值是()A.-1 B.1C.3 D.±1解析:由A∪(∁U A)=U,可知A={1,3},又∵a2+2≥2,∴a+2=1且a2+2=3.解得a=-1,故选A.答案:A4.如下图,U是全集,M,P,S是U的三个子集,则阴影部分所表示的集合是()A .(M ∩P )∩SB .(M ∩P )∪SC .(M ∩P )∩(∁U S )D .(M ∩P )∪(∁U S )解析:由题图不难判断阴影部分位于M ∩P 中,但不在S 中,故阴影部分表示的集合为(M ∩P )∩(∁U S ),选C.答案:C二、填空题5.有15人进入家电超市,其中有9人买了电视机,有7人买了电脑,两种均买的有3人,则这两种均没买的有________人.解析:设这15人构成全集U ,买电视机的9人构成集合A ,买电脑的7人构成集合B ,用Venn 图表示,如图所示,则两种均没买的有15-(9-3)-3-(7-3)=2(人). 答案:26.已知集合A ={x |x <a },B ={x |1<x <2},A ∪(∁R B )=R ,则实数a 的取值范围是________.解析:∵∁R B ={x |x ≤1或x ≥2},又A ={x |x <a },且A ∪(∁R B )=R ,∴a ≥2. 答案:{a |a ≥2}7.已知集合U ={(x ,y )|y =3(x -1)+2},A ={(x ,y )|y -2x -1=3},则∁U A =________.解析:∵A ={(x ,y )|y =3(x -1)+2,x ≠1}.又当x =1时,由y =3(x -1)+2得y =2,∴∁U A ={(1,2)}.答案:{(1,2)} 三、解答题8.设集合U ={2,3,a 2+2a -3},A ={|2a -1|,2}, ∁U A ={5},求实数a 的值.解:此时只可能a 2+2a -3=5,易得a =2或-4. 当a =2时,A ={2,3},符合题意;当a=-4时,A={9,3},不符合题意,舍去.故a=2.9.已知集合U={1,2,3,4,5,6,7,8,9,10},A={1,2,3,4,5,6},B={5,6,7,8,9,10}.(1)求(∁U A)∩(∁U B),∁U(A∪B),(∁U A)∪(∁U B),∁U(A∩B);(2)从(1)的计算结果,能发现什么规律?画图验证.解:(1)(∁U A)∩(∁U B)={7,8,9,10}∩{1,2,3,4}=∅,∁U(A∪B)=∅,(∁U A)∪(∁U B)={7,8,9,10}∪{1,2,3,4}={1,2,3,4,7,8,9,10},∁U(A∩B)={1,2,3,4,7,8,9,10}.(2)(∁U A)∩(∁U B)=∁U(A∪B),(∁U A)∪(∁U B)=∁U(A∩B).验证略.。

高中数学必修一人教A版1.1 集合的概念练习(含解析)(99)

高中数学必修一人教A版1.1 集合的概念练习(含解析)(99)

1.1 集合的概念一、单选题1.设集合2{|2}M x R x =∈,1a =,则下列关系正确的是( )A .a MB .a M ∉C .{}a M ∈D .{}a M2.以下六个命题中:0{0}∈;{0}⊇∅;0.3Q ∉;0N ∈;{,}{,}a b b a ⊆;{}220,xx x Z -=∈∣是空集.正确的个数是( )A .4B .3C .5D .2 3.已知集合{(2)(2)0}M x x x x =+-=∣,则M =( ) A .{0,2}-B .{0,2}C .{0,2,2}-D .{2,2}- 4.下列集合表示正确的是A .2,4}B .2,4,4}C .1,3,3}D .漂亮女生} 5.已知集合{}1,2A =,{}1,1,1B a =-+且A B ⊆,则a =A .1B .0C .1-D .2 6.设集合A =(x ,y )|x 2+y 2=1},B =(x ,y )|x+y =1},则A∩B 中元素的个数是( )A .0B .1C .2D .37.方程组31x y x y +=⎧⎨-=-⎩的解集不能表示为. A .()3,1x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=-⎩⎪⎪⎩⎭ B .()1,2x x y y ⎧⎫=⎧⎪⎪⎨⎨⎬=⎩⎪⎪⎩⎭ C .{}1,2 D .(){},1,2x y x y ==8.下列对象能确定为一个集合的是( )A .第一象限内的所有点B .某班所有成绩较好的学生C .高一数学课本中的所有难题D .所有接近1的数9.给出下列关系,其中正确的个数为( )①0N ∈Q ⊄;③{}0=∅;④(),R =-∞+∞A .1B .0C .2D .3二、填空题1.已知集合{}2,1,0,1A =--,集合{},B y y x x A ==∈,则B =_______________.2.由||||(,)a b a b R a b +∈所确定的实数集合是________.3.给出下列关系:①12R ∈Q ;③3N *∈;④0Z ∈.其中正确的序号是______.4.若a∈1,a 2﹣2a+2},则实数a 的值为___________.5.已知集合A=1,2,a 2-2a},若3∈A,则实数a=______.三、解答题1.(1)已知{}221,251,1A a a a a =-+++,2A -∈,求实数a 的值; (2)已知集合{}2340A x R ax x =∈--=,若A 中有两个元素,求实数a 的取值范围.2.集合{|12}A x x =-≤≤,{|}B x x a =<.(1)若A B A =,求实数a 的取值范围;(2)若A B =∅,求实数a 的取值范围.3.已知集合A 的元素全为实数,且满足:若a A ∈,则11a A a+∈-.若2a =,求出A 中其他所有元素.参考答案一、单选题1.D解析:先求解集合M ,即可确定a 与M 的关系.详解:解:22x ,22x,{|22}M x R x ∴=∈, 又1a =,a M ∴∈,{}a M .故选:D.2.C解析:根据元素与集合间的关系、集合与集合间的关系可判定排除得到答案.详解:根据元素与集合间的关系可判定0{0}∈、0N ∈正确,0.3Q ∉不正确,根据集合与集合之间的关系可判定{0}⊇∅、{,}{,}a b b a ⊆、{}220,x x x Z -=∈∣是空集正确. 故选:C .3.C解析:直接利用方程的解法化简求解.详解:因为集合{(2)(2)0}{2,0,2}M xx x x =+-==-∣, 故选:C4.A解析:集合中的元素具有确定性、互异性、无序性,利用元素的三个特性对四个命题逐一的进行判断,能够得到答案.详解:对于选项A ,由集合的定义可知,一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合,显然A 项符合定义.故A 项正确.对于B 项和C 项,根据集合中元素的互异性可知,对于一个给定的集合,集合中的元素一定是不同的,故B 项和C 项错误.对于D 项,根据集合中元素的确定性可知,作为一个集合中的元素,必须是确定的,而D项中的元素显然不是确定的.故D项错误.点睛:本题主要考查集合的含义与表示,以及集合中元素的特性.5.A解析:由题知:12a+=,解得:1a=.详解:因为A B⊆,所以,解得:1a=.故选:A点睛:本题考查集合的子集关系,理解子集的概念是关键,属于简单题.6.C解析:可画出圆x2+y2=1和直线x+y=1的图象,从而可看出它们交点的个数,从而得出A∩B中的元素个数.详解:画出x2+y2=1和x+y=1的图象如下:可看出圆x2+y2=1和直线x+y=1有两个交点,∴A∩B的元素个数为2.故选:C.点睛:考查了描述法的定义,交集的定义及运算,数形结合解题的方法,考查了计算能力,属于容易题.7.C解析:由方程组31x yx y+=⎧⎨-=-⎩,解得12xy=⎧⎨=⎩,得到解集中只含有一个元素,根据集合的表示方法,逐项判定,即可求解.详解:由题意,方程组31x yx y+=⎧⎨-=-⎩,解得12xy=⎧⎨=⎩,其解集中只含有一个元素,根据集合的表示方法,其中A,B.D项表示都是正确的,其中选项C是表示由两个元素组成的熟记,不符合要求,所以不能表示为{}1,2.故选C.点睛:本题主要考查了集合的表示方法,其中解答中正确理解集合的表示方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.A解析:根据元素是否具备确定性逐项分析即可.详解:A .具备集合中元素的确定性,可以构成一个集合,故正确;B.“较好”不满足集合中元素的确定性,故错误;C.“难题”不满足集合中元素的确定性,故错误;D.“接近”不满足集合中元素的确定性,故错误.故选:A.点睛:本题考查集合中元素的特征,着重考查了集合中元素的确定性,难度较易.集合中元素的特征:确定性、无序性、互异性.9.C解析:根据元素与集合的关系,逐一分析①②③④,即可得答案.详解:对于①:0为自然数,所以0N∈,故①正确;Q,故②错误;对于③:0含有元素0,不是空集,故③错误;对于④:R为实数集,所以④正确;故选:C二、填空题1.{}0,1,2解析:根据题意,由列举法,即可得出结果.详解:因为{}2,1,0,1A =--, 所以{}{},0,1,2B y y x x A ==∈=. 故答案为:{}0,1,2.点睛:本题主要考查列举法表示集合,属于基础题型.2.{}202-,, 解析:根据a b 、的正负性分类讨论进行求解即可.详解:当0,0a b >>时,||||2a b a b a b a b +=+=; 当0,0a b ><时,||||0a b a b a b a b +=-=; 当0,0a b <>时,||||0a b a b a b a b +=-+=; 当0,0a b <<时,||||2a b a b a b a b+=--=-, 故答案为:{}202-,,3.①③④解析:根据元素与集合间的关系和特殊集合:有理数集,自然数集,整数集,实数集所含的元素可得选项.详解: 对于①: 12是分数,所有的分数都是实数,故①正确;对于③:3是自然数,故③正确;对于④:0是整数,故④正确;所以①③④正确,故选①③④.点睛:本题考查特殊集合:有理数集,自然数集,整数集,实数集所含的元素和元素与集合的关系,属于基础题.4.2解析:利用集合的互异性,分类讨论即可求解详解:因为a∈1,a 2﹣2a+2},则:a=1或a=a 2﹣2a+2,当a=1时:a 2﹣2a+2=1,与集合元素的互异性矛盾,舍去;当a≠1时:a=a 2﹣2a+2,解得:a=1(舍去)或a=2;故答案为:2点睛:本题考查集合的互异性问题,主要考查学生的分类讨论思想,属于基础题5.3或-1解析:根据3∈A 即可得出a 2-2a=3,解方程得到a 即可.详解:∵3∈A,A=1,2,a 2-2a},∴a 2-2a=3,解得a=-1或3故答案为-1或3.点睛:本题考查了列举法的定义,元素与集合的关系,考查了推理和计算能力,属于基础题.三、解答题1.(1)32a =-;(2)9016a a ⎧-<<⎨⎩或}0a >. 解析:(1)分析可得12a -=-或22512a a ++=-,结合集合中元素的互异性可求得实数a 的值;(2)根据已知条件得出09160a a ≠⎧⎨∆=+>⎩,即可解得实数a 的取值范围. 详解:(1)因为210a +>,故212a +≠-,因为2A -∈,则12a -=-或22512a a ++=-.①当12a -=-时,即当1a =-时,此时212512a a a -=++=-,集合A 中的元素不满足互异性;②当22512a a ++=-时,即22530a a ++=,解得32a =-或1a =-(舍), 此时512a -=-,21314a +=,集合A 中的元素满足互异性. 综上所述,32a =-;(2)因为集合{}2340A x R ax x =∈--=中有两个元素,则09160a a ≠⎧⎨∆=+>⎩, 解得916a 且0a ≠, 因此,实数a 的取值范围是9016a a ⎧-<<⎨⎩或}0a >.2.(1)2a >;(2)1a ≤-解析:(1)由A B A =,可得A B ⊆,即可列出不等关系,求出a 的取值范围;(2)由A B =∅,且B ≠∅,可列出不等关系,求出a 的取值范围.详解:(1)由集合{|12}A x x =-≤≤,{|}B x x a =<,因为A B A =,所以A B ⊆,则2a >,即实数a 的取值范围为2a >.(2)因为A B =∅,且B ≠∅,所以1a ≤-,故实数a 的取值范围为1a ≤-. 3.113,,23-- 解析:根据定义依次计算即可得答案.详解:解:因为若a A ∈,则11a A a +∈-, 所以当2a =时,11a a +=-12312A +=-∈-; 当3a =-时,11a a +=-131132A -=-∈+, 当12a =-时,11a a +=-11121312A -=∈+,当13a=时,11aa+=-1132113A+=∈-,综上A中其他所有元素为:11 3,,23 --.点睛:本题考查集合的元素的求解,是基础题.。

人教A版(2019)高一上册数学:1.3 集合基本运算同步训练 word版,含答案

人教A版(2019)高一上册数学:1.3 集合基本运算同步训练  word版,含答案

人教A 版(2019)高一上册数学:1.3 集合基本运算同步训练一、选择题1.设全集{1,A =2,3,4},{|21,}B y y x x A ==-∈,则A B ⋃等于( ) A .{}1,3 B .{}2,4C .{2,4,5,7}D .{1,2,3,4,5,7}2.设集合{}{}0,2,A B m ==,且{}1,0,2A B ⋃=-,则实数m 等于 A .1-B .1C .0D .23.已知集合{|26}A x x =∈-<<R ,{|2}B x x =∈<R ,则()C R A B ⋃=( ) A .{|6}x x <B .{|22}x x -<<C .{|2}x x >-D .{|26}x x ≤≤4.若全集{}1,2,3,4U =,集合{}2430M x x x =-+=,{}2560N x x x =-+=,则()UM N =.A .{}4B .{}1,2C .{}1,2,4D .{}1,3,45.已知全集U Z =,{31,}A x x n n Z ==-∈,{3,}B x x x Z =>∈,则()U A C B ⋂中元素的个数为 A .4B .3C .2D .16.已知集合{}0,1,2,3A =,{}=02,B x x x R ≤≤∈,则A B 的子集个数为( )A .2B .4C .7D .87.若集合A ={0,1,2,3},B ={1,2,4},则集合A B =A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0}8.设M 、P 是两个非空集合,定义M 与P 的差集为{M P x x M -=∈且}x P ∉,则()M M P --等于( ) A .P B .MC .MPD .M P ⋃9.设{|210},{|350}Sx x T x x ,则S TA .∅B .1|2x xC .3|5x x D .15|23x x10.设全集U ={x |x 是小于5的非负整数},A ={2,4},则∁U A = A .{1,3}B .{1,3,5}C .{0,1,3}D .{0,1,3,5}11.已知集合{}1A x x =≤,{}12B x x =-<<则()R A B =A .{}12x x <<B .{}1x x >C .{}12x x ≤<D .{}1x x ≥12.已知集合{}A x x a =<,{}2B x x =<,且()RA B =R ,则a 满足A .2a ≥B .2a >C .2a <D .2a ≤13.已知M,N 都是U 的子集,则图中的阴影部分表示( )A .M∁NB .∁U (M∁N)C .(∁U M)∩ND .∁U (M∩N)14.如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()UM P S ⋂⋂D .()()UM P S ⋂⋃二、填空题15.设全集{}1,3,5,7,9U =,{}1,5,9A a =-,{}5,7UA =,则a =_____.16.已知集合{}0A x x a =->,{}20B x x =-<,且A B B ⋃=,则实数a 满足的条件是______. 17.设集合{}0,1,2,3U =,集合{}2|0A x U x mx =∈+=,若{}1,2U C A =,则实数m =_____.18.设集合{}24A x x =≤<,{}12B x x m =≤-,若AB =∅,则实数m 的取值范围为______.19.已知全集为R ,集合()(){}620A x x x =-->,{}44B x a x a =-≤≤+,且A B ⊆R,则实数a的取值范围是______.20.已知{}{}|12M x x N x x a =≤-=-,,若M N ≠∅,则a 的范围是________.三、解答题21.设{4,5,6,8}A =,{3,5,7,8}B =,求A B .22.设{}3,5,6,8A =,{4,5,7,8}B =,求A B ,A B .23.已知集合22{|190}A x x ax a =-+-=,2{|560}B x x x =-+=,2{|280}C x x x =+-=. (1)若A B ⋂≠∅与A C ⋂=∅同时成立,求实数a 的值; (2)若()A B C ⊆⋂,求实数a 的取值范围.24.已知{1,2,3,4,5,6,7}U =,{2,4,5}A =,{1,3,5,7}B =,求()U A B ,()()U U A B .25.图中U 是全集,A ,B 是U 的两个子集,用阴影表示:(1)()()UU A B ; (2)()()U U A B ⋃.26.若A ={3,5},B ={x |x 2+mx +n =0},A ∁B =A ,A ∩B ={5},求m ,n 的值.27.设全集I R =,已知集合(){}{}22|30,|60M x x N x x x =+≤=+-=(1)求()I C M N ⋂;(2)记集合(),I A C M N =⋂已知集合{}|15,,B x a x a a R =-≤≤-∈若A B A ⋃=,求实数a 的取值范围.参考答案1.D 【解析】 【分析】先求出集合A ,B ,再利用并集定义能求出结果. 【详解】全集{1,A =2,3,4},{|21,}{1,B y y x x A ==-∈=3,5,7}, {1,A B ∴⋃=2,3,4,5,7}.故选D . 【点睛】本题考查并集的求法,是基础题. 2.A 【分析】根据,A B ,以及A 与B 的并集,确定出m 的值即可. 【详解】{}{}0,2,A B m ==,且{}1,0,2A B ⋃=-,所以1B -∈,1m ∴=-,故选A.【点睛】本题主要考查并集的定义,意在考查对基础知识的掌握情况,属于简单题. 3.C 【分析】先由补集的概念,求出C R B ,再和集合A 求交集,即可得出结果. 【详解】由{|2}B x x =∈<R ,得C {|2}R B x x =∈≥R .又{|26}A x x =∈-<<R ,所以()C {|2}R A B x x ⋃=>-.故选:C. 【点睛】本题主要考查集合的交集与补集的运算,熟记概念即可,属于基础题型. 4.C 【分析】先根据一元二次方程的解表示出集合,M N ,然后再求解出M N ⋂的结果,最后求解出()UM N 的结果. 【详解】2430x x -+=的解为1x =或3,{}1,3M ∴=,2560x x -+=的解为2x =或3,{}2,3N ∴=,∁{}3M N ⋂=,∁(){}1,2,4UM N =,故选C . 【点睛】本题考查集合的交集、补集混合运算,难度较易.()UM N 的计算除了按本题的方法外,还可以由()()()UUUMN M N =来计算.5.C 【分析】先求出U C B ,然后求出()U A C B ⋂,即可得到答案. 【详解】{3,}U C B x x x Z =≤∈,{31,}A x n n Z ==-∈,则(){}12U A C B ⋂=-,.故答案为C. 【点睛】本题考查了集合的运算,主要涉及交集与补集,属于基础题. 6.D 【分析】先求出A B ⋂集合元素的个数,再根据求子集的公式求得子集个数. 【详解】因为集合{}0,1,2,3A =,{}=02,B x x x R ≤≤∈ 所以{}0,1,2A B ⋂= 所以子集个数为328= 个 所以选D 【点睛】本题考查了集合交集的运算,集合子集个数的求解,属于基础题. 7.A 【详解】因为集合A ={0,1,2,3},B ={1,2,4}, 所以由并集的定义可得,故选A.8.C 【分析】根据题意,分M P ⋂=∅和M P ⋂≠∅两种情况,结合集合的基本运算,借助venn 图,即可得出结果. 【详解】当M P ⋂=∅,由于对任意x M ∈都有x P ∉,所以M P M -=, 因此()M M P M M M P --=-=∅=⋂; 当M P ⋂≠∅时,作出Venn 图如图所示,则M P -表示由在M 中但不在P 中的元素构成的集合,因而()M M P --表示由在M 中但不在M P -中的元素构成的集合,由于M P -中的元素都不在P 中,所以()M M P --中的元素都在P 中,所以()M M P --中的元素都在M P ⋂中,反过来M P ⋂中的元素也符合()M M P --的定义,因此()M M P M P --=⋂.故选:C. 【点睛】本题主要考查集合的应用,熟记集合的基本运算即可,属于常考题型. 9.D 【分析】先分别求解出集合,S T 中表示元素的范围,然后利用数轴表示出交集,从而求解出S T 的结果.【详解】 ∁1{|210}|2Sx x x x,5{|350}|3T x x x x,如图所示,∁15|23S T x x, 故选D. 【点睛】本题考查集合的交集运算,难度较易.集合的交集运算结果可通过数轴来直观表示,具体做法为:将相应集合对应的解集表示在数轴上,然后求解公共部分范围即为交集运算结果. 10.C 【分析】全集U ={x |x 是小于5的非负整数}={0,1,2,3,4},由集合的补集的概念得到结果. 【详解】全集U ={x |x 是小于5的非负整数}={0,1,2,3,4},A ={2,4},∁∁U A ={0,1,3}. 故选C . 【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算. 11.A 【分析】 根据()RA B ⋂可知,应先求解A R ,再求解B ,最终根据交集运算进行求解即可【详解】因为集合{}1A x x =≤,所以{}1RA x x =>,则(){}12R AB x x ⋂=<<.答案选A 【点睛】本题考查集合的混合运算,在运算法则中应遵循有括号先算括号的基本原则,易错点为将A R错解为{}1RA x x =≥12.A 【分析】 可先求出B R,再根据()RAB =R 进行求解即可【详解】{}2RB x x =,则由()RA B =R ,得2a ≥,故选A.【点睛】本题考查并集与补集的混合运算,易错点为求解时忽略端点处2a =能取得到的情况,为了提升准确率,建议对范围理解陌生的考生最好辅以数轴图进行求解 13.B 【分析】观察图形可知,图中非阴影部分所表示的集合是A B ,从而得出图中阴影部分所表示的集合.【详解】由题意,图中非阴影部分所表示的集合是A B ,所以图中阴影部分所表示的集合为A B 的 补集,即图中阴影部分所表示的集合为()U C A B ,故选B.【点睛】本题主要考查集合的venn 图的表示及应用,其中venn 图既可以表示一个独立的集合,也可以表示集合与集合之间的关系,熟记venn 图的含义是解答的关键. 14.C 【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可. 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C . 【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题. 15.2或8 【分析】根据题意得出53a -=,解出该方程即可得出实数a 的值. 【详解】全集{}1,3,5,7,9U =,{}1,5,9A a =-,{}5,7UA =,53a ∴-=,解得2a =或8.故答案为2或8. 【点睛】本题考查利用补集的结果求参数,根据题意得出方程是解题的关键,考查运算求解能力,属于基础题. 16.2a ≥ 【分析】根据A B B ⋃=可得A B ⊆,分别化简集合A 与B ,进行求解即可 【详解】{}{}0A x x a x x a =->=>,{}{}202B x x x x =-<=>.A B B =,A B ⊆,则2a ≥. 【点睛】本题考查根据集合的并集结果求参数问题,易错点为忽略端点处元素2的存在,需注意若A B ⊆,其中也包括A B =的情况下 17.-3 【详解】因为集合{}0,1,2,3U =, {}1,2U C A =,A={0,3},故m= -3.18.1,2⎛⎫-+∞ ⎪⎝⎭【解析】【分析】根据A B =∅可判断212m >-,求出m 即可【详解】因为A B =∅,所以212m >-, 所以1,2m ⎛⎫∈-+∞ ⎪⎝⎭. 【点睛】本题考查根据空集的概念求解参数问题,属于基础题19.{|10a a ≥或}2a ≤-【分析】先求解出R B ,根据A B ⊆R 得到集合,A B 的端点值之间的不等式关系,从而求解出a 的取值范围. 【详解】 由题可知{}26A x x =<<,{4R B x x a =<-或}4x a >+, 因为A B ⊆R ,所以64a ≤-或24a ≥+,即10a ≥或2a ≤-.故答案为{|10a a ≥或}2a ≤-.【点睛】本题考查根据集合的包含关系确定参数范围以及补集运算,难度一般.除了直接分析出不等式组,通过数轴根据解集的位置关系列出不等式组求解亦可.20.1a <【分析】表示出N 中不等式的解集,根据M 与N 交集不为空集,即可确定出a 的范围.【详解】集合{}{}|12M x x N x x a =≤-=-,,MN ≠∅,则21a -<-,解得:1a <故填1a <.【点睛】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.21.{3,4,5,6,7,8}【解析】【分析】根据并集定义直接求解即可.【详解】由并集定义可知:{}3,4,5,6,7,8AB = 【点睛】本题考查集合运算中的并集运算,属于基础题.22.{}5,8A B =,{}3,4,5,6,7,8A B =【分析】根据交集和并集定义直接求解即可.【详解】由交集定义知:{}5,8AB =;由并集定义知:{}3,4,5,6,7,8A B = 【点睛】本题考查集合运算中的交集和并集运算,属于基础题.23.(1)2a =-(2)a >a < 【分析】(1)先化简集合B 与集合C ,再根据A B ⋂≠∅,A C ⋂=∅,得到3是方程22190x ax a -+-=的解,求出2a =-或5a =,再检验,即可得出结果;(2)先由(1)得到{}2B C ⋂=,根据()A B C ⊆⋂,得到A =∅或{}2A =,分别讨论这两种情况 ,即可得出结果.【详解】(1)由题意可得{}2{|560}2,3B x x x =-+==,{}2{|280}2,4C x x x =+-==-, ∁A B ⋂≠∅,A C ⋂=∅,集合A 中的元素有3,即3是方程22190x ax a -+-=的解;把3x =代入方程得23100a a --=,解得2a =-或5a =.当2a =-时,{}5,3A =-,满足题意;当5a =时,{}2,3A =,此时A C ⋂≠∅,故5a =不满足题意,舍去.综上知2a =-.(2)由(1)可知{}2B C ⋂=,若()A B C ⊆⋂,则A =∅或{}2A =.当A =∅时,()224190a a ∆=--<,解得a >或a <. 当{}2A =时,方程22190x ax a -+-=有两个相等的实数根2,由根与系数的关系得222,1922,a a =+⎧⎨-=⨯⎩解得a ∈∅.综上可得,实数a 的取值范围是3a >或3a <-. 【点睛】本题主要考查由集合交集的结果求参数,以及由集合间的包含关系求参数,熟记集合交集的概念,以及集合间的基本关系即可,属于常考题型.24.(){}2,4U A B =,()(){}6U U A B =.【分析】 根据补集定义首先求得U A 和U B ,由交集定义可求得结果. 【详解】{}1,3,6,7U A =,{}2,4,6U B =(){}2,4U A B ∴=,()(){}6U U A B =【点睛】本题考查集合运算中的补集和交集运算,属于基础题.25.(1)图象见解析;(2)图象见解析.【分析】根据补集、交集和并集的定义,利用Venn 图表示出来即可.【详解】如下图阴影部分所示.【点睛】本题考查Venn 图表示集合,涉及到集合的交集、并集和补集运算,属于基础题.26.10,{25.m n =-=【分析】由题意,A∁B =A ,A∩B ={5},求得B ={5},进而得到方程x 2+mx +n =0只有一个根为5,列出方程组,即可求解.【详解】解:∁A ∁B =A ,A ∩B ={5},A ={3,5},∁B ={5}.∁方程x 2+mx +n =0只有一个根为5,∁2255040m n m n ++=⎧⎨∆=-=⎩∁解得10,25.m n =-⎧⎨=⎩【点睛】本题主要考查了集合的交集、并集的应用,其中解答中熟记集合的交集、并集的基本运算,转化为方程的根求解是解答的关键,着重考查了转化思想的应用,以及推理与运算能力.27.(1){}2;(2){}|3a a ≥.【分析】(1)通过解不等式和方程求得集合M,N ,再进行集合的补集、交集运算;(2)由(1)知集合{}2A =,根据集合关系B A A ⋃=,得B φ=或{}2B =,利用分类讨论求出a 的范围.【详解】(1)∁(){}{}2|303,M x x =+≤=- {}2{|60)3,2,N x x x =+-==- {|I C M x x R ∴=∈且3},x ≠-(){}12C M N ∴⋂=(2)由题意得(){}2I A C M N =⋂=.∁,A B A ⋃=B A ∴⊆,∁B =∅或{}2,B =∁当B =∅时, 15a a ->-,得3a >;∁当{}2B =时,解得3a =.综上所述,所求a 的取值范围为{}|3a a ≥.【点睛】该题考查的是与集合相关的参数的取值范围的问题,在解题的过程中,涉及到的知识点有集合的交集,集合的补集,以及集合之间的包含关系,正确得出其满足的式子是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学集合试题基础版
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合{}{}1,1,2,2,|,M N y y x x M =--==∈,则M N ⋂是 A M B {}1,4 C {}1 D Φ
2. 设全集U =R ,集合2{|1}A x x =≠,则U C A =
A. 1
B. -1,1
C. {1}
D. {1,1}-
3. 已知集合U ={|0}x x >,{|02}U C A x x =<<,那么集合A = A. {|02}x x x ≤≥或 B. {|02}x x x <>或 C. {|2}x x ≥ D. {|2}x x >
4. 设全集{}0,1,2,3,4I =----,集合{}0,1,2M =--,{}0,3,4N =--,则()I M N =
A .{0}
B .{}3,4--
C .{}1,2--
D .∅
5.已知集合M={x N|4-x N}∈∈,则集合M 中元素个数是 A .3 B .4 C .5 D .6
6. 已知集合{}1,0,1-=A ,则如下关系式正确的是 A A A ∈ B 0A C A ∈}0{ D ∅A
7.集合}22{<<-=x x A ,}31{<≤-=x x B ,那么=⋃B A
A.}32{<<-x x
B.}21{<≤x x
C.}12{≤<-x x
D.}32{<<x x 8.已知集合}01|{2=-=x x A ,则下列式子表示正确的有 ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{
A .1个
B .2个
C .3个
D .4个
9.已知2U U={1,2,23},A={|a-2|,2},C {0}a a A +-=,则a 的值为 A .-3或1 B .2 C .3或1 D .1 10. 若集合}8,7,6{=A ,则满足A B A =⋃的集合B 的个数是
A. 1
B. 2
C. 7
D. 8
11.已知集合M={x|x 1},N={x|x>}a ≤-,若M N ≠∅,则有 A .1a <- B .1a >- C . 1a ≤- D .1a ≥-
12、已知全集{}{}{}0,1,2,4,6,8,10,2,4,6,1U A B ===,则()U C A B ⋃= A
{}0,1,8,10 B {}1,2,4,6 C {}0,8,10
D Φ
选择题答案
二、填空题:
13.设U ={三角形},A ={锐角三角形},则U C A = . 14. 已知A={0,2,4},C U A={-1,1},C U B={-1,0,2},求B= 。

15、已知全集{}
{}{}22,4,1,1,2,7U U a a A a C A a =-+=+==则 16
集合
{}{}{}0,2,4,6,1,3,1,3,1,0,2U U A C A C B ==--=-则集合B
= 。

17、已知全集U =R ,集合A ={x |1≤2x +1<9},则C U A = 18.设全集R B C A x x B a x x A R =⋃<<-=<=)(},31{},{且,则实数a 的取值范围是________________
三、解答题:解答应写出文字说明,证明过程或演算步骤.
19.若A={3,5},2{|0}B x x mx n =++=,A B A =,{5}A B =,求m 、n 的值。

20.已知集合2{|320}A x x x =-+=,}{
12=-+-=m mx x x B .若
A B A =,求实数m 的取值范围。

21已知集合{|121}A x a x a =-<<+,{|01}B x x =<<,若A B =∅,求实数a 的取值范围。

22.设22{|190}A x x ax a =-+-=,2{|560}B x x x =-+=, 若A B A B =,求a 的值。

23. 若集合{}2,12,4a a A --=,{}9,1,5a a B --=,且{}9=B A ,求a 的值。

相关文档
最新文档