人教版初中九年级下数学知识点总结
人教版初中数学知识点总结(精华)

初中数学知识点总结(精华)第一章 有理数1、有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 .4、.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的几何意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数 6、有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0;②除以一个不为0的数,等于乘以这个数的倒数7、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .8、比较两个数的大小:(1)负数< 0 < 正数,任何一个正数都大于一切负数(2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小(4)两数相乘(或相除),同号得正 > 0,异号得负 < 09、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-an 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .10、科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.11、非负数的性质:若02=++c b a ,则000===c b a 且且第二章 整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
初中数学知识点总结人教版(精选7篇)

初中数学知识点总结人教版(精选7篇)初中数学知识点总结篇一1、一元一次方程根的情况△=b2-4ac当△0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度) 平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
初中九年级数学知识点总结篇二第一章实数一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01时,1/a1;D.积为1.4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1.5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
初中数学知识点总结人教版

初中数学知识点总结人教版初中数学知识点总结(人教版)一、数与代数1. 有理数- 整数和小数- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值- 有理数的运算律2. 整式与分式- 单项式与多项式- 同类项与合并同类项- 整式的加减乘除- 因式分解- 分式的基本性质- 分式的乘除法- 分式的加减法3. 代数方程- 一元一次方程- 二元一次方程组- 解方程的基本方法- 列方程解应用题4. 函数- 函数的概念- 线性函数- 反比例函数- 函数的图像和性质- 解析式的应用二、几何1. 平面图形- 点、线、面的基本性质- 角的概念和分类- 三角形的分类和性质- 四边形的分类和性质- 圆的基本性质- 相似图形- 平行线与平行线的性质2. 几何变换- 平移- 旋转- 轴对称(镜像对称)3. 几何计算- 线段、角的计算- 三角形、四边形的面积计算- 圆的周长和面积计算- 体积和表面积的计算(棱柱、棱锥、圆柱、圆锥、球)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表(条形图、折线图、饼图)- 平均数、中位数、众数2. 概率- 随机事件- 概率的初步认识- 可能性的计算四、应用题1. 列方程解应用题- 行程问题- 工作问题- 利润问题- 比例问题2. 几何应用题- 面积问题- 体积问题- 角度计算问题3. 统计与概率应用题- 调查与统计分析- 可能性与预测请注意,以上内容是根据人教版初中数学教材的一般结构和知识点进行的总结,具体的教学内容可能会根据不同年份的教材版本和教学大纲有所变化。
教师和学生应参考最新的教材和教学指南来确定具体的教学内容和要求。
九年级下册数学知识点大全

九年级下册数学知识点大全九年级是初中数学学习的最后一年,也是学生们掌握数学知识的重要时刻。
在这一年里,学生们将学习更多的数学知识点,为他们的中考做好充分的准备。
下面将为大家总结九年级数学下册的知识点,以帮助学生们更好地理解和掌握这些内容。
一、三角形在这一章节中,学生们将学习不同类型的三角形及其性质。
首先是根据边长分类的三角形:等边三角形、等腰三角形和普通三角形。
然后,学生们将了解到根据角度分类的三角形:锐角三角形、直角三角形、钝角三角形。
接着,学生们将学习到三角形的内角和外角的性质,并通过实践的练习来巩固这些概念。
二、等比数列与等比中数在这一章节中,学生们将学习到等比数列的定义、通项公式和求和公式。
他们将了解到等比数列的特点,掌握如何判断一个数列是否为等比数列,并通过实际应用问题的解答来巩固这些知识。
此外,学生们还将学习到等比中数的概念以及如何求等比中数。
三、平行与相交线这一章节主要介绍平行线与相交线的性质。
学生们将了解到平行线和相交线的定义,并学习如何通过线段比例定理和同位角定理来判断线段与角的关系。
此外,学生们还将学习如何应用这些性质来解决实际问题。
四、概率在这一章节中,学生们将学习概率的基本概念。
他们将了解到事件与样本空间的关系,学会计算事件发生的可能性。
学生们将学习到概率的计算方法,如频率和古典概率,并通过一系列练习来巩固这些知识。
五、坐标系与函数这一章节主要介绍平面直角坐标系以及函数的概念。
学生们将学会如何在坐标系中表示和定位点,并通过坐标系来解决实际问题。
此外,学生们还将了解到函数的定义和性质,并学会如何绘制和分析函数图像。
六、三次根式在这一章节中,学生们将学习三次根式的性质和运算规则。
他们将了解到如何计算三次根式以及如何化简和比较三次根式。
学生们还将掌握如何应用三次根式来解决实际问题,并通过实际练习来巩固这些知识。
七、圆在这一章节中,学生们将学习圆的定义和性质。
他们将了解到圆的基本要素:圆心、半径、直径和弧长,并学会如何计算圆的面积和周长。
新人教版九年级数学下册知识点总结

新人教版九年级数学下册知识点总结人教版九年级数学下册知识点总结12.直线与圆的位置关系2.1.直线与圆的位置关系当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。
直线与圆的位置关系有以下定理:直线与圆相切的判定定理:经过半径的外端并且垂直这条半径的直线是圆的切线。
圆的切线性质:经过切点的半径垂直于圆的切线。
2.2.切线长定理从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。
切线长定理:过圆外一点所作的圆的两条切线长相等。
2.3.三角形的内切圆与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。
三角形的内心是三角形的三条角平分线的交点。
3.三视图与表面展开图3.1.投影物体在光线的照射下,在某个平面内形成的影子叫做投影。
光线叫做投影线,投影所在的平面叫做投影面。
由平行的投射线所形成的投射叫做平行投影。
可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。
3.2.简单几何体的三视图物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。
主视图、左视图和俯视图合称三视图。
产生主视图的投影线方向也叫做主视方向。
3.3.由三视图描述几何体三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。
3.4.简单几何体的表面展开图将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。
圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。
AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆。
AD旋转所成的面就是圆柱的侧面,AD不论转动到哪个位置,都是圆柱的母线。
圆锥可以看做将一根直角三角形ACB绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体。
初中数学人教版知识点总结

初中数学人教版知识点总结学校数学学问点总结1一、函数及其相关概念1、变量与常量在某一改变过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一改变过程中有两个变量x与y,假如对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x 的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:根据自变量由小到大的挨次,把所描各点用平滑的曲线连接起来。
二、相交线与平行线1、学问网络结构2、学问要点〔1〕在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特别状况。
〔2〕在同一平面内,不相交的两条直线叫平行线。
假如两条直线只有一个公共点,称这两条直线相交;假如两条直线没有公共点,称这两条直线平行。
〔3〕两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角的性质:邻补角互补。
如图1所示,与互为邻补角,与互为邻补角。
+=180°;+=180°;+=180°;+=180°。
3、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。
对顶角的性质:对顶角相等。
如图1所示,与互为对顶角。
=; =。
4、两条直线相交所成的角中,假如有一个是直角或90°时,称这两条直线相互垂直,其中一条叫做另一条的垂线。
人教版九年级下册数学知识点总结

人教版九年级下册数学知识点总结一、反比例函数的概念反比例函数是指函数y=k/x(k≠0)的形式,其中自变量x 的指数为-1.在解决有关自变量指数问题时,应特别注意系数这一限制条件。
另外,反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。
反比例函数的自变量不能为0,故函数图像与x轴、y轴无交点。
二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。
由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。
在作反比例函数的图像时,应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
三、反比例函数及其图像的性质1.函数解析式:y=k/x(k≠0)2.自变量的取值范围:x≠03.图像:1)图像的形状:双曲线,曲度越大。
2)图像的位置和性质:当k>0时,图像的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图像的两支分别位于二、四象限;在每个象限内,y随x的增大而增大。
3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。
图像关于直线y=x和y=-x对称。
4.k的几何意义如图1,设点P(a,b)是双曲线y=k/x的一点,在双曲线的另一支上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则有三角形PQC的面积为2|k|。
九年级数学下册知识点总结

九年级数学下册知识点总结九年级数学下册是数学学科中的最后一册,包含了许多重要的数学知识点。
在本文中,我们将对这些知识点进行总结和归纳,帮助学生们更好地回顾和巩固所学的内容。
一、代数与函数
1. 一次函数与斜率:学习了一次函数的定义、斜率的计算以及直线方程的求解方法。
2. 二次函数与抛物线:掌握了二次函数的图像和性质,学会了求解二次方程和解析几何的应用。
二、平面几何
1. 直角三角形:了解直角三角形的性质,学会应用勾股定理和正弦/余弦定理求解相关问题。
2. 三角形的相似与全等:熟悉相似三角形的判定和相似比例的计算,掌握全等三角形的判定条件。
三、立体几何
1. 三视图与展开图:学习了如何绘制物体的三视图以及利用展开图计算表面积和体积。
2. 平行四边形与棱柱:了解平行四边形的性质,学会计算棱柱的表面积和体积。
四、概率统计
1. 事件的概率:掌握事件的概率计算方法,了解事件的互斥与独立性质。
2. 统计量与统计图:学会计算样本均值、众数、中位数等统计量,并能绘制条形图和折线图。
五、数论与逻辑
1. 最大公约数与最小公倍数:掌握求解最大公约数和最小公倍数的方法,应用到分数的化简和整数的运算中。
2. 命题与推理:了解命题的基本概念、命题关系和推理方法,能够进行简单的逻辑论证。
这些知识点是九年级数学下册重点内容的总结,并不代表所有的知识点。
在学习和巩固这些知识点时,建议同学们多做练习题
以加深理解和掌握。
希望同学们能够通过这篇总结文章,回顾和巩固自己的数学知识,为接下来的学习打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学知识点总结(精华)第一章 有理数1、有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 .4、.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的几何意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<−=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<−≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数 6、有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0;②除以一个不为0的数,等于乘以这个数的倒数7、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .8、比较两个数的大小:(1)负数< 0 < 正数,任何一个正数都大于一切负数(2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小(4)两数相乘(或相除),同号得正 > 0,异号得负 < 09、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-an 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .10、科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.11、非负数的性质:若02=++c b a ,则000===c b a 且且第二章 整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5、整式:单项式和多项式统称整式6、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
7、合并同类项的法则:将同类项的系数相加作为结果的系数,字母和字母的指数不变。
8、去括号法则:去括号,看符号;是“+”号,不变号;是“-”号,全变号第三章 一元一次方程1、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.一元一次方程的一般式:ax+b=0(x 是未知数,a 、b 是常数,且a ≠0).3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… 得到方程的解.4.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效= 工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 ,利润=售价-成本, %100⨯−=成本成本售价利润率; (6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V圆柱=πR 2h ,V 圆锥=31πR 2h. 第四章 图形的认识初步1、直线公理:两点确定一条直线2、线段公理:两点之间,线段最短3、两点之间的距离:连接两点的线段的长度叫做两点之间的距离4、'0601=;'''601=;1周角=0360;1平角=01805、两个角的和等于直角,这两个角互余;两个角的和等于平角,这两个角互补6、同角或等角的余角相等;同角或等角的补角相等第五章 相交线与平行线1、命题:判断一件事情的语句叫命题。
命题是由题设和结论两部分构成的,它可以改写成“如果……那么……”的形式。
2、垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
3、.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4、平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
5、平行线的判定: 判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角互补,两直线平行。
6、平移的性质:平移前后的图形全等第六章 实数1、实数的分类⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数正无理数无理数负分数正分数分数负整数正整数自然数整数有理数实数0、⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数正无理数正分数正整数正有理数正实数实数02.算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 叫做a 的算术平方根,记作a 。
0的算术平方根为0。
即)0(≥a a 。
3.平方根:一般地,如果一个数x 的平方根等于a ,即x 2=a ,那么数x 就叫做a 的平方根。
4.平方根的性质:正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
5、立方根定义:如果a x =3,那么3a x =6、立方根的性质:正数的立方根是正数;0的立方根是0;负数的立方根是负数7、实数a 的相反数是-a ;一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是08、实数和数轴上的点一一对应;有序实数对与平面内的点成一一对应关系第七章 平面直角坐标系1、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
2、(1)将点(x ,y)向右(或左)平移a 个单位长度,可以得到对应的点(x ±a ,y);(2)将点(x ,y)向上(或左下)平移a 个单位长度,可以得到对应的点(x ,y ±b)(3)平移的口诀是:左减右加,上加下减3、坐标平面内的点与有序实数堆成一一对应的关系第八章 二元一次方程组1、二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程的解。
2、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
3、解二元一次方程组的基本思想:消元思想:基本方法是:代入消元法和加减消元法4、解三元一次方程的基本方法是:一元二元(消元)三元(消元)→→第九章 不等式与不等式组1、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
2、定理与性质不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
3、不等式的解集:一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。
4、解不等式组的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到。
第十章 数据的收集、整理与描述1.全面调查:考察全体对象的调查方式叫做全面调查。
2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
3.总体:要考察的全体对象称为总体。
4.个体:组成总体的每一个考察对象称为个体。
5.样本:被抽取的所有个体组成一个样本。
6.样本容量:样本中个体的数目称为样本容量。
(不带单位)7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
8.频率:频数与数据总数的比为频率。
即:数据总数频数频率=,频率频数数据总数=,频率数据总数频数⨯=第十一章 三角形1、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
2、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
3、公式与性质(1)三角形的内角和:三角形的内角和为180°(2)三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
(3)多边形内角和公式:n 边形的内角和等于(n-2)·180°(4)多边形的外角和:多边形的外角和为360°。
(5)多边形对角线的条数: 从n 边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
图1l C B 1BAn 边形共有23)-n(n 条对角线。
第十二章 全等三角形1、全等三角形:两个三角形的形状、大小都一样时称为全等三角形。
一个图形经过平移、旋转、对称等运动(或称变换)后得到另一个图形,变换前后的图形全等。
2.全等三角形的性质: 全等三角形的对应角相等、对应边相等。