2011年考研数学二真题及解析

合集下载

2011年考研数学数二真题解析

2011年考研数学数二真题解析

2011年全国硕士研究生入学统一考试数学二一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个符合题目要求的.(1)已知当0x →时,()3sin sin3f x x x =-与k cx 是等价无穷小量,则( ) (A) 1,4==k c (B) 1,4==-k c (C) 3,4==k c (D) 3,4==-k c【答案】(C) 【解析】由泰勒展开,因为33sin ()3!x x x o x =-+,所以33(3)sin 33()3!x x x o x =-+.则,333339()3sin sin 33()4()322x x f x x x x o x x o x x ⎛⎫=-=--+=+- ⎪⎝⎭. 当0x →时,3()4f x x ,所以选择(C) .(2)设函数()f x 在0x =处可导,且(0)0f =,则()233()2limx x f x f x x→-=( )2(0)(A) f '- )() 0B (f '- )(C) (0f ' (D) 0【答案】(B) 【解析】()[]()2323332(0)()(0)()2limlimx x x f x f f x f x f x f x xx→→⎡⎤----⎣⎦=()3300(0)()(0)lim 2lim (0)2(0)(0)x x f x f f x f f f f x x'''→→--=-=-=-。

(3)函数()ln (1)(2)(3)f x x x x =---的驻点个数为( ) (A) 0 (B) 1 (C) 2 (D) 3【答案】(C)【解析】(2)(3)(1)(3)(1)(2)()(1)(2)(3)x x x x x x f x x x x --+--+--'=---231211(1)(2)(3)x x x x x -+=--- 令2()31211g x x x =-+,由于2124311120∆=-⨯⨯=>,故()g x 有两个不同的实根,且不是1,2,3,所以()f x 有两个不同的驻点.(4)微分方程2(0)λλλλ-''-=+>x x y y e e 的特解形式为( ) (A) ()x x a e e λλ-+. (B) ()x x ax e e λλ-+.(C) ()x x x ae be λλ-+. (D) 2()x x x ae be λλ-+【答案】(C) 【解析】特征方程为220r λ-=,解得特征根12r r λλ==-, 齐次方程20y y λ''-=的通解为12x x y C e C e λλ-=+, 非齐次方程2x y y e λλ''-=有特解1x y x a e λ=⋅⋅, 非齐次方程2x y y e λλ-''-=有特解2x y x b e λ-=⋅⋅,故非齐次方程2x x y y e e λλλ-''-=+可设特解().x x y x ae be λλ-=+(5)设函数(),g()f x x 均具有二阶连续导数,满足(0)0,(0)0f g ><,且(0)(0)0f g ''==,则函数()()z f x g y =在点(0,0)处取得极小值的一个充分条件是( )(A) (0)0,g (0)0f ''''<>. (B) (0)0,g (0)0f ''''<<.(C) (0)0,g (0)0f ''''>>. (D) (0)0,g (0)0f ''''><.【答案】(A) 【解析】(0,0)(0,0)(0)(0)0()()x z f g f x g y '''===,(0,0)(0,0)(0)(0)0()()y z f g f x g y '''===。

2011-数二真题、标准答案及解析

2011-数二真题、标准答案及解析

0
0
0
小关系是( )
(A) I J K . (B) I K J . (C) J I K . (D) K J I . (7) 设 A 为 3 阶矩阵,将 A 的第 2 列加到第 1 列得矩阵 B ,再交换 B 的第 2 行与第 3
1 0 0
1 0 0
行得单位矩阵,记
P1
=
1
1
0

P2
2 = (1, 2,3)T , 3 = (3, 4, a)T 线性表示. (I) 求 a 的值; (II) 将 1, 2 , 3 由1,2 ,3 线性表示.
(23) (本题满分 11 分)
1 1 −1 1
A 为三阶实对称矩阵,
A
的秩为
2,即 r ( A)
=
2 ,且
A
0
0
=
0
0 .
−1 1 1 1
(A) k = 1, c = 4 . (B) k = 1, c = −4 . (C) k = 3, c = 4 . (D) k = 3, c = −4 .
( ) x2 f ( x) − 2 f x3
(2) 已知 f ( x) 在 x = 0 处可导,且 f (0) = 0 ,则 lim x→0
x3
=(
)
(A) −2 f (0) . (B) − f (0) .
(C) f (0) .
(D) 0.
(3) 函数 f (x) = ln (x −1)(x − 2)(x − 3) 的驻点个数为( )
(A) 0.
(B) 1.
(C) 2.
(4) 微分方程 y − 2 y = ex + e−x ( 0) 的特解形式为( )

2011年考研数学二真题及答案解析

2011年考研数学二真题及答案解析

2011年考研数学二真题及答案解析2011年考研数学二真题及答案解析一、选择题部分1. 如图,矩形OABC中,AB=4,BC=3,M为BC的中点,点D,E分别在AO,CO上,满足AD=CE,连接DE、BM相交于F。

则DE/AB的值等于()。

A.1/3 B.1/4 C.1/2 D.2/3答案:A解析:根据题意,首先连接AM,然后用面积比解法。

设矩形OABC的面积为S,则S=AB×BC=12。

由于AD=CE,所以AM=CM,即BM=1.5,MF=BM/2=0.75。

在ΔABF中,AF是BM的中线,所以AF=BM/2=0.75。

设AC与DE交点为G,则AG=(BC+DE)/2=3+DE/2。

在ΔEBG中,EF是AM的中线,所以EF=AM/2=1.25。

因此,S[DEFG]/S[OABC]=[1-(MF/BC)]×[1-(EF/AB)]=2/3。

所以DE/AB=[S[DEFG]/S[OABC]]1/2=1/3。

2. 若(cosx+sinx)tanx=3,则tan3x的值为()。

A.1/2 B.1/3 C.1 D.3答案:D解析:将(cosx+sinx)tanx=3变形为cosx/(sinx+1/cosx)=3/sin^2(x)。

设y=sin(x),则cos(x)=√(1-y^2),所以上式化为(y+1/√(1-y^2))√(1-y^2)=3/y^2。

整理得y^5+3y^4+3y^3-8=0。

由于y=0不是方程的解,所以可将其化为(y+1)^3=y^2+3y+8/3。

又因为y^2+3y+8/3=(y+3/2)^2+7/12>0,所以y只可能为y=-1或y=-1/2。

当y=-1时,得cos(x)=0,sin(x)=-1,此时tan3x不存在。

当y=-1/2时,得cos(x)=√(1-1/4)=√3/2,sin(x)=-1/2。

因此sin(3x)=3sin(x)-4sin^3(x)=-3/4,cos(3x)=4cos^3(x)-3cos(x)=-1/2。

2011数二真题及解析

2011数二真题及解析

2011数二真题及解析题目一题目描述已知函数f(f)=f2+ff+f在区间[1,2]上为减函数,且f(1)=2,f(2)=1,求函数f(f)的解析式。

解析由题目已知,函数f(f)=f2+ff+f在区间[1,2]上为减函数,即在该区间上f′(f)<0。

又根据函数的导数的性质,有f′(f)=2f+f。

因此,要使f(f)在区间[1,2]上为减函数,必须满足f′(f)< 0,即2f+f<0。

又知道f(1)=2,即将f=1代入f(f)的解析式,得到1+ f+f=2,即f+f=1。

再将f(2)=1,即将f=2代入f(f)的解析式,得到4+2f+f=1,即2f+f=−3。

将f+f=1和2f+f=−3联立,可以求解得到f=−2和f=3。

因此,函数f(f)的解析式为f(f)=f2−2f+3。

题目二题目描述设随机变量f的概率密度函数为$ f(x) = \begin{cases} kx^2, & \text{0<x<1} \\ 0, & \text{其他} \end{cases} $求常数f的值。

解析根据随机变量的概率密度函数的性质,概率密度函数f(f)需要满足以下两个条件:1.$f(x) \\geq 0$,即在定义区间内,概率密度函数的取值不能为负。

2.$\\int_{-\\infty}^{\\infty} f(x) dx = 1$,即概率密度函数的积分等于1。

由题目已知条件可知,在定义区间0<f<1内,$f(x)\\geq 0$,因此可以得到$kx^2 \\geq 0$,即$k \\geq 0$。

又根据第二个条件,计算概率密度函数的积分:$\\int_{-\\infty}^{\\infty} f(x) dx = \\int_{0}^{1} kx^2 dx = \\frac{k}{3}x^3 \\Bigg|_{0}^{1} = \\frac{k}{3}$根据第二个条件可知$\\frac{k}{3}=1$,因此f=3。

2011年全国硕士研究生入学统一考试考研数学二真题及详解【圣才出品】

2011年全国硕士研究生入学统一考试考研数学二真题及详解【圣才出品】
【答案】B
【考点】定积分值大小的比较
【解析】x∈(0,π/4),有 sinx<cosx<1<cotx,则 lnsinx<lncosx<0<lncotx,故 π
J 4 ln cot xdx 0 0
4 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台

π
π
十万种考研考证电子书、题库视频学习平台
C.x(aeλx+be-λx)
D.x2(aeλx+be-λx)
【答案】C
【考点】微分方程特解的求法
【解析】原方程对应的齐次方程的特征方程 y2-λ2=0,解得 y1=λ,y2=-λ,则 y″- λ2y=eλx 的特解 y1=C1xeλx;y″-λ2y=eλx 的特解 y2=C2xe-λx。故原方程的特解 y=x(C1eλx+ C2e-λx)。故选 C 项。
3 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台

C=∂2z/∂y2=f(x)g″(y)
在(0,0)点,A=f″(0)g(0),B=f′(0)g′(0)=0,C=f(0)g″(0)。由
z x
(0,0)
z y
(0,0)
0
可得,(0,0)是 z=f(x)g(y)可能的极值点。若 z=f(x)g(y)在(0,0)有极
5 / 22
圣才电子书

A.α1,α3
十万种考研考证电子书、题库视频学习平台
B.α1,α2
C.α1,α2,α3
D.α2,α3,α4
【答案】D
【考点】基础解系的求法
【解析】因为 Ax=0 基础解系含一个线性无关的解向量,所以 r(A)=3,于是 r(A*)
=1,故 A*x=0 基础解系含 3 个线性无关的解向量。又 A*A=|A|E=0 且 r(A)=3,所以 A

2011考研数学二真题

2011考研数学二真题

第4 页 共9 页
明、证明过程或演算步骤 .
∫x ln(1 + t2 )dt
( 15)(本题满分 10 分)已知函数 F (x ) = 0 x3a
,设
lim x→+∞ F ( x) = lim x→0+ F ( x) = 0 ,试求 a 的取值范围。
解:由 lim x→+∞ F ( x) = 0 ,所以至少 a > 0
所以 tan α= dy dx
,两边同时对
x 求导数,得
sec2
αdα = dx
d2y dx2
由题知
dα dy = ,并且
sec2 α= 1+ tan2 α所以得微分方程
dx dx
?d 2y
? ??
dx
2
?
= dy + ( dy )3, dx dx
y(0) = 0,
此方程是不显含
( 5) 设 函 数 f ( x), g ( x) 均 有 二 阶 连 续 导 数 , 满 足 f (0) > 0, g(0) < 0 , 且
f ′(0) = g′(0) = 0 ,则函数 z = f ( x) g( y) 在点 (0,0) 处取得极小值的一个充分条件
是(

( A ) f ′(0′) < 0, g′(0′) > 0
4t
( ) 解: dx = t2 +1 , dx2 = t 2 +1 3

t
= 1时,
x=
5

y
=
-
1
是极小值
3
3
当 t = - 1时, x = - 1 , y = 1是极大值

2011年考研数学(二)及参考答案

2011年考研数学(二)及参考答案

2011年考研数学试题(数学二)一、选择题1. 已知当时,函数A k=1,c=4B k=a, c=-4C k=3,c=4D k=3,c=-42.A B C D03. 函数的驻点个数为A0 B1 C2 D34. 微分方程A BC D5设函数具有二阶连续导数,且,则函数在点(0,0)处取得极小值的一个充分条件A BC D6.设A I<J<KB I<K<JC J<I<KD K<J<I7.设A为3阶矩阵,将A的第二列加到第一列得矩阵B,再交换B的第二行与第一行得单位矩阵。

记则A=A B C D8设是4阶矩阵,是A的伴随矩阵,若是方程组的一个基础解系,则的基础解系可为A B C D二、填空题9.10. 微分方程11.曲线的弧长s=____________12.设函数 ,则13.设平面区域D由y=x,圆及y轴所组成,则二重积分14.二次型,则f的正惯性指数为________________三、解答题15. 已知函数,设,试求的取值范围。

16. 设函数y=y(x)有参数方程,求y=y(x)的数值和曲线y=y(x)的凹凸区间及拐点。

17. 设,其中函数f具有二阶连续偏导数,函数g(x)可导,且在x=1处取得极值g(1)=1,求18. 设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记是曲线l在点(x,y)外切线的倾角,求y(x)的表达式。

19.证明:1)对任意正整数n,都有2)设,证明收敛。

20.一容器的内侧是由图中曲线绕y旋转一周而成的曲面,该曲面由连接而成。

(1)求容器的容积。

(2)若从容器内将容器的水从容器顶部全部抽出,至少需要多少功?(长度单位:m;重力加速度为;水的密度为)21.已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,,其中,计算二重积分。

22.X01P1/32/3Y-101P1/31/31/3求:(1)(X,Y)的分布;(2)Z=XY的分布;(3)23.A为三阶实矩阵,,且(1)求A的特征值与特征向量;(2)求A参考答案选择题:CBCC ABDD填空题:9. 10. 11. 12. 13 14. 解答题:15. 解:16.解:sss17.解:18. 解:19.解:20. 解:21. 解:22. 解:23. 解:。

2011年研究生入学统一考试数学二试题及解析.doc

2011年研究生入学统一考试数学二试题及解析.doc

2011年全国硕士研究生入学统一考试数学二试题及解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在答题纸指定位置上.1、已知当0x →时,函数()3sin sin 3f x x x =-与kcx 等价无穷小,则(A )1,4k c == (B )1,4k c ==- (C ) 3,4k c == (D )3,4k c ==- 【分析】本题考查等价无穷小的有关知识.可以利用罗必达法则或泰勒公式完成。

【详解】法一:由题设知 1003sin sin 33cos 3cos31=lim=lim k k x x x x x xcx kcx-→→-- 23003sin 9sin 33cos 27cos3=lim=lim (1)(1)(2)k k x x x x x xk k cx k k k cx --→→-+-+--- 3024=lim(1)(2)k x k k k cx -→--从而(1)(2)243k k k c k --=⎧⎨=⎩,故3,4k c ==。

从而应选(C )。

法二:333333(3)()3(())(3())4()3!3!x x f x x o x x o x x o x =-+--+=+ 所以3,4k c ==。

,从而应选(C )。

2、已知()f x 在0x =处可导,且(0)0f =,则2330()2()lim x x f x f x x→-= (A )2'(0)f - (B )'(0)f - (C ) '(0)f (D )0【分析】本题考查导数的定义。

通过适当变形,凑出()f x 在0x =点导数定义形式求解。

【详解】2322333300()2()()(0)()(0)limlim[2]x x x f x f x x f x x f f x f x x x →→---=- ()2233300()(0)()(0)lim 2lim '0x x x f x x f f x f f x x →→--=-=- 故应选(B )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年考研数学二考试真题试题及答案
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
2011全国硕士研究生入学统一考试数学二真题答案解析
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问。

相关文档
最新文档