多边形及其内角和教学设计

合集下载

部编版八年级数学上册《多边形及其内角和》教案及教学反思

部编版八年级数学上册《多边形及其内角和》教案及教学反思

部编版八年级数学上册《多边形及其内角和》教案及教学反思一、教学目标1. 知识目标1.了解多边形的概念和性质;2.掌握求解多边形内角和的方法;3.掌握多边形的分类。

2. 能力目标1.能够通过给定的多边形求解其内角和;2.能够应用所学知识解答相关数学题目。

3. 情感目标1.培养学生对于数学知识的兴趣和探究欲望;2.提高学生解决实际问题的能力。

二、教学重难点1.求解多边形内角和;2.掌握多边形的分类。

三、教学方法1.演讲法;2.示范法;3.案例法;4.互动式教学。

四、教学内容安排第一课时:引入与概念教学目标1.介绍多边形的概念;2.介绍多边形的性质;3.引导学生了解多边形的基本特征。

教学内容1.课前引入:介绍多边形在日常生活中的应用,例如:地图等;2.教师讲解多边形的概念和性质;3.教师演示多边形变化的过程。

教学方法1.演讲法;2.示范法;3.互动式教学。

第二课时:求解多边形内角和教学目标1.了解多边形内角和的概念;2.掌握求解多边形内角和的方法。

教学内容1.教师讲解求解多边形内角和的方法;2.通过案例演示求解多边形内角和。

教学方法1.演讲法;2.示范法;3.案例法。

第三课时:多边形的分类教学目标1.掌握多边形的分类;2.能够判断多边形的种类。

教学内容1.教师讲解多边形的分类;2.通过案例演示多边形的分类。

教学方法1.演讲法;2.示范法;3.案例法;4.互动式教学。

第四课时:教学反思教学目标1.自我评价本次教学;2.总结本次教学中的不足与优点。

教学内容1.学生自我评价本次教学;2.教师掌握学生的评价,并进行总结和反思。

教学方法1.互动式教学;2.思维导图法。

五、教学评价1. 对于学生的评价1.通过本次教学,学生掌握了多边形的概念、性质、分类等知识;2.学生参与度高,积极表现。

2. 对于教师的评价1.教师讲解内容清晰易懂;2.教师在教学中注重互动和案例分析。

六、教学反思本次教学中,教师注重课前问题引导,举例子讲解等教学方法,使学生更好地理解和掌握多边形的知识。

《多边形的内角和》教案(通用14篇)

《多边形的内角和》教案(通用14篇)

《多边形的内角和》教案(通用14篇)《多边形的内角和》篇1一、素质教育目标(一)知识教学点1.使学生把握四边形的有关概念及四边形的内角和外角和定理.2.了解四边形的不稳定性及它在实际生产,生活中的应用.(二)能力练习点1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.2.通过推导四边形内角和定理,对学生渗透化归思想.3.会根据比较简单的条件画出指定的四边形.4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.(三)德育渗透点使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好.(四)美育渗透点通过四边形内角和定理数学,渗透统一美,应用美.二、学法引导类比、观察、引导、讲解三、重点·难点·疑点及解决办法1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.四、课时安排2课时五、教具学具预备投影仪、胶片、四边形模型、常用画图工具六、师生互动活动设计教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.第2课时七、教学步骤复习提问1.什么叫四边形?四边形的内角和定理是什么?2.如图4-9, 求的度数(打出投影).引入新课前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题.讲解新课1.四边形的外角与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.2.外角和定理例1 已知:如图4-11,四边形abcd的四个内角分别为,每一个顶点处有一个外角,设它们分别为 .求 .(1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).(2)教给学生一组外角的画法——同向法.即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和.(3)利用每一个外角与其邻补角的关系及四边形内角和为360°.证得:360°外角和定理:四边形的外角和等于360°3.四边形的不稳定性①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的外形和大小,已知一边一夹角,作三角形你会吗?(学生回答)②若以为边作四边形abcd.提示画法:①画任意小于平角的 .②在的两边上截取 .③分别以a,c为圆心,以12mm,18mm为半径画弧,两弧相交于d 点.④连结ad、cd,四边形abcd是所求作的四边形,如图4-13.大家比较一下,所作出的图形的外形一样吗?这是为什么呢?因为的大小不固定,所以四边形的外形不确定.③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的外形改变了,这说明四边形没有稳定性.教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:①四边形改变外形时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的外形就固定了,如教材p125中2的第h问,为克服不稳定性提供了理论根据.(4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育.总结、扩展1.小结:(1)四边形外角概念、外角和定理.(2)四边形不稳定性的应用和克服不稳定性的理论根据.2.扩展:如图4-15,在四边形abcd中, ,求四边形abcd的面积八、布置作业教材p128中4.九、板书设计十、随堂练习教材p124中1、2补充:(1)在四边形abcd中, , 是四边形的外角,且 ,则度.(2)在四边形abcd中,若分别与相邻的外角的比是1:2:3:4,则度, 度, 度, 度(3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角.《多边形的内角和》教案篇2七年级数学下册《多边形的内角和》教案黑龙江省宾县宾西镇第二中学杨显英设计理念:众所周知,数学课堂是以学生为中心的活动的课堂。

多边形的内角和教案(优秀范文5篇)[修改版]

多边形的内角和教案(优秀范文5篇)[修改版]

第一篇:多边形的内角和教案多边形的内角和教案教学目标通过探索多边形的对角线研究多边形的内角和公式,并会应用它们进行有关计算.教学重点、难点重点:多边形的内角和公式的理解和运用.难点:多边形的内角和公式的推导.教学流程设计一、回顾1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?4. 什么是多边形的对角线?二、学生问题探究1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?n边形一共有多少条对角线.三、教师引导学生分析总结:1.通过以上探索我们知道:从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。

这(n-2)个三角形的内角和正好是这个n边形的内角和。

由此我们推导出n边形内角和公式:n边形的内角和:(n一2)·180°.2.n边形一共有n(n-3)/2条对角线.四、示例讲解例1:求八边形的内角和。

例2:如果一个多边形的内角和是2160度,求这个多边形的边数。

五、课堂练习P:86 练习1、2.六、课时小结1.从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。

n边形一共有n(n-3)/2条对角线.2.n边形的内角和:(n一2)·180°.七、学生课后思考:要得到多边形的内角和需通过“三角形的内角和”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?第二篇:《多边形的内角和》教案《多边形的内角和》教案以下是查字典数学网为您推荐的《多边形的内角和》教案,希望本篇文章对您学习有所帮助。

八年级上册《多边形的内角和》教学设计(精选8篇)

八年级上册《多边形的内角和》教学设计(精选8篇)

八年级上册《多边形的内角和》教学设计八年级上册《多边形的内角和》教学设计(精选8篇)作为一名默默奉献的教育工作者,通常需要用到教学设计来辅助教学,借助教学设计可以更好地组织教学活动。

我们该怎么去写教学设计呢?下面是小编收集整理的八年级上册《多边形的内角和》教学设计,希望能够帮助到大家。

八年级上册《多边形的内角和》教学设计篇1教学目标:1、理解多边形及正多边形的定义2、掌握多边形内角和公式。

教学重、难点:教学重点:1、多边形内角和公式。

2、计算多边形的内角和及依据内角和确定多边形边数。

教学难点:多边形内角和公式的推导。

一、创设情境,导入新课前面我们学过了三角形内角和定理,你还记得三角形内角和是多少度吗?你知道四边形内角和的度数吗?如何计算多边形内角和吗?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。

(设计说明:复习引入,开门见山,提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性,从而自然引入新课。

)二、自主探究,发现新知自学教材内容,动手操作,并思考:1、三角形内角和多少度?2、分别从四边形、五边形、六边形一个顶点出发可以引出多少条对角线?你能类比归纳出从n边形的一个顶点出发可以引出多少条对角线吗?3、分别四边形、五边形、六边形从一个顶点出发引出的对角线将原图形分割成多少个三角形?你能类比归纳出从n边形的一个顶点出发引出的对角线把这些多边形分别分割成了多少个三角形吗?4、请结合图形计算四边形、五边形、六边形的内角和。

5、从n边形一个顶点出发可以引出多少条对角线呢?这些对角线将n边形分割成了多少个三角形?现在你知道多边形内角和公式了吗?6、用几何符号表示你的发现。

(师生活动:学生自学教材,结合探究提纲思考、作图、观察、讨论,教师做好板书准备后巡视检查学生自学情况,深入学生之间交流,掌握学情,为展示交流做准备。

)(设计意图:从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,让学生体会分割的过程,有利于深入领会转化的本质——n边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性, 同时,渗透类比的数学思想。

八年级数学上册 11.3.2 多边形及其内角和教案

八年级数学上册 11.3.2 多边形及其内角和教案

多边形的内角和《多边形的内角和》优秀教学设计教学目的1、会应用多边形内角和公式进行计算。

2、经历探究多边形内角和计算方法的过程,培养学生的探究能力。

3、感受数学的转化思想,认识多边形知识的实际应用价值。

重点多边形的内角和的应用。

难点推导多边形的内角和公式。

教具准备三角尺、小黑板教学过程一、回顾交流,讲授新课回顾与迁移:1、△ABC的内角和等于多少度?外角和等于多少度?2、正方形、长方形的内角和等于多少度?任意一个四边形ABCD的内角和又是多少呢?外角和呢?板书:多边形的内角和1、四边形从一个顶点出发能引几条对角线?它们把四边形分割成几块三角形?五边形、六边形、……、n边形呢?2、四边形的外角和为多少?五边形、六边形、……、n边形呢?填空:从四边形的一个顶点出发,可以引__________条对角线,它们将四边形分为________个三角形,四边形的内角和等于180º╳________。

从五边形的一个顶点出发,可以引__________条对角线,它们将五边形分为________个三角形,五边形的内角和等于180º╳________。

从六边形的一个顶点出发,可以引__________条对角线,它们将六边形分为________个三角形,六边形的内角和等于180º╳________。

从n边形的一个顶点出发,可以引__________条对角线,它们将n边形分为________个三角形,n边形的内角和等于180º╳________。

多边形的内角和计算公式:多边形的内角和等于______________。

问题:把一个多边形分成几个三角形,还有其他分法吗?由新的分法,能得出多边形内角和公式吗?二、范例学习,应用所学例1、如果一个四边形的一组对角互补,那么另外一组对角有什么关系呢?已知:如图,在四边形ABCD中,∠A+∠C=180º,问:∠B与∠D有什么关系?例2、如图,在六边形的每一个顶点处各取一个外角,这些外角的和叫做六边形的外角和。

多边形内角和教案

多边形内角和教案

多边形内角和教案一、教学目标1. 让学生理解多边形的内角和的概念。

2. 引导学生通过观察、操作、推理等方法探索多边形的内角和定理。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 多边形的内角和的概念。

2. 多边形的内角和定理的探索。

三、教学重点与难点1. 教学重点:多边形的内角和的概念,多边形的内角和定理的探索。

2. 教学难点:多边形的内角和定理的理解和应用。

四、教学方法1. 采用问题驱动法,引导学生通过观察、操作、推理等方法探索多边形的内角和定理。

2. 利用多媒体辅助教学,直观展示多边形的内角和的概念和定理。

五、教学准备1. 多边形的模型或图片。

2. 多边形的内角和定理的PPT课件。

【教学活动】1. 引入:通过展示多边形的模型或图片,引导学生观察多边形的内角,并提出问题:“你们认为多边形的内角和是什么?”2. 讲解:讲解多边形的内角和的概念,并给出定义。

3. 探索:引导学生通过观察、操作、推理等方法探索多边形的内角和定理。

可以分组讨论,每组尝试找出一种方法来计算多边形的内角和。

4. 展示:每组展示他们的探索结果,并解释他们的方法。

5. 总结:总结多边形的内角和定理,并给出证明。

6. 练习:给出一些多边形的内角和的问题,让学生独立解决。

7. 作业:布置一些相关的练习题,让学生回家后巩固所学内容。

六、教学活动1. 巩固:通过PPT课件复习上节课所学的多边形的内角和定理。

2. 实践:让学生分组,每组选择一个多边形,使用工具(如剪刀、纸张)制作该多边形的模型,并测量其内角和。

3. 分享:每组将测量结果和制作过程进行分享,讨论在实践过程中遇到的问题和解决方法。

4. 讲解:针对学生分享的内容,进行点评和讲解,纠正可能的错误理解,加深学生对多边形内角和定理的理解。

七、教学活动1. 拓展:引导学生思考,除了正多边形,其他类型的多边形内角和是否有规律可循。

2. 探索:学生分组讨论,尝试找出不同类型多边形内角和的规律。

多边形及其内角和教学设计、教案

多边形及其内角和教学设计、教案
1、学生思考。回答出度量法、拼凑法。
2、学生按照小组进行讨论,画图想办法求出四边形的内角和,思考并说明理由。
3、每个小组派代表展示探究结果。(共四种方法,在顶点、边上、内部、外部任取一点做辅助线)
4、再次感受探究过程,ຫໍສະໝຸດ 清思路。5、利用辅助线将四边形分成成三角形。因为我们知道三角形的内角和是180°
1、学生回答:“三角形内角和为180°”。
2、学生回答:“长方形、正方形的内角和是360°”。
3、学生回答:“任意四边形的内角和是360°”。
1、简要复习,引出探究课题。
2、唤醒学生已有知识,将有助于后续问题的解决。
(二)
讲授新知
合作探究
(共25分钟)
1、你是怎样得到的任意四边形的内角和是360°?
1、通过观察生活中多边形的实例,培养学生热爱生活的积极人生态度,通过发现和解决生活中的数学问题,使他们获得成功的愉悦。
2、通过教学,对学生进行事物之间是相互联系和运动变化的辩证唯物主义观点的教育。
教学重点
理解并掌握多边形的内角和公式。
教学难点
多边形的内角和公式的推导过程。
教学方法
引探式教学法
讨论式教学法
13、讲授公式内数字与字母表示的意义,达到学生知识的内化。
(三)
巩固新知
拓展训练
(共10分钟)
1、随堂练习
(1)利用公式计算八边形、十边形的内角和。
(2)根据多边形内角和度数,计算多边形的边数。
①1440°②1800°
2、利用这个公式,我们就可以很快地求出任意多边形的内角和,大家看例1,动手做一做。(幻灯片展示“例1”题目)
7、下面每位同学用探究1中总结的最简单方法,将一些多边形分成成若干个三角形,然后来探索五边形、六边形、七边形的内角和分别是多少度?(幻灯片出示“探究2”题目)

多边形及其内角和-教学设计

多边形及其内角和-教学设计

11.3多边形及其内角和知识点1(多边形及其相关概念)1.下列说法中,正确的有()①由几条线段连接起来组成的图形叫多边形;②三角形是边数最少的多边形;③n边形有n条边、n个顶点.A.0个B.1个C.2个D.3个2.下列图形中,不是多边形的是()3.对于多边形的外角,最准确的表述是()A.内角的对顶角B.内角的邻角C.与内角有公共顶点的角D.内角的邻补角知识点2(多边形的对角线)4.从2017边形的一个顶点出发能作出的对角线的条数为()A.2017B.2016C.2.015D.2.0145.[2017湖北武汉港城市一中月考]若n边形恰好有n条对角线,则n 为()A.4B.5C.6D.76.从一个多边形的一个顶点出发共可作l0条对角线,则这个多边形共有对角线的条数为()A.35B.65C.70D.1307.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n=_____.8.画出如图所示的六边形ABCDEF的所有对角线.知识点3(正多边形)9.下列说法中不正确的是()A.正多边形的各边都相等B.各边都相等的多边形是正多边形C.正三角形就是等边三角形D.六条边都相等,六个内角都相等的六边形是正六边形10.下列属于正多边形的特征的有()①各边相等;②各个内角相等;③各条对角线长都相等;④各个外角相等;⑤从一个顶点引出的对角线将正n边形分成面积相等的(n-2)个三角形.A.2个B.3个C.4个D.5个11.已知一个四边形各个内角都等于90°,且其四条边a,b,c,d满足关系式(a-b)2c d-b-d丨=0,则这个四边形是什么四边形?请说明理由.12.一个正多边形的边长为整数,且周长为12,则这个正多边形是几边形?参考答案过基础1.C【解析】因为多边形是由一些线段首尾顺次连接组成的封闭图形,所以①不正确;易知②③正确.故选C.2.C【解析】A是四边形,是多边形;B是五边形,是多边形;C是由线段与曲线组成的封闭图形,不是多边形;D是五边形,是多边形.故选C.3.D4.D【解析】由多边形对角线的定义:连接多边形不相邻的两个顶点的线段叫做多边形的对角线,可知,n边形有n个顶点,与其中一个顶点不相邻的顶点有(n-3)个,因此从n边形的一个顶点出发能作出(n-3)条对角线.2017-3=2014.故选D.5.Bn(n-3)= n.因为n≠0,所以可在方程两边同【解析】由题意,得12(n-3)=1,解得n=5.故选B.时除以n,得126.B【解析】由题意可知多边形的边数为10+3=13(条),则共有对角线×13×(13-3)=65.故选B.的条数为127.11【解析】从n边形的一个顶点出发能作出(n-3)条对角线,把n边形分成(n-2)个三角形.依题意,得n-2=9,解得n=11.8.【解析】如图所示.9.B【解析】根据正多边形的概念,可知正多边形的各边都相等,但各边都相等的多边形不一定是正多边形,如菱形,所以B项错误.故选B.10.B【解析】正多边形只具有以下特征:各边相等,各个内角相等,各个外角相等,所以只有①②④符合题意.故选B.11.【解析】正方形,理由如下:因为(a-b)²c d-b-d丨=0,所以a-b=0,c-d=0,b-d=0,所以a=b,c=d,b=d,所以a=b=c=d,又四边形的各个内角都等于90°,所以该四边形是正方形.12.【解析】设这个正多边形的边数为n(n>2),边长为m,且m,n 均为正整数,则mn=12.当n=3时,m=4;当n=4时,m=3;当n=6时,m=2;当n=12时,m=1.综上,可知这个正多边形可能是正三角形、正方形、正六边形、正十二边形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多边形及其内角和教学设计(二)教学设计思路
通过具体的图形来让学生更好的理解一些概念。

对于多边形的内角和定理及其外角和定理要启发引导学生积极参与,一起分析、探究总结出所要的结论。

通过例题来巩固这些知识点。

教学目标
知识与技能
表述多边形的有关概念(内角、外角、对角线、凸多边形、凹多边形、正多边形);
探索并说出多边形的内角和与外角和公式;
能根据多边形内角和公式与外角和公式求多边形内角的度数和多边形的边数;
进一步发展说理能力和简单的推理能力。

过程与方法
经历探索多边形内角和与外角和公式的过程,实际测量,推理。

情感态度价值观
通过探索过程进一步体会知识点之间的联系;
通过本节的学习进一步体会数学与现实生活的紧密联系。

教学重点和难点
重点是多边形的内角和定理。

难点是学会善于运用三角形的有关知识来研究多边形的问题。

能够灵活运用多边形内角和与外角和解决相关问题。

教学方法
启发引导、合作探究
课时安排
2课时
教学媒体
课件:多边形及其内角和(二)
教学过程设计
(一)引入
你能从ppt的第2页中找出几个由一些线段围成的图形吗?
(二)一些概念
现在我们来学习一个概念:多边形。

播放ppt第3页
学习了以上概念后我们再来看ppt第2页中的图形都可以看作是几边形呢?
播放ppt第4页
接下来我们学习多边形的一些相关概念:内角、外角、对角线、凸多边形正多边形。

结合课本上的概念播放ppt5~8页来一起学习这些概念。

(三)练习
一起学习课本86页的练习
(四)小结
引导学生总结本节的知识点。

(五)板书设计
第二课时
(一)引入
播放ppt第9页
正方形、长方形的内角和都等于360°,其他四边形的内角和等于多少?
(二)探究
播放ppt10~14页
(三)例题
例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?
解:如图7.3—10,四边形ABCD中,
∠A+∠C=180°。

因为∠A+∠B+∠C+∠D=(4-2)×180°=360°,
所以∠B+∠D=360°-(∠A+∠C)
=360°-180°=180°。

这就是说,如果四边形的一组对角互补,那么另一组对角也互补。

例2如图7.3—11,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和。

六边形的外角和等于多少?
分析:考虑以下问题:
(1)任何一个外角同与它相邻的内角有什么关系?
(2)六边形的6个外角加上与它们相邻的内角,所得总和是多少?
(3)上述总和与六边形的内角和、外角和有什么关系?
联系这些问题,考虑外角和的求法。

解:六边形的任何一个外角加上与它相邻的内角,都等于180°。

6个外角连同它们各自相邻的内角,共有12个角。

这些角的总和等于6×180°。

这个总和就是六边形的外角和加上内角和。

所以外角和等于总和减去内角和,即外角和等于6×180°-(6-2)×180°=2×180°=360°。

(四)探究
如果将例2中六边形换为n边形(n的值是不小于3的任意整数),可以得到同样结果吗?
播放ppt15~16页
由上面的探究可以得到:
多边形的外角和等于360°。

你也可以像以下这样理解为什么多边形的外角和等于360°。

如图7.3—12,从多边形的一个顶点A出发,沿多边形的各边走过各顶点,再回到点A,然后转向出发时的方向。

在行程中所转的各个角的和,就是多边形的外角和。

由于走了一周,所转的各个角的和等于一个周角,所以多边形的外角和等于360°。

(五)练习
一起学习课本89页的练习
(六)小结
引导学生总结本节所学的知识点
(七)板书设计。

相关文档
最新文档