图的深度遍历
第15讲图的遍历

V6
V8
V8
V7
V5 深度优先生成树
V8 V1
V2
V3
V4 V5 V6 V7
V8 广度优先生成树
27
例A
B
CD E
F
GH
I
K
J
L
M
A
D
G
LCF
KI E
H M
JB
深度优先生成森林
28
二、图的连通性问题
▪1、生成树和生成森林
▪ 说明
G
▪ 一个图可以有许多棵不同的生成树
KI
▪ 所有生成树具有以下共同特点:
g.NextAdjVex(v, w))
{
if (g.GetTag(w) == UNVISITED)
{
g.SetTag(w, VISITED);
g.GetElem(w, e);
Visit(e);
q.InQueue(w);
}
}}}
24
一、图的遍历 两种遍历的比较
V0
V1 V4
V0
V1 V4
V3
V2 V5
16
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V1
V4
V5 V6
V7
V8
遍历序列: V1
17
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V2 V3
V4
V5 V6
V7
V8
遍历序列: V1 V2 V3
18
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
第7章图的深度和广度优先搜索遍历算法

和树的遍历类似,我们希望从图中某顶点出发对图中每个顶点访问一次,而且只访问 一次,这一过程称为图的遍历(traversing graph)。 本节介绍两种遍历图的规则:深度优先搜索和广度优先搜索。 这两种方法既适用于无向图,也适用于有向图。
7.3.1 深度优先搜索遍历 一.思路: 从图中某一点(如A)开始,先访问这一点,然后任选它的一个邻点(如V0) 访问,访问完该点后,再任选这个点V0的一个邻点 ( 如 W )访问,如此向 纵深方向访问。直到某个点没有其他未访问的邻点为止,则返回到前一个点。 再任选它的另一个未访问过的邻点 ( 如X )继续重复上述过程的访问,直到全 部点访问完为止。 图(a)的遍历的结果:V1V2V4V8V5V3V6V7 或V1V3V7V6V2V5V8V4
p
v0 w x v 1
V
0
v 2
V
0
typedef struct {VEXNODE adjlist[MAXLEN]; // 邻接链表表头向量 int vexnum, arcnum; // 顶点数和边数 int kind; // 图的类型 }ADJGRAPH;
W W
X
X
7.3.2 广度优先搜索遍历 一.思路:
V
0
A V
0
W W
XXΒιβλιοθήκη 二.深度优先搜索算法的文字描述: 算法中设一数组visited,表示顶点是否访问过的标志。数组长度为 图的顶点数,初值均置为0,表示顶点均未被访问,当Vi被访问过,即 将visitsd对应分量置为1。将该数组设为全局变量。 { 确定从G中某一顶点V0出发,访问V0; visited[V0] = 1; 找出G中V0的第一个邻接顶点->w; while (w存在) do { if visited[w] == 0 继续进行深度优先搜索; 找出G中V0的下一个邻接顶点->w;} }
深度优先遍历算法实现及复杂度分析

深度优先遍历算法实现及复杂度分析深度优先遍历算法(Depth First Search, DFS)是一种常用的图遍历算法,用于查找或遍历图的节点。
本文将介绍深度优先遍历算法的实现方法,并进行对应的复杂度分析。
一、算法实现深度优先遍历算法的基本思想是从图的某个节点出发,沿着深度方向依次访问其相邻节点,直到无法继续下去,然后返回上一层节点继续遍历。
下面是深度优先遍历算法的伪代码:```1. 初始化访问标记数组visited[],将所有节点的访问标记置为false。
2. 从某个节点v开始遍历:- 标记节点v为已访问(visited[v] = true)。
- 访问节点v的相邻节点:- 若相邻节点w未被访问,则递归调用深度优先遍历算法(DFS(w))。
3. 遍历结束,所有节点都已访问。
```二、复杂度分析1. 时间复杂度深度优先遍历算法的时间复杂度取决于图的存储方式和规模。
假设图的节点数为V,边数为E。
- 邻接表存储方式:对于每个节点,需要访问其相邻节点。
因此,算法的时间复杂度为O(V+E)。
- 邻接矩阵存储方式:需要检查每个节点与其他节点的连通关系,即需要遍历整个邻接矩阵。
因此,算法的时间复杂度为O(V^2)。
2. 空间复杂度深度优先遍历算法使用了一个辅助的访问标记数组visited[]来记录每个节点的访问状态。
假设图的节点数为V。
- 邻接表存储方式:访问标记数组visited[]的空间复杂度为O(V)。
- 邻接矩阵存储方式:访问标记数组visited[]的空间复杂度同样为O(V)。
综上所述,深度优先遍历算法的时间复杂度为O(V+E),空间复杂度为O(V)。
三、应用场景深度优先遍历算法在图的遍历和搜索问题中广泛应用。
以下是一些典型的应用场景:1. 连通性问题:判断图中两个节点之间是否存在路径。
2. 非连通图遍历:对于非连通图,深度优先遍历算法可以用于遍历所有连通分量。
3. 寻找路径:在图中寻找从起始节点到目标节点的路径。
层次遍历 深度遍历

层次遍历深度遍历
层次遍历和深度遍历是两种常用的树和图的遍历方式,它们在
计算机科学和算法中起着重要的作用。
首先我们来谈谈层次遍历。
层次遍历是一种广度优先的遍历方式,它从树的根节点开始,按照树的层次依次访问每个节点。
具体
来说,层次遍历是从根节点开始,先访问根节点,然后按照从左到
右的顺序依次访问根节点的子节点,再依次访问子节点的子节点,
以此类推,直到遍历完整棵树。
在层次遍历中,我们通常使用队列
来辅助实现,每次访问一个节点后,将其子节点按照顺序加入队列,然后再从队列中取出下一个节点进行访问,直到队列为空为止。
接下来是深度遍历。
深度遍历是一种深度优先的遍历方式,它
从树的根节点开始,沿着树的深度尽可能远地访问每个节点。
具体
来说,深度遍历是从根节点开始,先访问根节点,然后沿着其中一
个子节点一直向下访问,直到达到叶子节点,然后再返回到上一层
节点,继续访问其他子节点,以此类推,直到遍历完整棵树。
在深
度遍历中,我们通常使用递归或者栈来实现,递归的方式是比较直
观的,而使用栈的方式可以避免递归带来的性能开销。
总的来说,层次遍历和深度遍历都是常用的树和图的遍历方式,它们各自有着不同的特点和适用场景。
层次遍历适合于需要按层次
分析树或图结构的问题,而深度遍历适合于需要沿着深度探索树或
图结构的问题。
在实际应用中,根据具体问题的特点选择合适的遍
历方式是非常重要的。
深度遍历和广度遍历例题

深度遍历和广度遍历例题深度遍历(Depth First Search, DFS)和广度遍历(Breadth First Search, BFS)是图遍历的两种常用方法。
在本文中,将介绍深度遍历和广度遍历的定义、原理、应用以及两种方法的例题。
一、深度遍历(DFS)深度遍历使用堆栈(Stack)实现,其基本思想是先访问根节点,然后再递归地访问其相邻节点,直到所有节点都被访问。
深度遍历能够搜索到最深层次的节点,但可能会陷入死循环。
1. 深度遍历的应用场景:深度遍历常用于解决图的连通性问题、拓扑排序、求解图中的环等。
另外,也可以应用于解决迷宫问题、数独等。
2. 深度遍历的基本过程:(1)首先访问初始节点,并标记为已访问。
(2)递归地访问初始节点的相邻节点,对于每一个相邻节点,若未被访问,则进行递归访问。
(3)重复步骤(2),直到所有节点都被访问。
3. 深度遍历的例题:假设有以下有向图:A -> B,A -> C,B -> D,B -> E,C -> F,D -> G,E -> H,F -> G,G -> E,H -> E现在要求从节点A开始进行深度遍历,从A到E的路径请写出所有可能的路径。
答案:A -> B -> D -> G -> E,A -> B -> E,A -> C -> F -> G -> E,A -> C -> F -> G -> E,A -> B -> D -> G -> E -> H -> E,A -> C -> F -> G -> E -> H -> E二、广度遍历(BFS)广度遍历使用队列(Queue)实现,其基本思想是先访问根节点,然后再按照层次逐层访问其相邻节点,直到所有节点都被访问。
图的深度优先遍历详解

图的深度优先遍历详解图的深度优先遍历详解说明1. 深度优先遍历,即先向纵深处挖掘遍历,等这条路⾛不通再回溯2. 设置要开始遍历的第⼀个顶点,然后寻找该顶点的第⼀个邻接顶点,如果第⼀个邻接顶点存在,则从第⼀个邻接顶点⼜重新开始深度优先,寻找它的第⼀个邻接顶点,直到他们的第⼀个邻接顶点不存在或者第⼀个邻接顶点已经被访问,那么寻找它的下⼀个邻接顶点,直到寻找完所有的顶点3. 很明显需要使⽤递归4. 当没有通路的最后⼀个邻接顶点相连的所有顶点全部遍历完时,则回溯判断上⼀个顶点的下⼀个邻接顶点,直到遍历完然后再回溯5. 直到遍历完所有的顶点6. 说明:当当前顶点的第⼀个邻接顶点已经被访问过时,才遍历它的下⼀个邻接顶点7. 源码见下源码及分析深度优先核⼼代码//深度优先算法实现/*** @param isVisited 判断当前顶点是否已经遍历过* @param v 从遍历的当前顶点下标*/public void dfs(boolean[] isVisited, int v) {//先输出当前顶点信息System.out.print(getValueByIndex(v) + "-->");//将当前节点设置为已经访问过isVisited[v] = true;//获取当前节点的第⼀个节点int w = getFirstNeighbor(v);//如果当前顶点存在,则递归遍历while (w != -1) {//依旧需要判断当前顶点是否访问过if (!isVisited[w]) {dfs(isVisited, w);}//如果w节点已经被访问过w = getNextNeighbor(v, w);}}//对dfs进⾏重载,遍历所有的顶点public void dfs() {for (int i = 0; i < getNumOfVertex(); i++) {if (!isVisited[i]) {dfs(isVisited, i);}}}}深度优先遍历代码实现package algorithm.datastructor.graph;import java.util.ArrayList;import java.util.Arrays;/*** @author AIMX_INFO* @version 1.0*/public class Graph {//使⽤邻接矩阵表⽰图//使⽤集合存储图的顶点private ArrayList<String> vertexList;//使⽤⼆维数组即矩阵描述顶点之间的关系private int[][] edges;//边的个数private int numOfEdges;//定义变量判断是否访问过private boolean[] isVisited;//测试public static void main(String[] args) {int n = 5;String[] vertexs = {"A", "B", "C", "D", "E"};//创建图Graph graph = new Graph(n);//添加顶点for (String vertex : vertexs) {graph.insertVertex(vertex);}//连接顶点graph.insertEdge(0, 1, 1);graph.insertEdge(0, 2, 1);graph.insertEdge(1, 2, 1);graph.insertEdge(1, 3, 1);graph.insertEdge(1, 4, 1);//显⽰图graph.showGraph();System.out.println("深度优先遍历");graph.dfs();}//n为顶点的个数public Graph(int n) {edges = new int[n][n];vertexList = new ArrayList<>(n);numOfEdges = 0;isVisited = new boolean[n];}//插⼊顶点public void insertVertex(String vertex) {vertexList.add(vertex);}/*** 添加边** @param v1 顶点在集合中存储的下标* @param v2 顶点在集合中的下标* @param weight 两个顶点之间的权值,0或者1,表⽰是否相连 */public void insertEdge(int v1, int v2, int weight) {edges[v1][v2] = weight;edges[v2][v1] = weight;numOfEdges++;}//返回节点的个数public int getNumOfVertex() {return vertexList.size();}//返回边的个数public int getNumOfEdges() {return numOfEdges;}//返回下标 i 对应的数public String getValueByIndex(int i) {return vertexList.get(i);}//返回v1和v2的权值public int getWeigh(int v1, int v2) {return edges[v1][v2];}//显⽰矩阵public void showGraph() {for (int[] link : edges) {System.out.println(Arrays.toString(link));}}//获取与当前顶点连接的第⼀个邻接顶点public int getFirstNeighbor(int v) {for (int i = 0; i < vertexList.size(); i++) {if (edges[v][i] > 0) {return i;}}return -1;}//根据前⼀个邻接顶点获取下⼀个邻接节点的下标 /*** @param v1 当前顶点* @param v2 当前顶点的第⼀个顶点* @return 返回下⼀个邻接顶点*/public int getNextNeighbor(int v1, int v2) {for (int i = v2 + 1; i < vertexList.size(); i++) { if (edges[v1][i] > 0) {return i;}}return -1;}//深度优先算法实现/*** @param isVisited 判断当前顶点是否已经遍历过 * @param v 从遍历的当前顶点下标*/public void dfs(boolean[] isVisited, int v) {//先输出当前顶点信息System.out.print(getValueByIndex(v) + "-->"); //将当前节点设置为已经访问过isVisited[v] = true;//获取当前节点的第⼀个节点int w = getFirstNeighbor(v);//如果当前顶点存在,则递归遍历while (w != -1) {//依旧需要判断当前顶点是否访问过if (!isVisited[w]) {dfs(isVisited, w);}//如果w节点已经被访问过w = getNextNeighbor(v, w);}}//对dfs进⾏重载,遍历所有的顶点public void dfs() {for (int i = 0; i < getNumOfVertex(); i++) {if (!isVisited[i]) {dfs(isVisited, i);}}}}。
数据结构课设——有向图的深度、广度优先遍历及拓扑排序

数据结构课设——有向图的深度、⼴度优先遍历及拓扑排序任务:给定⼀个有向图,实现图的深度优先, ⼴度优先遍历算法,拓扑有序序列,并输出相关结果。
功能要求:输⼊图的基本信息,并建⽴图存储结构(有相应提⽰),输出遍历序列,然后进⾏拓扑排序,并测试该图是否为有向⽆环图,并输出拓扑序列。
按照惯例,先上代码,注释超详细:#include<stdio.h>#include<stdlib.h>#include<malloc.h>#pragma warning(disable:4996)#define Max 20//定义数组元素最⼤个数(顶点最⼤个数)typedef struct node//边表结点{int adjvex;//该边所指向结点对应的下标struct node* next;//该边所指向下⼀个结点的指针}eNode;typedef struct headnode//顶点表结点{int in;//顶点⼊度char vertex;//顶点数据eNode* firstedge;//指向第⼀条边的指针,边表头指针}hNode;typedef struct//邻接表(图){hNode adjlist[Max];//以数组的形式存储int n, e;//顶点数,边数}linkG;//以邻接表的存储结构创建图linkG* creat(linkG* g){int i, k;eNode* s;//边表结点int n1, e1;char ch;g = (linkG*)malloc(sizeof(linkG));//申请结点空间printf("请输⼊顶点数和边数:");scanf("%d%d", &n1, &e1);g->n = n1;g->e = e1;printf("顶点数:%d 边数:%d\n", g->n, g->e);printf("请输⼊顶点信息(字母):");getchar();//因为接下来要输⼊字符串,所以getchar⽤于承接上⼀条命令的结束符for (i = 0; i < n1; i++){scanf("%c", &ch);g->adjlist[i].vertex = ch;//获得该顶点数据g->adjlist[i].firstedge = NULL;//第⼀条边设为空}printf("\n打印顶点下标及顶点数据:\n");for (i = 0; i < g->n; i++)//循环打印顶点下标及顶点数据{printf("顶点下标:%d 顶点数据:%c\n", i, g->adjlist[i].vertex);}getchar();int i1, j1;//相连接的两个顶点序号for (k = 0; k < e1; k++)//建⽴边表{printf("请输⼊对<i,j>(空格分隔):");scanf("%d%d", &i1, &j1);s = (eNode*)malloc(sizeof(eNode));//申请边结点空间s->adjvex = j1;//边所指向结点的位置,下标为j1s->next = g->adjlist[i1].firstedge;//将当前s的指针指向当前顶点上指向的结点g->adjlist[i1].firstedge = s;//将当前顶点的指针指向s}return g;//返回指针g}int visited[Max];//标记是否访问void DFS(linkG* g, int i)//深度优先遍历{eNode* p;printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已访问过的顶点visited值改为1p = g->adjlist[i].firstedge;//p指向顶点i的第⼀条边while (p)//p不为NULL时(边存在){if (visited[p->adjvex] != 1)//如果没有被访问DFS(g, p->adjvex);//递归}p = p->next;//p指向下⼀个结点}}void DFSTravel(linkG* g)//遍历⾮连通图{int i;printf("深度优先遍历;\n");//printf("%d\n",g->n);for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问{DFS(g, i);//调⽤DFS函数}}}void BFS(linkG* g, int i)//⼴度优先遍历{int j;eNode* p;int q[Max], front = 0, rear = 0;//建⽴顺序队列⽤来存储,并初始化printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已经访问过的改成1rear = (rear + 1) % Max;//普通顺序队列的话,这⾥是rear++q[rear] = i;//当前顶点(下标)队尾进队while (front != rear)//队列⾮空{front = (front + 1) % Max;//循环队列,顶点出队j = q[front];p = g->adjlist[j].firstedge;//p指向出队顶点j的第⼀条边while (p != NULL){if (visited[p->adjvex] == 0)//如果未被访问{printf("%c ", g->adjlist[p->adjvex].vertex);visited[p->adjvex] = 1;//将该顶点标记数组值改为1rear = (rear + 1) % Max;//循环队列q[rear] = p->adjvex;//该顶点进队}p = p->next;//指向下⼀个结点}}}void BFSTravel(linkG* g)//遍历⾮连通图{int i;printf("⼴度优先遍历:\n");for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问过{BFS(g, i);//调⽤BFS函数}}}//因为拓扑排序要求⼊度为0,所以需要先求出每个顶点的⼊度void inDegree(linkG* g)//求图顶点⼊度{eNode* p;int i;for (i = 0; i < g->n; i++)//循环将顶点⼊度初始化为0{g->adjlist[i].in = 0;}for (i = 0; i < g->n; i++)//循环每个顶点{p = g->adjlist[i].firstedge;//获取第i个链表第1个边结点指针while (p != NULL)///当p不为空(边存在){g->adjlist[p->adjvex].in++;//该边终点结点⼊度+1p = p->next;//p指向下⼀个边结点}printf("顶点%c的⼊度为:%d\n", g->adjlist[i].vertex, g->adjlist[i].in);}void topo_sort(linkG *g)//拓扑排序{eNode* p;int i, k, gettop;int top = 0;//⽤于栈指针的下标索引int count = 0;//⽤于统计输出顶点的个数int* stack=(int *)malloc(g->n*sizeof(int));//⽤于存储⼊度为0的顶点for (i=0;i<g->n;i++)//第⼀次搜索⼊度为0的顶点{if (g->adjlist[i].in==0){stack[++top] = i;//将⼊度为0的顶点进栈}}while (top!=0)//当栈不为空时{gettop = stack[top--];//出栈,并保存栈顶元素(下标)printf("%c ",g->adjlist[gettop].vertex);count++;//统计顶点//接下来是将邻接点的⼊度减⼀,并判断该点⼊度是否为0p = g->adjlist[gettop].firstedge;//p指向该顶点的第⼀条边的指针while (p)//当p不为空时{k = p->adjvex;//相连接的顶点(下标)g->adjlist[k].in--;//该顶点⼊度减⼀if (g->adjlist[k].in==0){stack[++top] = k;//如果⼊度为0,则进栈}p = p->next;//指向下⼀条边}}if (count<g->n)//如果输出的顶点数少于总顶点数,则表⽰有环{printf("\n有回路!\n");}free(stack);//释放空间}void menu()//菜单{system("cls");//清屏函数printf("************************************************\n");printf("* 1.建⽴图 *\n");printf("* 2.深度优先遍历 *\n");printf("* 3.⼴度优先遍历 *\n");printf("* 4.求出顶点⼊度 *\n");printf("* 5.拓扑排序 *\n");printf("* 6.退出 *\n");printf("************************************************\n");}int main(){linkG* g = NULL;int c;while (1){menu();printf("请选择:");scanf("%d", &c);switch (c){case1:g = creat(g); system("pause");break;case2:DFSTravel(g); system("pause");break;case3:BFSTravel(g); system("pause");break;case4:inDegree(g); system("pause");break;case5:topo_sort(g); system("pause");break;case6:exit(0);break;}}return0;}实验⽤图:运⾏结果:关于深度优先遍历 a.从图中某个顶点v 出发,访问v 。
图的遍历实验报告

图的遍历实验报告图的遍历实验报告一、引言图是一种常见的数据结构,广泛应用于计算机科学和其他领域。
图的遍历是指按照一定规则访问图中的所有节点。
本实验通过实际操作,探索了图的遍历算法的原理和应用。
二、实验目的1. 理解图的遍历算法的原理;2. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)两种常用的图遍历算法;3. 通过实验验证图的遍历算法的正确性和效率。
三、实验过程1. 实验环境准备:在计算机上安装好图的遍历算法的实现环境,如Python编程环境;2. 实验数据准备:选择合适的图数据进行实验,包括图的节点和边的信息;3. 实验步骤:a. 根据实验数据,构建图的数据结构;b. 实现深度优先搜索算法;c. 实现广度优先搜索算法;d. 分别运行深度优先搜索和广度优先搜索算法,并记录遍历的结果;e. 比较两种算法的结果,分析其异同点;f. 对比算法的时间复杂度和空间复杂度,评估其性能。
四、实验结果与分析1. 实验结果:根据实验数据和算法实现,得到了深度优先搜索和广度优先搜索的遍历结果;2. 分析结果:a. 深度优先搜索:从起始节点出发,一直沿着深度方向遍历,直到无法继续深入为止。
该算法在遍历过程中可能产生较长的路径,但可以更快地找到目标节点,适用于解决一些路径搜索问题。
b. 广度优先搜索:从起始节点出发,按照层次顺序逐层遍历,直到遍历完所有节点。
该算法可以保证找到最短路径,但在遍历大规模图时可能需要较大的时间和空间开销。
五、实验总结1. 通过本次实验,我们深入理解了图的遍历算法的原理和应用;2. 掌握了深度优先搜索和广度优先搜索两种常用的图遍历算法;3. 通过实验验证了算法的正确性和效率;4. 在实际应用中,我们需要根据具体问题的需求选择合适的遍历算法,权衡时间复杂度和空间复杂度;5. 进一步研究和优化图的遍历算法,可以提高算法的性能和应用范围。
六、参考文献[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.[2] Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley Professional.。