2.4.1正态分布
高中数学必修2-3第二章2.4正态分布

2.4 正态分布1.问题导航(1)什么是正态曲线和正态分布?(2)正态曲线有什么特点?曲线所表示的意义是什么? (3)怎样求随机变量在某一区间范围内的概率? 2.例题导读请试做教材P 74练习1题.1.正态曲线函数φμ,σ(x )=12πσe -(x -μ)22σ2,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,φμ,σ(x )的图象为__________________正态分布密度曲线,简称正态曲线.2.正态分布一般地,如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛ab φμ,σ(x)d x ,则称随机变量X 服从正态分布.正态分布完全由参数________μ和________σ确定,因此正态分布常记作____________N(μ,σ2),如果随机变量X 服从正态分布,则记为________X ~N (μ,σ2).3.正态曲线的性质正态曲线φμ,σ(x)=12πσe -(x -μ)22σ2,x ∈R 有以下性质:(1)曲线位于x 轴________上方,与x 轴________不相交;(2)曲线是单峰的,它关于直线________x =μ对称;(3)曲线在________x =μ处达到峰值________1σ2π;(4)曲线与x 轴之间的面积为________1;(5)当________σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图①;(6)当μ一定时,曲线的形状由σ确定,σ________越小,曲线越“瘦高”,表示总体的分布越集中;σ________越大,曲线越“矮胖”,表示总体的分布越分散,如图②.4.正态总体在三个特殊区间内取值的概率值P (μ-σ<X ≤μ+σ)=________0.682_________6; P (μ-2σ<X ≤μ+2σ)=________0.954_________4; P (μ-3σ<X ≤μ+3σ)=________0.997_________4.1.判断(对的打“√”,错的打“×”)(1)函数φμ,σ(x )中参数μ,σ的意义分别是样本的均值与方差.( )(2)正态曲线是单峰的,其与x 轴围成的面积是随参数μ,σ的变化而变化的.( ) (3)正态曲线可以关于y 轴对称.( ) 答案:(1)× (2)× (3)√2.设随机变量X ~N (μ,σ2),且P (X ≤C )=P (X >C ),则C =( ) A .0 B .σ C .-μ D .μ 答案:D3.已知随机变量X 服从正态分布N (3,σ2),则P (X <3)=( ) A.15 B.14 C.13 D.12答案:D4.已知正态分布密度函数为f (x )=12πe -x 24π,x ∈(-∞,+∞),则该正态分布的均值为________,标准差为________.答案:02π正态分布的再认识(1)参数μ是反映随机变量取值的平均水平的特征数,可以用样本的均值去估计;σ是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.μ=0,σ=1的正态分布叫做标准正态分布.(2)正态分布定义中的式子实际是指随机变量X 的取值区间在(a ,b ]上的概率等于总体密度函数在[a ,b ]上的定积分值.(3)从正态曲线可以看出,对于固定的μ而言,随机变量在(μ-σ,μ+σ)上取值的概率随着σ的减小而增大.这说明σ越小,X 取值落在区间(μ-σ,μ+σ)的概率越大,即X 集中在μ周围的概率越大.对于固定的μ和σ,随机变量X 取值区间越大,所对应的概率就越大,即3σ原则.正态分布密度曲线如图是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机变量的均值和方差.[解] 从正态曲线可知,该正态曲线关于直线x =20对称,最大值为12π,所以μ=20,12πσ=12π,∴σ= 2.于是φμ,σ(x )=12π·e -(x -20)24,x ∈(-∞,+∞),总体随机变量的期望是μ=20,方差是σ2=(2)2=2.利用图象求正态密度函数的解析式,应抓住图象的实质,主要有两点:一是对称轴x =μ,另一是最值1σ2π,这两点确定以后,相应参数μ,σ便确定了,代入便可求出相应的1.若一个正态分布的概率密度函数是一个偶函数,且该函数的最大值为142π .求该正态分布的概率密度函数的解析式.解:由于该正态分布的概率密度函数是一个偶函数,所以其图象关于y 轴对称,即μ=0.由于12πσ=12π·4,得σ=4,故该正态分布的概率密度函数的解析式是φμ,σ(x )=142πe -x 232,x ∈(-∞,+∞).求正态分布下的概率设X ~N (1,22),试求:(1)P (-1<X ≤3);(2)P (3<X ≤5).[解] 因为X ~N (1,22),所以μ=1,σ=2. (1)P (-1<X ≤3)=P (1-2<X ≤1+2) =P (μ-σ<X ≤μ+σ)=0.682 6.(2)因为P (3<X ≤5)=P (-3≤X <-1), 所以P (3<X ≤5)=12[P (-3<X ≤5)-P (-1<X ≤3)] =12[P (1-4<X ≤1+4)-P (1-2<X ≤1+2)] =12[P (μ-2σ<X ≤μ+2σ)-P (μ-σ<X ≤μ+σ)] =12(0.954 4-0.682 6)=0.135 9. [互动探究] 在本例条件下,试求P (X ≥5). 解:因为P (X ≥5)=P (X ≤-3), 所以P (X ≥5)=12[1-P (-3<X ≤5)]=12[1-P (1-4<X ≤1+4)] =12[1-P (μ-2σ<X ≤μ+2σ)] =12(1-0.954 4)=0.022 8.(1)求解本类问题的解题思路是充分利用正态曲线的对称性,把待求区间的概率转化到已知区间的概率.这一转化过程中体现了数形结合思想及转化化归思想的应用.(2)常用结论有①对任意的a ,有P (X <μ-a )=P (X >μ+a ); ②P (X <x 0)=1-P (X ≥x 0);③P (a <X <b )=P (X <b )-P (X ≤a ).2.(1)(2015·高考山东卷)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74%解析:选B.由正态分布的概率公式知P (-3<ξ<3)=0.682 6,P (-6<ξ<6)=0.954 4,故P (3<ξ<6)=P (-6<ξ<6)-P (-3<ξ<3)2=0.954 4-0.682 62=0.135 9=13.59%,故选B.(2)设随机变量X ~N (4,σ2),且P (4<X <8)=0.3,则P (X <0)=________.解析:概率密度曲线关于直线x=4对称,在4右边的概率为0.5,在0左边的概率等于在8右边的概率,即0.5-0.3=0.2.答案:0.2(3)设随机变量X~N(2,9),若P(X>c+1)=P(X<c-1).①求c的值;②求P(-4<X<8).解:①由X~N(2,9)可知,密度函数曲线关于直线x=2对称(如图所示),又P(X>c+1)=P(X<c-1),故有2-(c-1)=(c+1)-2,∴c=2.②P(-4<X<8)=P(2-2×3<X<2+2×3)=0.954 4.正态分布的实际应用某年级的一次信息技术测验成绩近似服从正态分布N(70,102),如果规定低于60分的学生为不及格学生.(1)成绩不及格的人数占多少?(2)成绩在80~90之间的学生占多少?[解](1)设学生的得分情况为随机变量X,则X~N(70,102),其中μ=70,σ=10.在60到80之间的学生占的比为P(70-10<X≤70+10)=0.682 6=68.26%,∴不及格的学生所占的比为12×(1-0.682 6)=0.158 7=15.87%.(2)成绩在80到90之间的学生所占的比为12×[P(70-2×10<X≤70+2×10)-P(70-10<X≤70+10)]=12×(0.954 4-0.682 6)=13.59%.正态曲线的应用及求解策略:解答此类题目的关键在于将待求的问题向(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)这三个区间进行转化,然后利用上述区间的概率求出相应概率,在此过程中依然会用到化归思想及数形结合思想.3.(2015·杭州质检)某人从某城市的南郊乘公交车前往北区火车站,由于交通拥挤,所需时间X(单位:分)近似服从正态分布X~N(50,102),求他在(30,60]分内赶到火车站的概率.解:∵X~N(50,102),∴μ=50,σ=10.∴P (30<X ≤60)=P (30<X ≤50)+P (50<X ≤60) =12P (μ-2σ<X ≤μ+2σ)+12P (μ-σ<X ≤μ+σ) =12×0.954 4+12×0.682 6=0.818 5. 即他在(30,60]分内赶到火车站的概率是0.818 5.已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.682 6,则P (X >4)=( ) A .0.158 8 B .0.158 7 C .0.158 6 D .0.158 5[解析] 由于X 服从正态分布N (3,1),故正态分布曲线的对称轴为x =3. 所以P (X >4)=P (X <2),故P (X >4)=1-P (2≤X ≤4)2=1-0.682 62=0.158 7.[答案] B[感悟提高] 化归与转化思想是中学数学思想中的重要思想之一,在解决正态分布的应用问题时,化归与转化思想起着不可忽视的作用.本小题考查正态分布的有关知识,求解时应根据P (X >4)+P (X <2)+P (2≤X ≤4)=1将问题转化.1.设有一正态总体,它的概率密度曲线是函数f (x )的图象,且f (x )=φμ,σ(x )=18πe -(x -10)28,则这个正态总体的均值与标准差分别是( ) A .10与8 B .10与2 C .8与10 D .2与10解析:选B.由正态密度函数的定义可知,总体的均值μ=10,方差σ2=4,即σ=2. 2.(2015·高考湖南卷)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )A .2 386B .2 718C .3 413D .4 772 附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 6, P (μ-2σ<X ≤μ+2σ)=0.954 4. 解析:选C.由P (-1<X ≤1)=0.682 6,得P (0<X ≤1)=0.341 3,则阴影部分的面积为0.3413,故估计落入阴影部分的点的个数为10 000×0.341 31×1=3 413,故选C.3.在某项测量中,测量结果X 服从正态分布N (1,σ2)(σ>0).若X 在(0,1)内取值的概率为0.4,则X 在(0,2)内取值的概率为________.解析:如图,易得P (0<X <1)=P (1<X <2), 故P (0<X <2)=2P (0<X <1)=2×0.4=0.8.答案:0.84.设X ~N (5,1),求P (6<X ≤7). 解:由已知得P (4<X ≤6)=0.682 6, P (3<X ≤7)=0.954 4.又∵正态曲线关于直线x =5对称,∴P (3<X ≤4)+P (6<X ≤7)=0.954 4-0.682 6 =0.271 8.由对称性知P (3<X ≤4)=P (6<X ≤7), 所以P (6<X ≤7)=0.271 82=0.135 9.[A.基础达标]1.设随机变量ξ~N (2,2),则D (12ξ)=( )A .1B .2 C.12D .4解析:选C.∵ξ~N (2,2),∴D (ξ)=2.∴D (12ξ)=122D (ξ)=14×2=12.2.下列函数是正态密度函数的是( )A .f (x )=12σπe (x -μ)22σ2,μ,σ(σ>0)都是实数B .f (x )=2π2πe -x 22C .f (x )=122πe -(x -1)24D .f (x )=12πe x 22解析:选B.对于A :函数的系数部分的二次根式包含σ,而且指数部分的符号是正的,故A 错误;对于B :符合正态密度函数的解析式,其中σ=1,μ=0,故B 正确;对于C :从系数部分看σ=2,可是从指数部分看σ=2,故C 不正确;对于D :指数部分缺少一个负号,故D 不正确.3.(2015·高考湖北卷)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≥t )≥P (Y ≥t )D .对任意正数t ,P (X ≤t )≥P (Y ≤t )解析:选D.由图象知,μ1<μ2,σ1<σ2,P (Y ≥μ2)=12,P (Y ≥μ1)>12,故P (Y ≥μ2)<P (Y ≥μ1),故A 错;因为σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),故B 错; 对任意正数t ,P (X ≥t )<P (Y ≥t ),故C 错;对任意正数t ,P (X ≤t )≥P (Y ≤t )是正确的,故选D.4.已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=0.8,则P (0<ξ<2)=( ) A .0.6 B .0.4 C .0.3 D .0.2解析:选C.如图,正态分布的密度函数图象关于直线x =2对称,所以P (ξ<2)=0.5,并且P (0<ξ<2)=P (2<ξ<4),则P (0<ξ<2)=P (ξ<4)-P (ξ<2)=0.8-0.5=0.3.5.设随机变量ξ服从正态分布N (μ,σ2),函数f (x )=x 2+4x +ξ没有零点的概率是12,则μ=( )A .1B .4C .2D .不能确定解析:选B.根据题意,函数f (x )=x 2+4x +ξ没有零点时,Δ=16-4ξ<0,即ξ>4,根据正态分布密度曲线的对称性,当函数f (x )=x 2+4x +ξ没有零点的概率是12时,μ=4.6.如果ξ~N (μ,σ2),且P (ξ>3)=P (ξ<1)成立,则μ=________.解析:∵ξ~N (μ,σ2),故概率密度函数关于直线x =μ对称,又P (ξ<1)=P (ξ>3),从而μ=1+32=2,即μ的值为2.答案:27.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(2,+∞)上取值的概率为________.解析:由正态分布的特征易得P (ξ>2)=12×[1-2P (0<ξ<1)]=12×(1-0.8)=0.1.答案:0.18.为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X (kg)服从正态分布N (μ,22),且正态分布密度曲线如图所示,若体重大于58.5 kg 小于等于62.5 kg 属于正常情况,则这1 000名男生中属于正常情况的人数约为________.解析:依题意可知,μ=60.5,σ=2,故P (58.5<X ≤62.5)=P (μ-σ<X ≤μ+σ)=0.682 6,从而属于正常情况的人数为1 000×0.682 6≈683.答案:683 9.(2015·苏州高二检测)某个工厂的工人月收入服从正态分布N (2 500,202),该工厂共有1 200名工人,试估计月收入在2 440元以下和2 560元以上的工人大约有多少人?解:设该工厂工人的月收入为ξ,则ξ~N (2 500,202), 所以μ=2 500,σ=20,所以月收入在区间(2 500-3×20,2 500+3×20)内取值的概率是0.997 4,该区间即(2 440,2 560).因此月收入在 2 440元以下和 2 560元以上的工人大约有 1 200×(1-0.997 4)=1 200×0.002 6≈3(人).10.(2015·漳州高二检测)某城市从南郊某地乘公共汽车前往北区火车站有两条路线可走,第一条路线穿过市区,路线较短,但交通拥挤,所需时间(单位为分)服从正态分布N (50,102);第二条路线沿环城公路走,路程较长,但交通阻塞少,所需时间服从正态分布N (60,42).(1)若只有70分钟可用,问应走哪条路线? (2)若只有65分钟可用,又应走哪条路线?解:由已知X ~N (50,102),Y ~N (60,42).由正态分布的2σ区间性质P (μ-2σ<ξ≤μ+2σ)=0.954 4.然后解决问题的关键是:根据上述性质得到如下结果:对X :μ=50;σ=10,2σ区间为(30,70), 对Y :μ=60;σ=4,2σ区间为(52,68),要尽量保证用时在X ⊆(30,70),Y ⊆(52,68)才能保证有95%以上的概率准时到达. (1)时间只有70分钟可用,应该走第二条路线.(2)时间只有65分钟可用,两种方案都能保证有95%以上的概率准时到达,但是走市区平均用时比路线二少了10分钟,应该走第一条路线.[B.能力提升]1.设随机变量X ~N (μ,σ2),则随着σ的增大,P (|X -μ|<3σ)将会( ) A .单调增加 B .单调减少 C .保持不变 D .增减不定解析:选C.对于服从正态分布的随机变量X ,不论μ,σ怎么变化,P (|X -μ|<3σ)总等于0.997 4.2.设正态总体落在区间(-∞,-1)和区间(3,+∞)的概率相等,落在区间(-2,4)内的概率为99.7%,则该正态总体对应的正态曲线的最高点的坐标为( )A .(1,12π) B .(1,2) C .(12π,1) D .(1,1)解析:选A.正态总体落在区间(-∞,-1)和(3,+∞)的概率相等,说明正态曲线关于x =1对称,所以μ=1.又在区间(-2,4)内的概率为99.7%, ∴1-3σ=-2,1+3σ=4,∴σ=1.∴f (x )=12πe -(x -1)22,x ∈R ,∴最高点的坐标为⎝ ⎛⎭⎪⎫1,12π. 3.设随机变量ξ服从正态分布N (0,1),则下列结论正确的是________.①P (|ξ|<a )=P (ξ<a )+P (ξ>-a )(a >0); ②P (|ξ|<a )=2P (ξ<a )-1(a >0); ③P (|ξ|<a )=1-2P (ξ<a )(a >0); ④P (|ξ|<a )=1-P (|ξ|>a )(a >0).解析:因为P (|ξ|<a )=P (-a <ξ<a ),所以①不正确;因为P (|ξ|<a )=P (-a <ξ<a )=P (ξ<a )-P (ξ<-a )=P (ξ<a )-P (ξ>a )=P (ξ<a )-(1-P (ξ<a ))=2P (ξ<a )-1,所以②正确,③不正确;因为P (|ξ|<a )+P (|ξ|>a )=1,所以P (|ξ|<a )=1-P (|ξ|>a )(a >0),所以④正确. 答案:②④4.设随机变量X ~N (1,22),则Y =3X -1服从的总体分布可记为________. 解析:因为X ~N (1,22),所以μ=1,σ=2. 又Y =3X -1,所以E (Y )=3E (X )-1=3μ-1=2, D (Y )=9D (X )=62, 所以Y ~N (2,62). 答案:Y ~N (2,62) 5.(2014·高考课标全国卷Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2.①利用该正态分布,求P(187.8<Z<212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用①的结果,求E(X).附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.解:(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.682 6.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X~B(100,0.682 6),所以E(X)=100×0.682 6=68.26.6.请仔细阅读下面这段文字,然后解决后面的问题.在实际生活中,常用统计中假设检验的思想检验产品是否合格,方法是:(1)提出统计假设:某种指标服从正态分布N(μ,σ2);(2)确定一次试验中的取值a;(3)作出统计推断:若a∈(μ-3σ,μ+3σ),则接受假设,若a∉(μ-3σ,μ+3σ),则拒绝假设.问题:某砖瓦厂生产的砖的“抗断强度”ξ服从正态分布N(30,0.82),质检人员从该厂某一天生产的1 000块砖中随机抽查一块,测得它的抗断强度为27.5 kg/cm2,你认为该厂这天生产的这批砖是否合格?为什么?解:由于在一次试验中ξ落在区间(μ-3σ,μ+3σ)上的概率为0.997,故ξ几乎必然落在上述区间内.把μ=30,σ=0.8代入,得区间(μ-3σ,μ+3σ)=(27.6,32.4),而27.5∉(27.6,32.4),∴据此认为这批砖不合格.。
人教版数学高二-《正态分布》精品课件 新课标

• [题后感悟] 解答此类题目的关键在于将待求 的问题向(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ -3σ,μ+3σ)这三个区间进行转化,然后利用 上述区间的概率求出相应概率,在此过程中依 然会用到化归思想及数形结合思想.
高中数学
• 3.设在一次数学考试中,某班学生的分数服 从X~N(110,202),且知满分150分,这个班 的学生共54人.求这个班在这次数学考试 中及格(不小于90分)的人数和130分以上的 人数.
高中数学
• A.三科总体的标准差及平均数都相同 • B.甲、乙、丙三科的总体的平均数不相同 • C.丙科总体的平均数最小 • D.甲科总体的标准差最小 • 解析: 由题图可得,甲、乙、丙三科的平均
分一样,但它们的标准差大小不同,σ甲<σ乙 <σ丙. • 答案: D
高中数学
(2011湖北高考)已知随机变量ξ服从 正态分布N(2,σ2),且P(ξ<4)=0.8,则 P(0<ξ<2)=( )
(3)曲线在 x=μ
处达到峰值 1 ; σ 2π
高中数学
1
σ
μ
• (4)曲线与x轴之间的面积为 • (5)当 越一大定时,曲线随着
沿x轴平移,如图①;
;
越小
的变化而
• (6)当μ一定时,曲线的形状由σ确定,σ ,曲线越“瘦高”;σ , 曲 线 越
“.正态总体在三个特殊区间内取值的概率值 • P(μ-σ<X≤μ+σ)= 0. ;682 6 • P(μ-2σ<X≤μ+2σ)= 0.954 4 ; • P(μ-3σ<X≤μ+3σ)= 0.997 4 .
越大,曲线越“矮胖”,表示总体越分散;σ 越小,曲线越“高瘦”,表示总体的分布越集 中,这个性质可直接判断.由正态曲线性质知 μ1<μ2,σ1<σ2. • 答案: A
人教B版选修2-3高中数学2.4《正态分布》ppt课件1

单侧95%正常值范围: X 1.64S (上限)
X 1.64S (下限)
12
2. 百分位数法
双侧95%正常值范围: P2.5~P97.5 单侧95%正常值范围: < P95(上限)
或 > P5(下限) 适用于偏态分布资料
13
第三节 计数资料的统计描述
一、计数资料的数据整理 二、常用相对数指标 三、应用注意事项
如:治愈率、病死率、阳性率、人群患病率等
17
2.构成比(proportion):
说明某一事物内部,各组成部分所占的 比重。也叫百分比。
构成比=(某部分观察单位数/各组成部分 观察单位总数)×100%
如:教研室16人高级职称有4人,占 25%;中级职称有8人,占50%;初级 职称有4人,占25%。
18
正态曲线(normal curve)
2
二、正态曲线( normal curve )
f(X)
图形特点:
1. 钟型 2. 中间高 3. 两头低 4. 左右对称 5. 最高处对应
于X轴的值 就是均数
X 6. 曲线下面积 为1
7. 标准差决定 曲线的形状
3
N (1,0.82 )
0.6 f (X )
0.5
22
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
① 根据课堂提问抓住老师的思路。老师在讲课过程中往往会提出一些问题,有的要求回答,有的则是自问自答。一般来说,老师在课堂上提出的 问题都是学习中的关键,若能抓住老师提出的问题深入思考,就可以抓住老师的思路。
正态分布讲解(含标准表)

2.4正态分布复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线b 单位O 频率/组距a它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:22()2,1(),(,)2x x e x μσμσϕπσ--=∈-∞+∞ 式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσϕ的图象为正态分布密度曲线,简称正态曲线.讲解新课:一般地,如果对于任何实数a b <,随机变量X 满足,()()b aP a X B x dx μσϕ<≤=⎰, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN .经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位.说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布.2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书中没有做要求,教师也不必补上 讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质4.正态曲线的性质:(1)曲线在x 轴的上方,与x 轴不相交(2)曲线关于直线x=μ对称(3)当x=μ时,曲线位于最高点(4)当x <μ时,曲线上升(增函数);当x >μ时,曲线下降(减函数) 并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学5.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x e x f -=π,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题讲解范例:例1.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ (1)),(,21)(22+∞-∞∈=-x e x f x π(2)),(,221)(8)1(2+∞-∞∈=--x e x f x π (3)22(1)2(),(,)2x f x e x π-+=∈-∞+∞ 答案:(1)0,1;(2)1,2;(3)-1,0.5例2求标准正态总体在(-1,2)内取值的概率.解:利用等式)()(12x x p Φ-Φ=有)([]}{11)2()1()2(--Φ--Φ=-Φ-Φ=p=1)1()2(-Φ+Φ=0.9772+0.8413-1=0.8151.1.标准正态总体的概率问题: xy对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率,即 )()(00x x P x <=Φ, 其中00>x ,图中阴影部分的面积表示为概率0()P x x < 只要有标准正态分布表即可查表解决.从图中不难发现:当00<x 时,)(1)(00x x -Φ-=Φ;而当00=x 时,Φ(0)=0.5 2.标准正态分布表标准正态总体)1,0(N 在正态总体的研究中有非常重要的地位,为此专门制作了“标准正态分布表”.在这个表中,对应于0x 的值)(0x Φ是指总体取值小于0x 的概率,即)()(00x x P x <=Φ,)0(0≥x .若00<x ,则)(1)(00x x -Φ-=Φ.利用标准正态分布表,可以求出标准正态总体在任意区间),(21x x 内取值的概率,即直线1x x =,2x x =与正态曲线、x 轴所围成的曲边梯形的面积1221()()()P x x x x x <<=Φ-Φ. 3.非标准正态总体在某区间内取值的概率:可以通过)()(σμ-Φ=x x F 转化成标准正态总体,然后查标准正态分布表即可 在这里重点掌握如何转化 首先要掌握正态总体的均值和标准差,然后进行相应的转化4.小概率事件的含义发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析假设检验方法的操作程序,即“三步曲”一是提出统计假设,教科书中的统计假设总体是正态总体;二是确定一次试验中的a 值是否落入(μ-3σ,μ+3σ);三是作出判断讲解范例:例1. 若x ~N (0,1),求(l)P (-2.32<x <1.2);(2)P (x >2).解:(1)P (-2.32<x <1.2)=Φ(1.2)-Φ(-2.32)=Φ(1.2)-[1-Φ(2.32)]=0.8849-(1-0.9898)=0.8747.(2)P (x >2)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228.例2.利用标准正态分布表,求标准正态总体在下面区间取值的概率:(1)在N(1,4)下,求)3(F(2)在N (μ,σ2)下,求F(μ-σ,μ+σ);F(μ-1.84σ,μ+1.84σ);F(μ-2σ,μ+2σ);F(μ-3σ,μ+3σ) 解:(1))3(F =)213(-Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σμσμ-+Φ=Φ(1)=0.8413 F(μ-σ)=)(σμσμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826F(μ-1.84σ,μ+1.84σ)=F(μ+1.84σ)-F(μ-1.84σ)=0.9342F(μ-2σ,μ+2σ)=F(μ+2σ)-F(μ-2σ)=0.954F(μ-3σ,μ+3σ)=F(μ+3σ)-F(μ-3σ)=0.997对于正态总体),(2σμN 取值的概率:68.3%2σx 95.4%4σx 99.7%6σx在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为68.3%、95.4%、99.7% 因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分 例3.某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π21,求总体落入区间(-1.2,0.2)之间的概率解:正态分布的概率密度函数是),(,21)(222)(+∞-∞∈=--x e x f x σμσπ,它是偶函数,说明μ=0,)(x f 的最大值为)(μf =σπ21,所以σ=1,这个正态分布就是标准正态分布( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 教学反思:1.在实际遇到的许多随机现象都服从或近似服从正态分布 在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布 但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口 正态分布在统计学中是最基本、最重要的一种分布 2.正态分布是可以用函数形式来表述的 其密度函数可写成:22()21(),(,)2x f x e x μσπσ--=∈-∞+∞, (σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的 常把它记为),(2σμN 3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值 从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x 轴,但永不与x 轴相交,因此说曲线在正负两个方向都是以x 轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征。
人教版高中数学第二章2.4正态分布

归纳升华
解答此类题目的关键在于将待求的问题向(μ-σ,μ +σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)这三个区间进行
转化,然后利用上述区间的概率求出相应概率,在此过程 中依然会用到化归思想及数形结合思想.
[变式训练] 某年级的一次信息技术测验成绩近似 服从正态分布 N(70,102),如果规定低于 60 分为不及格, 求:
归纳升华 1.充分利用正态曲线的对称性和曲线与 x 轴之间面积 为 1. 2.熟记 P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ), P(μ-3σ<X≤μ+3σ)的值.
3.注意概率值的求解转化:
(1)P(X<a)=1-P(X≥a);
(2)P(X<μ-a)=P(X≥μ+a);
1-P(μ-b<X<μ+b)
得 σ=4.
故该正态分布的概率密度函数是 φμ,σ(x)=4 12πe- 3x22 ,
x∈(-∞,+∞). 答案:φμ,σ(x)=4 12πe-x322,x∈(-∞,+∞)
类型 2 利用正态曲线的对称性求概率
[典例 2] 在一次测试中,测量结果 X 服从正态分布 N(2,σ 2)(σ>0),若 X 在(0,2)内取值的概率为 0.2,求:
解答。听课时关键应该弄清楚老师讲解问题的思路。
三、听问题。
对于自己预习中不懂的内容,上课时要重点把握。在听讲中要特别注意老师和课本中是怎么解释的。如果老师在讲课中一带而过,并没有详细解答, 大家要及时地把它们记下来,下课再向老师请教。
四、听方法。
在课堂上不仅要听老师讲课的结论而且要认真关注老师分析、解决问题的方法。比如上语文课学习汉字,一般都是遵循着“形”、“音”、“义”
高中数学 2.4正态分布课件 新人教A版选修23(1)

• 5.某班有50名学生,一次考试的数学成绩ξ服从正态分布 N(100,102),已知P(90≤ξ≤100)=0.3,估计该班学生数学成 绩在110分以上的人数为________.
• [答案] 10
[解析] 由 ξ~N(100,102)知,μ=100,σ=10, 又 P(90≤ξ≤100)=0.3, ∴P(ξ>110)=P(ξ<90)=1-P90≤2 ξ≤110 =1-2P902≤ξ≤100=1-22×0.3=0.2. ∴该班学生成绩在 110 分以上的人数为 0.2×50=10 人.
正态分布
新知导学
1.称函数
φμ,σ(x)=
1 2πσ
e-x-2σμ2 2,x∈(-∞,+∞)的
图象为__正__态__分__布__密__度__曲__线__,简称_正__态__曲__线___,其中 μ 和 σ(σ>0)
为参数.
2.一般地,如果对于任意实数 a<b,随机变量 X 满足
bφμ,σ(x)dx P(a<xLeabharlann b)=__a ________,则称
[解析] ∵ξ~N(1,14),∴E(ξ)=1, ∴E(η)=6E(ξ)=6.
3.(2015·潍坊市五县高二期中)设随机变量 ξ 服从正态分布
N(4,5),若 P(ξ<2a-3)=P(ξ>a+2),则 a 的值等于( )
A.73
B.53
C.5
D.3
• [答案] D
[解析] 已知 ξ~N(4,5),所以 μ=4, 又因为 P(ξ<2a-3)=P(ξ>a+2), 所以2a-32+a+2=4,解得 a=3.
B.0.1587
• C.0.1586
D.0.1585
正态分布

(1)曲线在x轴的上方,与x轴不相交.
(2)曲线是单峰的,它关于直线x=μ对称.
(3)曲线在x=μ处达到峰值(最高点)
σ
1 2π
(4)曲线与x轴之间的面积为1
方差相等、均数不等的正态分布图示
σ=0.5
μ=0 μ= -1
μ= 1Βιβλιοθήκη 若 固定,随值的变化而
沿x轴平
移, 故
称为位置
参数;
3 1 2
均数相等、方差不等的正态分布图示
b
P(a X b) a , (x)dx
2.正态分布的定义:
如果对于任何实数 a<b,随机变量X满足:
b
P(a X b) a , (x)dx
则称为X 的正态分布. 正态分布由参数μ、σ唯一确定. 正态分布记作N( μ,σ2).其图象称为正态曲线.
如果随机变量X服从正态分布, 则记作 X~ N( μ,σ2)
(6)当μ一定时,曲线的形状由σ确定 . σ越大,曲线越“矮胖”,表示总体的分布越分散; σ越小,曲线越“瘦高”,表示总体的分布越集中.
例3、把一个正态曲线a沿着横轴方向向右移动2个单 位,得到新的一条曲线b。下列说法中不正确的是
( C)
A.曲线b仍然是正态曲线;
B.曲线a和曲线b的最高点的纵坐标相等;
• 对称区域面积相等。
S(-x1, -x2)
S(x1,x2)=S(-x2,-x1)
-x1 -x2
x2 x1
4、特殊区间的概率:
若X~N (, 2 ),则对于任何实数a>0,概率
a
P( a x ≤ a) , ( x)dx a
为如图中的阴影部分的面积,对于固定的 和 而言,该面 积 的随概着率越 大的,减即少X而集变中大在。这周说围明概率越越小大, 落。在区间 ( a, a]
第二章2.4正态分布最终版

类型二 正态分布的概率计算
【例2】 设X~N(1,22),求: (1)P(-1<X≤3); (2)P(3<X≤5); (3)P(X≥5). 【分析】 要求随机变量X在某一范围内的概率,只须借 助于正态密度曲线的图象性质及三个特殊区间内取值的概率.
【解】 ∵X~N(1,22),∴μ=1,σ=2. (1)P(-1<X≤3)=P(1-2<X≤1+2)=P(μ-σ<X≤μ+σ)=0.6827. (2)∵P(3<X≤5)=P(-3<X≤-1),
可取任意数,μ 反映随机变量取值的平均水平的特征数,即若 X~N(μ,
σ2),则 E(X)=μ. σ>0 且参数 σ 是衡量随机变量总体波动大小的特征
数,可以用样本的标准差去估计.
2.注意正态函数中两个参数的位置,其中 σ 这个参数在解析式中两次出现,
注意参数的一致性。设随机变量
X
的正态分布密度函数
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 4 x
观察上面的正态曲线,分析有什么特征?
探究 2:
知识点二 正态分布的性质
1.正态分布的性质 (1)曲线在 x 轴上方,与 x 轴不相交. (2)曲线是单峰的,关于直线 x=μ 对称.
1
(3)曲线在 x=μ 处达到峰值σ 2π .
第二章
随机变量及其分布
2.4 正态分布
[目标] 1.会分析正态分布的意义. 2.能借助正态曲线的图象理解正态曲线的性质及意义. 3.会根据正态曲线的性质求随机变量在某一区间的概率. [重点] 正态曲线的特点及其所表示的意义;
利用正态分布解决实际问题. [难点] 求随机变量在某一区间内的概率.
一、复习引入
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 4.1正态分布【教学目标】1.了解正态分布的意义,掌握正态分布曲线的主要性质及正态分布的简单应用。
2.了解假设检验的基本思想,会用质量控制图对产品的质量进行检测,对生产过程进行控制。
【教学重难点】教学重点:1.正态分布曲线的特点;2.正态分布曲线所表示的意义.教学难点:1.在实际中什么样的随机变量服从正态分布;2.正态分布曲线所表示的意义.【教学过程】一、设置情境,引入新课这是一块高尔顿板,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,最后掉入高尔顿板下方的某一球槽内。
问题1.在投放小球之前,你能知道这个小球落在哪个球槽中吗?问题 2.重复进行高尔顿板试验,随着试验次数的增加,掉入每个球槽中小球的个数代表什么?问题 3.为了更好的研究小球分布情况,对各个球槽进行编号,以球槽的编号为横坐标,以小球落入各个球槽的频率值为纵坐标,你能画出它的频率分布直方图吗?问题4.随着试验次数的增加,这个频率直方图的形状会发生什么样的变化?二、合作探究,得出概念随着试验次数的增加,这个频率直方图的形状会越来越像一条钟形曲线.这条曲线可以近似下列函数的图像:22()2,(),(,),2x x e x μσμσϕπσ--=∈-∞+∞其中实数(0)μσσ>和为参数,我们称,()x μσϕ的图像为正态分布密度曲线,简称正态曲线。
问题 5.如果在高尔顿板的底部建立一个水平坐标轴,其刻度单位为球槽的宽度,X 表示一个随机变量,X 落在区间(,]a b 的概率为什么?其几何意义是什么?一般地,如果对于任何实数a b <,随机变量X 满足,(<X (),ba P ab x dx μσϕ≤=⎰) 则称X 的分布为正态分布,记作2N μσ(,),如果随机变量X 服从正态分布,则记为2X N μσ(,)。
问题6.在现实生活中,什么样的分布服从或近似服从正态分布?问题7.结合()x μσϕ,的解析式及概率的性质,你能说说正态分布曲线的特点吗?可以发现,正态曲线有以下特点:(1) 曲线位于x 轴上方,与x 轴不相交;(2) 曲线是单峰的,它关于直线x μ=对称;(3) 曲线在x μ=处达到峰值2σπ; (4) 曲线与x 轴之间的面积为1;(5) 当σ一定时,曲线随着μ德变化而沿x 轴平移;(6) 当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散。
若2X N μσ(,),则对于任何实数0,a >概率,(<X ()a a P a a x dx μμσμμμϕ+--≤+=⎰)对于固定的μ和a 而言,给面积随着σ的减少。
这说明σ越小,X 落在区间,]a a μμ-+(的概率越小,即X 集中在μ周围概率越大.特别有可以看到,正态总体几乎总取值于区间(33)X μσμσ-<≤+之内。
而在此区间以外取值的概率只有0.0026,通常认为这种情况在一次试验中几乎不可能发()0.6826,(22)0.9544,(33)0.9774.P X P X P X μσμσμσμσμσμσ-<≤+=-<≤+=-<≤+=生。
在实际应用中,通常认为服从于正态分布2N μσ(,)的随机变量X 只取(3,3)μσμσ-+之间的值,简称之为3σ原则三、 典型例题例1. 在某次数学考试中,考生的成绩ξ服从一个正态分布,即(90,100)N ξ。
(1) 试求考试成绩ξ位于区间(70,110)上的概率是多少?(2) 若这次考试共有2000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?解析:正态分布已经确定,则总体的期望μ和标准差σ就可以求出,这样就可以根据正态分布在三个常见的区间上取值的概率进行求解.解:因为 (90,100)N ξ,所以 μ=90, σ=10。
(1) 由于正态变量在区间(2,2)μσμσ-+内取值的概率是0.9544,而该正态分布中,29021070,290210110μσμσ-=-⨯=+=+⨯=,于是考试成绩ξ位于区间(70,110)内的概率就是0.9544。
(2) 由μ=90, σ=10,得80,100μσμσ-=+=。
由于正态变量在区间(,)μσμσ-+内取值的概率是0.6826,所以考试成绩ξ位于区间(80,100)内的概率就是0..6826.一共有2000名考生,所以考试成绩在(80,100)间的考生大约有2000⨯0.6826≈1365人。
点评:解答这类问题的关键是熟记正态变量的取值位于区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+上的概率值,同时又要根据已知的正态分布确定所给区间属于上述三个区间中的哪一个.变式训练.已知一次考试共有60名同学参加,考生的成绩(110,25),X N 据此估计,大约应有57人的分数在下列哪个区间内?( ).(90,110]A .(95,125]B .(100,125]C .(105,115]D 答案C四、 反馈测评1. 给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ (1)),(,21)(22+∞-∞∈=-x e x f x π(2)),(,221)(8)1(2+∞-∞∈=--x e x f x π (3)22(1)(),(,)x f x x -+=∈-∞+∞ 2.若随机变量(2,4)N ξ-,则ξ在区间(4,2]-上的取值的概率等于ξ在下列哪个区间上取值的概率( ).(2,4]A .(0,2]B .(2,0]C - .(4,4]D -3.若随机变量ξ服从正态分布(0,1)N ξ,则ξ在区间(3,3]-上取值的概率等于()A.0.6826B.0.9544C.0.9974D.0.31744.若一个正态总体落在区间(0.2,)里的概率是0.5,那么相应的正态曲线f(x)在x= 时,达到最高点。
答案:1.(1)0,1;(2)1,2;(3)-1,0.5 2.C 3.C 4. 0.2五、课堂小结1.了解正态曲线、正态分布的概念,知道正态曲线的解析式及曲线的特点。
2.了解假设检验的基本思想并体会它的应用。
六、作业课本P86习题2.4 1、2题2.4.1正态分布课前预习学案一、 预习目标1. 通过实际问题,借助直观,认识正态分布曲线的特点及曲线所表示的意义。
2. 通过实际问题,知道假设检验的思想。
二、预习内容1.我们把函数 的图像称为正态分布密度曲线,简称 。
2.一般地,如果对于任何实数a b <,随机变量X 满足 ,则称随机变量X 的分布为正态分布,记作 ,如果随机变量X 服从正态分布,则记为 。
3.正态曲线的特点:4.在实际应用中,通常认为服从于正态分布2N μσ(,)的随机变量X 只取之间的值,简称之为 。
三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案一、学习目标1.知道正态分布密度曲线、正态分布的概念。
2.知道正态曲线的解析式及函数图像。
3.通过图像知道正态曲线的特点。
4.能在实际中体会3 原则的应用。
二、学习重难点学习重点:1.正态分布曲线的特点;2.正态分布曲线所表示的意义.学习难点:正态分布在实际中的应用。
三、学习过程(一)自主学习大家预习课本P80页,并回答以下几个问题:问题1.在投放小球之前,你能知道这个小球落在哪个球槽中吗?问题 2.重复进行高尔顿板试验,随着试验次数的增加,掉入每个球槽中小球的个数代表什么?问题 3.为了更好的研究小球分布情况,对各个球槽进行编号,以球槽的编号为横坐标,以小球落入各个球槽的频率值为纵坐标,你能画出它的频率分布直方图吗?问题4.随着试验次数的增加,这个频率直方图的形状会发生什么样的变化?(二) 合作探究,得出概念二、合作探究,得出概念随着试验次数的增加,这个频率直方图的形状会越来越像一条钟形曲线.这条曲线可以近似下列函数的图像:22()2,(),(,),2x x e x μσμσϕπσ--=∈-∞+∞其中实数(0)μσσ>和为参数,我们称,()x μσϕ的图像为正态分布密度曲线,简称正态曲线。
问题 5.如果在高尔顿板的底部建立一个水平坐标轴,其刻度单位为球槽的宽度,X 表示一个随机变量,X 落在区间(,]a b 的概率为什么?其几何意义是什么? 一般地,如果对于任何实数a b <,随机变量X 满足,(<X (),baP a b x dx μσϕ≤=⎰)则称X 的分布为正态分布,记作2N μσ(,),如果随机变量X 服从正态分布,则记为2XN μσ(,)问题6.在现实生活中,什么样的分布服从或近似服从正态分布?问题7.结合()x μσϕ,的解析式及概率的性质,你能说说正态分布曲线的特点吗?可以发现,正态曲线有以下特点:(1) 曲线位于x 轴上方,与x 轴不相交; (2) 曲线是单峰的,它关于直线x μ=对称;(3) 曲线在x μ=2σπ;(4) 曲线与x 轴之间的面积为1;(5) 当σ一定时,曲线随着μ德变化而沿x 轴平移;(6) 当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散。
若2XN μσ(,),则对于任何实数0,a >概率,(<X ()aaP a a x dx μμσμμμϕ+--≤+=⎰)对于固定的μ和a 而言,给面积随着σ的减少。
这说明σ越小,X 落在区间,]a a μμ-+(的概率越小,即X 集中在μ周围概率越大.特别有可以看到,正态总体几乎总取值于区间(33)X μσμσ-<≤+之内。
而在此区间以外取值的概率只有0.0026,通常认为这种情况在一次试验中几乎不可能发生。
在实际应用中,通常认为服从于正态分布2N μσ(,)的随机变量X 只取(3,3)μσμσ-+之间的值,简称之为3σ原则三、典型例题例2.在某次数学考试中,考生的成绩ξ服从一个正态分布,即(90,100)N ξ。
()0.6826,(22)0.9544,(33)0.9774.P X P X P X μσμσμσμσμσμσ-<≤+=-<≤+=-<≤+=(3) 试求考试成绩ξ位于区间(70,110)上的概率是多少? (4) 若这次考试共有2000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?解析:正态分布已经确定,则总体的期望μ和标准差σ就可以求出,这样就可以根据正态分布在三个常见的区间上取值的概率进行求解.变式训练.已知一次考试共有60名同学参加,考生的成绩(110,25),X N 据此估计,大约应有57人的分数在下列哪个区间内?( ).(90,110]A .(95,125]B .(100,125]C .(105,115]D答案C四、反馈测评1. 给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ(1)),(,21)(22+∞-∞∈=-x ex f x π(2)),(,221)(8)1(2+∞-∞∈=--x ex f x π(3)22(1)(),(,)2x f x e x π-+=∈-∞+∞ 2.若随机变量(2,4)N ξ-,则ξ在区间(4,2]-上的取值的概率等于ξ在下列哪个区间上取值的概率( ).(2,4]A .(0,2]B .(2,0]C - .(4,4]D -3.若随机变量ξ服从正态分布(0,1)N ξ,则ξ在区间(3,3]-上取值的概率等于( )A.0.6826B.0.9544C.0.9974D.0.31744.若一个正态总体落在区间(0.2,)+∞里的概率是0.5,那么相应的正态曲线f (x ) 在x= 时,达到最高点。