超级高中数理化公式定理
数理化公式

数理化公式
以下是一些常见的数理化公式:
数学公式:
1. 直线的斜率公式:y = mx + c, 其中m是斜率,c是常数。
2. 平方根:√x
3. 三角函数:sin(x), cos(x), tan(x)
4. e的指数函数:exp(x)
5. 对数函数:log(x)
6. 微积分:导数和积分的公式(如牛顿-莱布尼茨公式)物理公式:
1. 牛顿第二定律:F = ma,其中F是力,m是物体的质量,a是加速度。
2. 万有引力定律:F = G * (m1 * m2) / r^2,其中F是引力,m1和m2是两个物体的质量,r是它们之间的距离,
G是万有引力常数。
3. 动能公式:K = 1/2 * m * v^2,其中K是动能,m是物体的质量,v是物体的速度。
4. 速度公式:v = s/t,其中v是速度,s是位移,t是时间。
化学公式:
1. 摩尔质量:M = m/n,其中M是摩尔质量,m是物质
的质量,n是物质的摩尔数。
2. 摩尔浓度:M = n/V,其中M是摩尔浓度,n是溶质的摩尔数,V是溶液的体积。
3. 阿伏伽德罗常数:N = 6.02 * 10^23 mol^-1,表示1
摩尔物质中的粒子数。
4. 化学反应速率:rate = k[A]^\\alpha[B]^\\beta,其中rate是反应速率,k是速率常数,[A]和[B]是反应物的浓度,\\alpha和\\beta是反应物的反应级数。
这只是一小部分数理化公式,还有很多其他的公式,具体
取决于你关注的领域和具体的问题。
高中数理化生:公式定理定律概念大全

高中数理化生:公式定理定律概念大全
一、定律:
1、对称定律:任何的形状如果关于某一特定的线条对称,那么该形状就是对称的。
2、位置定律:两个平行或非平行的直线,任何一点以某一点为中心,做同样方向和角度的旋转都不会改变相对位置。
3、轴对称定律:物体如果沿着某一垂线(轴线)进行翻转,对称的部分的形状不会改变,则称为轴对称。
4、动作定律:如果人正确使用物体,那么物体状态改变的中心点都以使用人手来位置为中心,而且变化角度也恒定。
二、定理:
1、三角形外角和定理:任何一个三角形的三个外角之和等于π(即180度)。
2、勾股定理:在一个直角三角形中,两条直角边长的平方之和等于斜边长的平方,也就是a²+b²=c².
3、梯形面积定理:梯形的面积等于两条小边之和乘以高除以2,也就是s=(a+b)*h/2.
4、勾股纳矩形定理:若在等腰直角三角形中选定两个对角线,则这两个对角线的乘积正好等于对角线对应的直角边乘积,也就是a×b=c×d.
三、公式:
1、直角三角形面积公式:Sh = 1/2*a*h.
2、梯形面积公式:S = 1/2(a + b) * h
3、圆面积公式:S = πr².
4、椭圆面积公式:S = π ab,其中a、b分别是椭圆的长短轴的长度。
5、球的表面积公式:S=4πr²。
高中数理化生公式大全

高中数理化公式大全+总复习目录数学公式:P1-20页物理公式:P21-27页化学公式:P28-35页生物公式:P36-40页数学总复习:P41-54页物理总复习:P61-98页化学总复习:P99-132页生物总复习:133-224页高中的数学公式定理大全三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”)诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-α)=-sinαcos(-α)=cosα t an(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=co sαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+s inαsinβtanα+tanβtan(α+β)=————————1-tanα ·tanβtanα-tanβtan(α-β)=————————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+ta n2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+β α-βsinα+sinβ=2sin———·cos———2 2α+β α-βsinα-sinβ=2cos———·sin———2 2α+β α-βcosα+cosβ=2cos———·cos———2 2α+β α-βcosα-cosβ=-2sin———·sin———2 21sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=— -[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式集合、函数集合简单逻辑任一x∈A x∈B,记作A BA B,B A A=BA B={x|x∈A,且x∈B}A B={x|x∈A,或x∈B}card(A B)=card(A)+card(B)-card(A B)(1)命题原命题若p则q逆命题若q则p否命题若 p则 q逆否命题若 q,则 p(2)四种命题的关系(3)A B,A是B成立的充分条件B A,A是B成立的必要条件A B,A是B成立的充要条件函数的性质指数和对数(1)定义域、值域、对应法则(2)单调性对于任意x1,x2∈D若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数(3)奇偶性对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数若f(-x)=-f(x),称f(x)是奇函数(4)周期性对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数(1)分数指数幂正分数指数幂的意义是负分数指数幂的意义是(2)对数的性质和运算法则loga(MN)=logaM+logaNlogaMn=nlogaM(n∈R)指数函数对数函数(1)y=ax(a>0,a≠1)叫指数函数(2)x∈R,y>0图象经过(0,1)a>1时,x>0,y>1;x<0,0<y<10<a<1时,x>0,0<y<1;x<0,y>1a> 1时,y=ax是增函数0<a<1时,y=ax是减函数(1)y=logax(a>0,a≠1)叫对数函数(2)x>0,y∈R图象经过(1,0)a>1时,x>1,y>0;0<x<1,y<00<a<1时,x>1,y<0;0<x<1,y>0a>1时,y=logax是增函数0<a<1时,y=logax是减函数指数方程和对数方程基本型logaf(x)=b f(x)=ab(a>0,a≠1)同底型logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)换元型 f(ax)=0或f (logax)=0数列数列的基本概念等差数列(1)数列的通项公式an=f(n)(2)数列的递推公式(3)数列的通项公式与前n项和的关系an+1-an=dan=a1+(n-1)da,A,b成等差 2A=a+bm+n=k+l am+an=ak+al等比数列常用求和公式an=a1qn_1a,G,b成等比 G2=abm+n=k+l aman=akal不等式不等式的基本性质重要不等式a>b b<aa>b,b>c a>ca>b a+c>b+ca+b>c a>c-ba>b,c>d a+c>b+da>b,c>0 ac>bca>b,c<0 ac<bca>b>0,c>d>0 ac<bda>b>0 dn>bn(n∈Z,n>1)a>b>0 >(n∈Z,n>1)(a-b)2≥0a,b∈R a2+b2≥2ab|a|-|b|≤|a±b|≤|a|+|b|证明不等式的基本方法比较法(1)要证明不等式a>b(或a<b),只需证明a-b>0(或a-b<0=即可(2)若b>0,要证a>b,只需证明,要证a<b,只需证明综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。
高中数理化常用公式

高中数理化常用公式高中数学常用公式一 . 代数1. 会合,函数A B ,BA A BA B x|x A , 且 x B A B x|x A 或 xBA Ux|xU , 且 x Acard A Bcard ( A) card ( B) card ( AB)mna ma na0,m,n N ,且 n1m 11ana 0,m, nN ,且 n 1mna ma nlog b Na log a N,N log a Nlog b alog a MNlog a M log a Nlog aMlog a M log a NNlog a M n n log a M n R基本型: a f( x )b f (x)log a b a0, alog a f ( x)bf ( x)a b a0, a同底型: af ( x)a g ( x )f ( x) g( x) (a 0, a 1)log a f (x)log a g( x) f ( x) g(x)换元型: f a x0或 f log a x2. 数列(1)等差数列a n 1a n da na 1 n 1 da ,A ,b 成等差 2 A a bm n k la ma na ka lS na 1 a n nna 11 n n 1 d221, b 010 a 0, a 1(2)等比数列a n a1q n1,,b成等比G2ab a Gm n k l a m a n a k a l a11q n1S n1qqna1q1(3)乞降公式n n n1k2k1nk 2n n 1 2n1k16n2 k 3n n1k123.不等式a b b aa b,bc a ca b a c b ca b c a c ba b, c d a cb da b, c0ac bca,c0ac bc ba b,c d0ac bd 0a b 0 d n b n n Z,n 1 a b 0n a n b n Z,n 1 a b 20a, b R a2b2aba, b R a bab 2a, b, c R a 3b3c33abc a, b, c R a b c3abc3a b a b a b4.复数a bi c diac , b da bi a 2b 2a bi c di a cb d i a bic dia cb d i abi c diac bdbcad ia bi ac bdbc ad i c dic 2d 2 c 2 b 2a bin a nC n 1a n 1 bi⋯C n n nbia bir cosi sinr 1 cos1i sin1 r2 cos 2 i sin 2r 1 r 2 cos12 i sin12r cossin nr n cosni sin nr 1 cos 1 i sinr 2 cos2i sinr 1 cos 12i sin12r 2kn rcos 2ki sin 2knnk 0,1,⋯, n 122z 1z 2 z 1 z 2 z 1 z 1 z 2 z 2 z n z nz 1z 2z 1 z 2z 1 z 2z 2 z 2 zzz 1 z 2 z 1 z 2 z 1 z 2z 1 z 2 z 1z 1z2z 25. 摆列组合与二项式定理A n m n n 1 n 2 ⋯ nm1m n!A nn m !mA n m n n 1 ⋯ n m 1C n m!m!C n m n!m! n m !C n m1C n m C n m 1C n m C n n ma b n C n0a n C n1a n 1b ⋯ C n r a n r b r⋯ C n n b nT r 1C n r a n r b r二. 三角函数1.同角关系sin2cos211tan2sec21cot 2csc2sin csc,sin 1tancoscos sec,cos 1cottan cot1sin2.引诱公式sin k360sincos k360costan k360tancos cossin sintan tansin 180sincos180costan 180tansin 90coscos 90sintan 90cotsin 270coscos 270sintan 270cot3.和差公式sin sin cos cos sincos cos cos sin sintantantan1 tan tan4. 倍角公式sin22 sin coscos2 cos 2 sin 22 cos 21 12 sin 2tan22 tan1 tan 25. 半角公式sin1 cos22cos1 cos22tan1 cos1cos2tan1 cossinsin1 cos26. 全能公式2tan1tan 2 sin2, cos2 1 tan 21tan 222tan2 tan 21 tan22a sinb cosa 2b 2 sin7. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即:ab c 2R(R 为△ ABC 外接圆半径 ) sin A sin Bsin C8. 余弦定理:三角形任何一边的平方等于其余两边平方的和减去这两边与它们夹角的余弦的积的两倍,即:a 2b 2c 2 2bc cos A b 2 c 2 a 2 2ca cosB c 2a2b 2 2ab cosC三 . 向量运算1. 向量的加法a 0 0aa b b aa b c a b c2.向量减法a aa a a a 0a b a b3. 实数与向量的积:以下公式、 u为实数, a、 b 为向量a aua u au a a uaa b a b线段的定比分点:设, P1、 P、 P3的坐标分别为x1, y1, x, y,x2, y2,则有:x1x2x1y1y2y1向量的数目积及运算律数目积(内积): a b a b cos向量 b 在 a 方向的投影为 b cos设 a、 b 都是非零向量, e 是与 b 方向相同的单位向量,是 a 与 e 的夹角,则(1)e a a e a cos(2)a b a b 0(3)当 a 与 b 同向时,a b a b ;当 a 与 b 反向时,a b a b ;a a a 22 aa a a(4)cos a b a b(5)a b a b数目积运算律:(a, b, c 为向量,为实数)a b b a (互换律)a b a b a ba b c a c b c四. 分析几何1.直线方程y y1k x x1y kx by y1x x1y2y1x2x1x y1a bAx By C0 2.两点距离、定比分点AB x B x AP1 P222 x2 x1y2 y1xx1x2y1y1y2 1xx1x2y2 y1y2 23.两直线关系l1 //A1B1C1 l 2B2C2A2或 k1k2且 b1b2l1与 l2 重合A1B1C1 A2B2C2或 k1k2且 b1b2l1与 l2 订交A1B1 A2B2或 k1 k2l1 l 2A1 A2B1 B20或 k1 k21l1到 l2的角tan k 2k1 1 k1k201 k1 k2l1到 l2的夹角tan k2k1 1 k1 k2 01k1 k2点到直线的距离dAx 0By0CA 2B 24.圆锥曲线(1)圆x a 2 y b 2 R 2圆心为 a , b ,半径为 R (2)椭圆x 2 y 2 1 a ba2b2焦点 F 1 c , 0 , F 2 c , 0 b 2a 2 c 2离心率 ecaa 2准线方程 xc焦半径 MF 1 a ex 0 , MF 2 a ex 0(3)双曲线:x 2 y 2 1a2b2(4)抛物线抛物线 y 2 2 px ( p 0)焦点 Fp, 02p准线方程 x2五 . 立体几何1. 空间两直线平行判断(1) a // b , b // c a // caa // b(2)ba //(3)a // bb//(4)a a // bb2. 空间两直线垂直判断a (1)abb(2)a //b bll3. 直线与平面平行( 1)判断ab a / /a / /b/ /a / /a(2)性质a / /a a / /bb4.直线与平面垂直(1)判断m, n,m n Bl l m, l na / /bba(2)性质aa / /bb5.平面与平面平行(1)判断a,b1 a / / , b / // /a b A2a/ / a/ /3/ // // /3/ // / / /(2)性质//1a a / /bb2/ // / a6.平面与平面垂直(1)判断a1a<2>二面角的平面角90(2)性质1,b, a aa bA ,a A2aa7.几何体的侧面积S正棱柱侧ChS正棱锥侧S1 Ch' 22 RhS圆锥侧RlS球4R2 8.几何体的体积V棱柱ShV棱锥1Sh 3V圆柱R2hV圆锥1R2h3V球4R33六 .概率与统计1.概任性质(1)p i0, i1, 2,⋯⋯;(2)p1p2⋯⋯ 12.二次散布C n k p k q n k b k; n, p3.希望E x1 p1x2 p2⋯⋯x n p n⋯⋯E a b aE b若~ B n,p ,则 E np4.方差Dx1 E 2 p1x2 E 2 p2⋯⋯x n E2 p n⋯⋯5. 正态散布u 21x22, x,f (x)e2式中的实数 u, (0) 是参数,分别表示整体的均匀数与标准差。
高中数理化生公式概念大全高中物理公式--高中物理

高中数理化生公式、规律概念大全二、高中物理公式一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-V o2=2as3.中间时刻速度Vt/2=V平=(Vt+V o)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(V o2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-V o)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s="3.6km/h。
"注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a="(Vt-Vo)/t只是量度式,不是决定式;"(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t 图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动1.位移s=Vot-gt2/22.末速度Vt=Vo-gt (g="9.8m/s2≈10m/s2)"3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。
高中数理化生公式定理大全(绝对精品)2010.11.38

高中数理化生公式定理大全(绝对精品)2010.11.38高中数理化生公式定理大全数学物理化学生物,门门功课就有底!祝考试顺利!--编者20XX年11.1物理化学数学生物只是个人编排水平有限,他山之石可以攻玉!高中数理化生公式定理大全物理解题大技巧高中物理备考与解题策略一、构建物理模型等效类比解题随着高考改革的深入,新高考更加突出对考生应用能力及创新能力的考查,大量实践应用型、信息给予型、估算型命题频繁出现于卷面,由此,如何于实际情景中构建物理模型借助物理规律解决实际问题则成了一个重要环节。
1.案例探究例1:如图1所示,在光滑的水平面上静止着两小车A和B,在A车上固定着强磁铁,总质量为5 kg,B车上固定着一个闭合的螺线管.B车的总质量为10 kg.现给B车一个水平向左的100 Ns瞬间冲量,若两车在运动过程中不发生直接碰撞,则相互作用过程中产生的热能是多少?图1命题意图:以动量守恒定律、能的转化守恒定律、楞次定律等知识点为依托,考查分析、推理能力,等效类比模型转换的知识迁移能力.错解分析:通过类比等效的思维方法将该碰撞等效为子弹击木块(未穿出)的物理模型,是切入的关键,也是考生思路受阻的障碍点.解题方法与技巧:由于感应电流产生的磁场总是阻碍导体和磁场间相对运动,A、B两车之间就产生排斥力,以A、B两车为研究对象,它们所受合外力为零.动量守恒,当A、B车速度相等时,两车相互作用结束,据以上分析可得:I=mBvB=(mA+mB)v,vB=I100= m/s=10 m/s, mB10 v=100=6.7 m/s (mA mB)从B车运动到两车相对静止过程,系统减少的机械能转化成电能,电能通过电阻发热,转化为焦耳热.根据能量转化与守恒:高中数理化生公式定理大全11mBv2- (mA+mB)v2 22***** =×10×102-×15×()J=166.7 J 2215Q=2.解题策略与思路理想化模型就是为便于对实际物理问题进行研究而建立的高度抽象的理想客体.高考命题以能力立意,而能力立意又常以问题立意为切入点,千变万化的物理命题都是根据一定的物理模型,结合某些物理关系,给出一定的条件,提出需要求的物理量的.而我们解题的过程,就是将题目隐含的物理模型还原,求结果的过程.运用物理模型解题的基本程序:(1)通过审题,摄取题目信息.如:物理现象、物理事实、物理情景、物理状态、物理过程等.(2)弄清题给信息的诸因素中什么是起主要因素.(3)在寻找与已有信息(某种知识、方法、模型)的相似、相近或联系,通过类比联想或抽象概括,或逻辑推理,或原型启发,建立起新的物理模型,将新情景问题“难题”转化为常规命题.(4)选择相关的物理规律求解.二、实际应用型命题求解策略实际应用型命题,常以日常生活与现代科技应用为背景,要求学生对试题所展示的实际情景进行分析,判断,弄清物理情景,抽象出物理模型.然后运用相应的物理知识得出正确的结论.其特点为选材灵活、形态复杂、立意新颖.对考生的理解能力,推理能力,综合分析应用能力,尤其是从背景材料中抽象、概括构建物理模型的能力要求较高,是应考的难点.锦囊妙计1.案例探究例2:侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高度为h,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全都拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?设地球的半径为R,地面处的重力加速度为g,地球自转的周期为T.命题意图:考查考生综合分析能力、空间想象能力及实际应用能力.高中数理化生公式定理大全错解分析:考生没能对整个物理情景深入分析,不能从极地卫星绕地球运行与地球自转的关联关系中找出θ=2πT1,从而使解题受阻.T解题方法与技巧:将极地侦察卫星看作质点(模型),其运动看作匀速圆周运动(模型),设其周期为T1,GMm4 2r则有:=m2 ① 2rT1地面处重力加速度为g,有GMm0R2=m0g ②2 由①②得到卫星的周期:T1=Rr3 其中:r=h+R g地球自转周期为T,则卫星绕行一周的过程中,地球自转转过的角度为:θ=2πT1 T卫星每经赤道上空时,摄像机应至少拍摄赤道圆周的弧长为T14 2s=θR=2πR=TT2.高考走势(h R)3 g实际应用型命题不仅能考查考生分析问题和解决实际问题的能力,而且能检验考生的潜能和素质,有较好的区分度,有利于选拔人才.近几年高考题加大了对理论联系实际的考查,突出“学以致用”,充分体现了由知识立意向能力立意转变的高考命题方向.3.解题策略与思路解决实际应用型题目的过程,实质是对复杂的实际问题的本质因素(如运动的实际物体,问题的条件,物体的运动过程等)加以抽象、概括,通过纯化简化,构建相关物理模型,依相应物理规律求解并还原为实际问题终结答案的过程.其解题思路为:首先,摄取背景信息,构建物理模型.实际题目中,错综的信息材料包含着复杂的物理因素,要求考生在获取信息的感性认识基础上,对题目信息加工提炼,通过抽象、概括、类比联想、启发迁移等创造性的思维活动,构建出相关的模型(如对象模型、条件模型和过程高中数理化生公式定理大全模型等).其次,要弄清实际问题所蕴含的物理情景,挖掘实际问题中隐含的物理条件,化解物理过程层次,探明物理过程的中间状态,理顺物理过程中诸因素的相互依存,制约的关系,寻求物理过程所遵循的物理规律,据规律得出条件与结果间的关系方程,进而依常规步骤求解结果.三、物理解题中的数学应用数学作为工具学科,其思想、方法和知识始终渗透贯穿于整个物理学习和研究的过程中,为物理概念、定律的表述提供简洁、精确的数学语言,为学生进行抽象思维和逻辑推理提供有效方法.为物理学的数量分析和计算提供有力工具.中学物理教学大纲对学生应用数学工具解决物理问题的能力作出了明确要求.1.案例探究例3:一弹性小球自h0=5m高处自由下落,当它与水平地面每碰撞一次后,速度减小到碰前的7/9,不计每次碰撞时间,计算小球从开始下落到停止运动所经过的路程和时间.命题意图:考查综合分析、归纳推理能力.错解分析:考生不能通过对开始的几个重复的物理过程的分析,归纳出位移和时间变化的通项公式致使无法对数列求和得出答案.解题方法与技巧:(数列法)设小球第一次落地时速度为v0,则:v0=2gh0=10m/s那么第二,第三,,第n+1次落地速度分别为:v1=7727v0,v2=()v0,,vn=()nv0999小球开始下落到第一次与地相碰经过的路程为h0=5m,小球第一次与地相碰到第二次与地相碰经过的路程是:7()2vv02=10×(7)2L1=2×1=2×92g2g2小球第二次与地相碰到第三次与地相碰经过的路程为L2,v74L2=2×2=10×()92g2高中数理化生公式定理大全由数学归纳法可知,小球第n次到第n+1次与地相碰经过的路程为Ln:Ln=10×(72n)9故整个过程总路程s为:s=h+(L1+L2++Ln)=5+10[(727472)+()++()n]999可以看出括号内的和为无穷等比数列的和.由等比无穷递减数列公式Sn=a1得:1 q7()2s=5+10×9 m=20.3 m 721 ()9小球从开始下落到第一次与地面相碰经过时间:t0=2h0=1sg0小球第一次与地相碰到第二次与地相碰经过的时间为:t1=2×v17=2×s9g7n)s9同理可得:tn=2×(t=t0+t1+t2++tn=1+2×[(7727)+()++()n]s9997=[1+2×9]s=(1+7)s=8s.71 92.解题策略与思路(1).高考命题特点高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题.可以说任何物理试题的求解过程实质上是一个将物理问题转化为数学问题经过求解再次还原为物理结论的过程.(2).数学知识与方法物理解题运用的数学方法通常包括方程(组)法、比例法、数列法、函数法、几何(图形辅高中数理化生公式定理大全助)法、图象法、微元法等.1.方程法物理习题中,方程组是由描述物理情景中的物理概念,物理基本规律,各种物理量间数值关系,时间关系,空间关系的各种数学关系方程组成的.列方程组解题的步骤①弄清研究对象,理清物理过程和状态,建立物理模型.②按照物理情境中物理现象发生的先后顺序,建立物理概念方程,形成方程组骨架.③据具体题目的要求以及各种条件,分析各物理概念方程之间、物理量之间的关系,建立条件方程,使方程组成完整的整体.④对方程求解,并据物理意义对结果作出表述或检验.2.比例法比例计算法可以避开与解题无关的量,直接列出已知和未知的比例式进行计算,使解题过程大为简化.应用比例法解物理题,要讨论物理公式中变量之间的比例关系,清楚公式的物理意义,每个量在公式中的作用,所要讨论的比例关系是否成立.同时要注意以下几点:①比例条件是否满足:物理过程中的变量往往有多个.讨论某两个量比例关系时要注意只有其他量为常量时才能成比例.②比例是否符合物理意义:不能仅从数学关系来看物理公式中各量的比例关系,要注意每个物理量的意义(例:不能据R=U认定为电阻与电压成正比).I③比例是否存在:讨论某公式中两个量的比例关系时,要注意其他量是否能认为是不U2变量,如果该条件不成立,比例也不能成立.(例在串联电路中,不能认为P=中,RP与R成反比,因为R变化的同时,U随之变化而并非常量)3.数列法凡涉及数列求解的物理问题具有多过程、重复性的共同特点,但每一个重复过程均不是原来的完全重复,是一种变化了的重复,随着物理过程的重复,某些物理量逐步发生着“前后有联系的变化”.该类问题求解的基本思路为:①逐个分析开始的几个物理过程。
[强烈推荐]高中数学物理化学公式大全
![[强烈推荐]高中数学物理化学公式大全](https://img.taocdn.com/s3/m/5d2664ebf242336c1eb95ea3.png)
48 定理 四边形的角和等于 360° 49 四边形的外角和等于 360° 50 多边形角和定理 n 边形的角的和等于(n-2)×180° 51 推论 任意多边的外角和等于 360° 52 平行四边形性质定理 1 平行四边形的对角相等 53 平行四边形性质定理 2 平行四边形的对边相等 54 推论 夹在两条平行线间的平行线段相等 55 平行四边形性质定理 3 平行四边形的对角线互相平分 56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形 57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形 58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形 59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形 60 矩形性质定理 1 矩形的四个角都是直角 61 矩形性质定理 2 矩形的对角线相等 62 矩形判定定理 1 有三个角是直角的四边形是矩形 63 矩形判定定理 2 对角线相等的平行四边形是矩形 64 菱形性质定理 1 菱形的四条边都相等 65 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66 菱形面积=对角线乘积的一半,即 S=(a×b)÷2 67 菱形判定定理 1 四边都相等的四边形是菱形 68 菱形判定定理 2 对角线互相垂直的平行四边形是菱形 69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等 70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71 定理 1 关于中心对称的两个图形是全等的 72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75 等腰梯形的两条对角线相等 76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77 对角线相等的梯形是等腰梯形 78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等 79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第 三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h 83 (1)比例的基本性质 如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么 a:b=c:d 84 (2)合比性质 如果 a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性质 如果 a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例 87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
数理化公式

数理化公式在数学、物理、化学等领域中,公式是一种非常重要的表达方式。
公式通过使用数学符号和符号化语言来描述特定的数学关系、物理规律或化学反应等。
本文将介绍一些常见的数理化公式,并对这些公式进行详细的解释。
数学公式1. 勾股定理勾股定理是在直角三角形中成立的基本定理,表达了直角三角形斜边的长度与两个直角边的关系。
其数学表达式为:c^2 = a^2 + b^2其中,a、b表示直角三角形的两条直角边的长度,c表示直角三角形的斜边的长度。
勾股定理在解决物理、几何等问题中有着广泛的应用。
2. 欧拉公式欧拉公式是数学中一条重要的公式,描述了复数、三角函数和指数函数之间的关系。
欧拉公式的数学表达式为:e^(i * π) + 1 = 0其中,e表示自然对数的底,i表示虚数单位,π表示圆周率。
欧拉公式在分析、数论等领域具有广泛的应用,被认为是数学中最美丽的公式之一。
物理公式1. 牛顿第二定律牛顿第二定律是经典力学中最为基础的定律之一,表达了物体运动时力与加速度之间的关系。
其数学表达式为:F = ma其中,F表示物体所受到的力的大小,m表示物体的质量,a表示物体的加速度。
牛顿第二定律对于解决力学中的运动问题具有重要的意义。
2. 热力学第一定律热力学第一定律是热力学中的一条基本定律,描述了能量在系统中的转化和守恒关系。
其数学表达式为:ΔU = Q - W其中,ΔU表示系统内能的增加,Q表示系统吸收的热量,W表示系统对外做的功。
热力学第一定律对于研究能量转化和热力学系统的性质具有重要意义。
化学公式1. 摩尔浓度摩尔浓度是描述溶液中溶质浓度的一种常用的物理量。
其数学表达式为:C = n/V其中,C表示摩尔浓度,n表示溶质的摩尔数,V表示溶液的体积。
摩尔浓度在化学实验和工业生产中具有重要作用,用于计算溶质的浓度。
2. 反应速率公式反应速率公式描述了化学反应速率与反应物浓度之间的关系。
一个简化的反应速率公式为:rate = k[A]^m[B]^n其中,rate表示反应速率,k表示速率常数,[A]和[B]分别表示反应物A和B 的浓度,m和n为反应物的反应级数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超级高中数理化公式定理
数学
1.集合、简易逻辑
2.函数
3.不等式
4.平面向量
5.三角函数
6.数列
7.直线和圆的方程
8.圆锥曲线方程
9.直线、平面、简单几何体
10.排列、组合、二项式定理
11.概率
12.概率与统计
13.极限
14.导数与微分
15.积分
16.复数
物理一.力学
(一)力物体的平衡
1.力
2.重力万有引力
3.弹力胡克定律
4.摩擦力
5.力的合成
6.力的分解
7.力矩力偶矩
8.物体的平衡
9.物体的受力
(二)直线运动
10.质点
11.机械运动
12.位置、位移和路程
13.速度和速率
14.加速度
15.匀速直线运动规律
16.匀变速直线运动规律
(三)抛体曲线运动规
17.平抛运动规律
18.斜抛运动规律
19.运动的独立性和叠加性原理
(四)牛顿运动定律
20.惯性
21.牛顿运动定理
22.牛顿运动定理的应用
23.力学中的国际单位制(SI)单位
(五)匀速率圆周运动和人造地球卫星
24.匀速率圆周运动
25.万有引力
26.宇宙速度、人造地球卫星
(六)机械能
27.功
28.功率
29.机械能
30.功和能
31.动能定理
32.重力功与重力势能
33.机械能守恒定律
34.功能原理
35.功能关系规律的应用
(七)动量
36.动量、冲量
37.动量定理
38.动量守恒律
(八)机械振动和机械波
39.机械振动
40.简谐振动
41.单摆振动
42.受迫振动、共振=、阻尼振动43.机械波
44.波长、频率和波速
45.波的图像
46.波的衍射与干涉
47.声波
48.乐音
一.热学
(九)分子运动论
1.分子动理论
2.测分子大小的方法
3.布朗运动
4.分子间的相互作用力
(十)热和功
5.物体的内能
6.改变内能的两种方法
7.热量
8.热功当量
9.能的转化和守恒定律
(十一)气体的性质
10.气体的状态状态参量
11.气体的等温变化玻意耳定律12.气体的等容变化查里定律13.气体的等压变化盖.吕萨克定律14.理想气体的状态方程
15.克拉泊龙方程
16.理想气体的内能
(十二)固体和液体的性质
17. 晶体和非晶体
18. 空间点阵
19. 液体的微观结构
20. 液体的表面现象
21. 浸润和不浸润
22. 毛细现象
二.电磁学
(十三)电场
1.电荷原电荷
2.电荷守恒定律
3.库仑定律总电荷
4.电场
5.电场强度电场力匀强电场6.电场的叠加
7.电场线
8.电势能电势电势差
9.等势面
10.电场中的导体
11.带电粒子在电场中的运动
12.电容器电容
(十四)恒定电流
13.电流、电流强度
14.电压
15.电阻欧姆定理电阻定律
16.电功电功率焦耳定律
17.串联电路和并联电路
18.电动势
19.闭合电路欧姆定律
20.电源总功率输出功率电流电压电源效率与外电阻的关系
21.闭合电路中的能量
22.滑动变阻器限流分压作用
23.直流电路中的电容器
24.电路结构得分析
25.电阻的测量
26.电源电动势和内电阻的测量
(十五)磁场电磁感应
27.磁场
28.磁场的描述和有关物理量
29.磁场对电流的作用
30.磁场对运动电荷的作用
31.带电粒子在匀强磁场中的运动
32.电磁感应
33.法拉第电磁感应定律
34.楞次定律
35.自感
36.电磁感应中的能量变化
(十六)交流电电磁振荡电磁波
37.交流电
38.变压器
39.电能的输送
40.电磁振荡
41.电磁场
三.光学
(十七)光的传播
1.光速
2.反射定律漫反射
3.折射定律
4.折射率
5.全反射
6.光的色散
7.透镜
8.透镜成像作图法成规律
9.透镜成像公式
10.眼睛
(十八)光的本性
11.光的干涉
12.杨氏双缝干涉
13.光的衍射
14.光的偏振
15.电磁波谱
16.光谱
17.光电效应
18.光的本性
四.原子和原子核物理学
(十九)原子和原子核
1.原子的结构模型
2.玻尔的原子理论
3.天然放射现象
4.原子核的组成
5.原子的结合能
6.重核的裂变
7.轻核的聚合
8.基本粒子
附录
1.重要的物理常数
2.常用的物理量及单位
3.常用物理概念、规律的公式表
4.常用物理数据表
5.国际单位制(SI)基本单位表
化学一.化学基本概念
1.概念定律
物质的组成
物质的分类
物质的变化
物质的量
2.综合应用
二.化学基本理论
1.概念定律
物质结构元素周期律
化学反应速率与化学平衡
电解质溶液
2.综合应用
三.元素及其化合物
1.知识规律
非金属的特征
卤族
氧族
氮族
碳族
金属的活动性顺序与金属的化学性
常见金属氧化物及氢氧化合物
钠、镁、铝、铁及它们的重要化合物之间的转化关系2.综合应用
四.有机化学基础
1.知识规律
有机物组成和结构的一些重要概念
几种烃的结构、性质和制
几种烃的衍生物的结构、性质和生成方法
油脂、糖类和蛋白质
有机反应的主要类型
有机物的检验与鉴别
2.综合应用
五.化学实验
1.知识能力
常见仪器
常见的组装仪器
常见物质的检验
定量实验
2.综合应用
六.化学计算
1.技能能力
有关原子量、分子量及确定分子式的计算
有关物质的量的计算
有关气体摩尔体积的计算
有关物质溶解度的计算
有关溶液浓度的计算
有关溶液PH与氢离子浓度、氢痒根离子
浓度的简单计算
利用化学反应方程式的计算
以上各种化学计算的综合应用
2.解题方法
关系式法
差量法
守恒法
公式法
最小公倍数法
中间值法
比较法
等量代换法
灵活性、综合性、新颖性和技巧性都很强的化学计算大题。