南开除草活性测定方法
29种植物甲醇提取物除草活性的测定

中发 现除草剂 先导化合 物是新 型除草剂 开发 的一 条 最 高浓度 限度 。 药液 配 制 ( 质量 浓 度 5 0 0 rg mL为 例 ) 以 . 0 n / : 重要 途径 , 乙烯 利 、 乙酸 、 如 萘 草铵膦 、 草酮 、 庚 苯 环 . 0 置 0mL试管 中 , 分别加 草醚 、 苯醚类 、 P 二 HP D抑制剂 等都是 以天然产 物为 称取 0 5 00g提取 物 , 于 1 . 再加 蒸 馏 水定 容 先导化合 物开发 成功 的先 例 ] 。近年来 , 环境 保 护 入 0 5mL丙酮 与 甲醇作 为 溶 剂 , OmL, 用玻璃 棒搅拌 ; 然后 超声 波振 动 1 n 0mi, 越来越受 到重视 , 以天 然产 物 为先 导 化合 物研 制 至 1 故 得 0mg mL的母液 。测 定 时溶 除草剂新 品种 , 已经成为 除草剂开 发的重要方 向。 使其充 分溶解 , 到 5 / 0 即将 配 制好 的母 液 倒 进 塑 料 杯 大藻 ( i i t t t . , 名 水 白菜 , 产 液体积 为 1 0 mL, P s as ai e L ) 别 t r os 原 直径 7c m,高 7c , 自来 水 定 容 至 10 mL。 m) 用 0 于南美洲 , 广泛分 布于全球 热带 及 亚热 带 。2 世 纪 ( O 5 年代 , 国作 为饲料从 巴西 引进 大藻 并进 行 大规 其 余不 同浓度 的药液 配制与此类 推 。 0 我 初试质 量浓度 为 5 0 0mg mL, 杯放入 3株 . 0 / 每 模种 植 , 现在 主要分 布于华南 、 东和 长江流域 。由 华
除草剂生物测定方法

三、除草剂室内生物测定方法
2.3 、燕麦法 本法适于测定三氮苯除草剂如阿特拉津、 西玛津以及取代服类除草剂的活性。
31
三、除草剂室内生物测定方法
2.4 、萝卜叶子法 常用于测定触杀型除草剂,如百草枯、 除草醚、敌稗等。
32
三、除草剂室内生物测定方法
2.4 、萝卜叶子法 萝卜种子放于垫有二层滤纸的在培养皿内, 加入适量蒸馏水,加盖后置于27 ℃恒温 箱内培养约30h,从幼苗上切下子叶,选 择一致的10片放于垫有一层滤纸的培养皿 内(直径5cm),皿内盛有2mM磷酸缓冲 液配制的除草剂药液5ml,25 ℃ , 2000~3000lx光照下恒温培养,3天后, 称子叶鲜重(也可测叶绿素含量)。
3.1 藻类实验法 用烧杯或三角瓶,分别加入培养基和一定 浓度的除草剂,25 ℃下,荧光灯照明培 养。
37
三、除草剂室内生物测定方法
测定方法 A:观察颜色变化方法 某些药剂处理小球藻后,可使小球退色, 可以施药5天后观察小球藻退色变化情况。
38
三、除草剂室内生物测定方法
测定方法 B:通过比色测定小球藻增殖率的方法 小球藻增殖,培养液中的绿色逐渐变浓, 用分光光度计在波长547nm下比色测定, 吸光度与小球藻细胞数量间存在明显的直 线关系。
48
四、除草剂生物测定技术的应用
2、除草剂作用特性的测定 在研究除草剂的吸收与作用部位时,可用活 性炭作隔离层。
41
三、除草剂室内生物测定方法
3.2 浮萍法 以10%的Hoagland培养液配制待测药剂, 在每杯100ml药液表面上放10株大小一致 不带芽体的紫萍,1-2周后调查反应级数 (根据药害,即叶片黄化或失绿等),或 用80%丙酮于冰箱中萃取叶绿素,以分光 光度计在652nm下测光密度。
农药生物测定(1)

1、标准目标昆虫:是指被普遍采用的,具有一定代表性和经济意义,以及抗药力稳定均匀的农药杀虫毒力和毒效指示试虫群体。
2、毒力:是指药剂本身对不同生物发生直接作用的性质和程度。
3、药效:是在田间或接近田间的条件下所测定的药剂对生物的作用效果。
4、致死中量的置信限:即致死中量的可靠范围,亦即供试昆虫种群致死中量真值的波动范围。
5、内吸杀虫剂:凡是可以通过植物根茎叶以及种子等部位渗入植物内部组织,随着植物体液传导植株,不妨碍植物的生长发育,而对害虫具有很高毒效的化学物质,称为内吸杀虫剂。
6、内吸杀虫作用:昆虫由于受内吸杀虫剂的毒杀作用而致死亡的过程,称之为内吸杀虫作用。
7、杀菌剂室内生物测定:将杀菌物质作用于细菌、真菌或其它病原物(包括线虫),根据其作用效果的大小来判断药剂毒力。
8、除草剂的生物测定:利用生物体(作物试材、杂草试材,主要指有害生物)对除草剂的反应,来测定除草剂的毒性及其效果的基本方法。
9、杀虫剂室内生物测定:在实验室条件下,以昆虫(包括螨类)对杀虫剂的反应来鉴别某一种农药或某一类化合物的生物活性测定的一种基本方法。
1、杀虫剂生物测定存在的问题(1)评判标准单一(2)人为地固定检查时间(3)无统一的标准试虫(4)一般用校正死亡率表示核心是没有系统评判生物测定结果的方法和标准。
2、影响杀虫剂毒力测定的主要因素分析(1)杀虫剂和溶剂杀虫剂:其理化性质是决定毒力的根本原因。
溶剂:对药剂本身的理化性质一般不产生影响,但不同溶剂会影响昆虫表皮。
(2)环境条件温度:影响到处理前---养虫;影响到处理过程中---挥发、吸收等;影响到处理后---昆虫的死亡率。
湿度:一般不影响杀虫剂的穿透性及作用速度,也不影响解毒过程,通常它只影响昆虫对杀虫剂的忍受力。
光照条件以及昆虫在药剂处理前后的食物供应,营养条件等也会影响到测定结果。
(3)供试昆虫:不同种类的昆虫敏感性不同;同种昆虫不同品系对杀虫剂的敏感性也不同;昆虫不同发育阶段对杀虫剂的敏感性也不同(卵期通常对杀虫剂的敏感性比较低,通常以为有杀虫卵作用的杀虫剂,有很多主要是杀了初孵幼虫);昆虫的性别与生殖对杀虫剂的敏感性(一般雌性昆虫对杀虫剂的敏感性比雄性昆虫低,但对有机磷杀虫剂来讲,则雌性个体比雄性个体感受性低。
南开大学科技成果——禾本科杂草除草剂-拿捕净

南开大学科技成果——禾本科杂草除草剂-拿捕净
拿捕净的化学名称为2-[(1-乙氧基亚氨基)丁基]-5-[2-(乙硫基)丙基]-3-羟基-2-环己烯-1-酮,是一种具有内吸传导性的茎叶处理除草剂,对禾本科杂草的杀伤力很强。
可用于大豆、棉花、花生、甜菜、亚麻、油菜、苜蓿、蔬菜、水果及许多其它双子叶作物,防除一年生及多年生禾本科杂草。
敏感的杂草有鼠尾看麦娘、野燕麦、雀麦草、马唐、稗、蟋蟀草、黑麦草、藜、狗尾草、葡萄冰草、狗牙根、白茅、石茅等;具有抗性的杂草有紫羊矛及早熟禾;对阔叶作物极为安全,是阔叶作物田中难得的苗后应用除草剂。
拿捕净由禾本科杂草的叶面迅速吸收,并转移到分生组织中,在土壤中的残留期短;鉴于这类除草剂具有选择性高、防效高、不用芳烃原料等特点,近年来世界各国对这类环己二酮类除草剂的研制仍十分活跃。
我国具有拿捕净所需原料的生产能力,有条件实现拿捕净的国产化以满足农业的大量需求。
南开大学拿捕净小试合成技术已通过省级技术鉴定。
《除草剂生物测定》课件

确保实验室内温度、湿度等环 境条件适宜,并保持实验室的 清洁卫生。
实验仪器和试剂准备
准备好实验所需的仪器设备、 试剂和化学药品。
实验操作人员培训
确保实验操作人员熟悉实验步 骤和注意事项,具备相应的实
验技能和知识。
实验操作流程
培养基制备
根据实验需要,制备适合植物 生长的培养基。
植物培养
将处理后的种子种植在含有除 草剂的培养基中,并保持适宜 的生长条件。
优势
具有较高的灵敏度和特异性,能够快速、准确地 反映除草剂对植物生长的影响。
局限性
实验条件较为严格,需要专业人员操作和数据分 析。
PART 02
除草剂生物测定的方法
REPORTING
室内生物测定
01
02
03
定义
在实验室内进行的生物测 定,模拟自然环境中的条 件,评估除草剂对植物生 长的影响。
优点
种子处理
将植物种子进行适当的处理, 如消毒、催芽等。
除草剂处理
将除草剂添加到培养基中,制 备出含有不同浓度除草剂的培 养基。
数据记录
观察并记录植物的生长情况, 如株高、叶面积等。
实验结果分析
数据整理
整理实验过程中记录的数据,包括植物生长 指标、除草剂浓度等。
结果解释与讨论
根据数据分析结果,解释除草剂对植物生长 的影响,并对其机制进行讨论。
实验误差控制
实验操作规范
制定详细的实验操作规程,确保实验过程的一致性和 准确性。
仪器校准和维护
定期对实验仪器进行校准和维护,确保仪器性能稳定 可靠。
数据记录与处理
准确记录实验数据,采用合适的数据处理方法,减小 误差对结果的影响。
《除草剂的生物测定》课件

实验评价:实验结果符合预期,证明了除草剂对植物生长的影响,为除草剂的使用提供了科学依据。
除草剂的生物测定实例分析
实验目的:研究不同除草剂对小麦发芽率的影响
实验材料:小麦种子、不同种类的除草剂
实验方法:将小麦种子分别浸泡在不同种类的除草剂中,观察发芽情况
实验结果:不同种类的除草剂对小麦发芽率有不同影响,有的除草剂对小麦发芽率有抑制作用,有的则没有影响。
生物测定的方法包括急性毒性测定、慢性毒性测定、生殖毒性测定等。
生物测定的结果可以为除草剂的安全使用提供科学依据。
生物降解研究:研究农药在生物体内的降解过程和降解产物
农药残留检测:检测农产品中的农药残留量
环境监测:检测土壤、水体、大气等环境中的农药残留量
农药毒性研究:研究农药对生物体的毒性作用和毒性机制
生物测定的定义:通过生物实验来测定除草剂的毒性、药效和残留等指标
生物测定的方法:包括急性毒性试验、慢性毒性试验、残留试验等
生物测定的应用:在农药登记、环境监测、食品安全等领域具有广泛应用
生物测定是通过生物反应来测定除草剂的毒性和活性的方法。
生物测定的原理是利用生物对除草剂的敏感性,通过观察生物的反应来评估除草剂的毒性和活性。
数据整理:对收集到的数据进行整理,包括数据清洗、数据转换等
数据解释:根据数据分析结果,解释实验结果,如除草剂对植物生长的影响等
实验目的:评估除草剂对植物生长的影响
实验方法:使用不同浓度的除草剂处理植物,观察生长情况
实验结果:不同浓度的除草剂对植物生长有不同影响,低浓度除草剂对植物生长影响较小,高浓度除草剂对植物生长影响较大
优点:可以评估除草剂对非目标生物的影响,保护生态环境
缺点:需要较长的时间进行实验,不能立即得到结果
除草剂生物测定方法及操作方法

生物测定技术是除草剂研究的一项基本工作,是除草剂活性测定、安全性检测以及残留诊断的常用方法,特别是在除草剂新品的研制开发中发挥着不可替代的作用,也是高通量筛选中必不可少的手段之一[1]。
1 除草剂生物测定方法
除草剂生物测定的主要方法有:点滴法、小杯法或培养皿法、浮萍法、玉米幼苗法、黄瓜幼苗法、燕麦幼苗法、萝卜子叶法、番茄水培法、稗草胚轴法等[2]。除草剂具有控制生长激素的分泌,干扰蛋白质、叶绿素、脂类等的生物合成,抑制光合作用、细胞分裂、呼吸作用等多种作用方式,利用生物活体作为靶标是生物测定中的一种常规选择,生物测定中靶标生物的生长发育情况、生理生化指标以及形态特征的变化可作为除草剂生物活性的判定依据。另外,在进行除草剂生物测定时,除草剂的不同作用方式决定了靶标生物和测定方法的选择。
1.4 细胞或细胞器水平测定
特定作用机制的除草剂可采用细胞或细胞器水平测定,其中又以线粒体和叶绿体中的特定生理生化反应的测定居多。在离体线粒体中,可以采用瓦氏呼吸装置测定氧的吸收和磷氧比,进而确定呼吸作用抑制剂类除草剂的活性[8]。三氮苯类等光合作用抑制剂类除草剂作用于光系统Ⅱ中质体醌QB结合部位,替换与D1 蛋白结合的质体醌QB,致使电子传递受阻,这类除草剂可以测定希尔反应活性,通过测定铁氰化钾光还原,折算成放氧活力,能很好地反映除草剂的除草活性[9]。另外,细胞器中特定物质含量的测定也可以作为测定指标用于除草剂活性评价,如叶绿素含量测定,在用于新型磺酰脲类除草剂HNPC-C9908 活性测定时,藻细胞中叶绿素含量随供试药剂浓度的增加而逐渐降低,表现出良好的剂量———效应关系[10]。
1.1 组织或器官水平测定
组织或器官水平测定常用的有叶片、种子、根尖等,一般在实验室进行。选用种子作为生物测定的供试材料时,通常采用小杯法或培养皿法。培养皿法的培养介质一般是常规自来水,在培养皿内垫上两层滤纸,把一定数量的种子均匀地铺在滤纸上,提前把需要测定的除草剂按事先设定好的浓度梯度进行稀释,再用移液枪将不同浓度梯度的除草剂加入培养皿,放入培养箱,设定好适宜的温度和湿度,进行培养。小杯法可以采用灭菌、过筛的沙子,均匀地将细沙填充到小杯的固定位置,把一定数量的种子均匀铺设到沙子上,再覆盖上厚度基本一致的细沙。可以用地上植株鲜重、株高或主根长作为测量指标,具体采用哪项指标应依据预备实验结果来确定,但是选定的指标应具备稳定性好、相关性好以及容易测量的特点。以主根长生测法应用最为广泛。例如采用油菜或玉米主根长生测法测定磺酰脲类除草剂残留活性[3,4]。在选用种子作为生测材料时, 供试的种子一定是近一年或两年的,必须进行预实验,确保种子发芽率高、发芽势稳定,否则会影响试验结果。
中药材中常用除草剂检测方法

在中药材中常用的除草剂检测方法主要包括以下几种:
1.气相色谱-质谱联用仪(GC-MS)检测法:该方法可用于检测多种除草剂,如阿特拉津、异恶草酮、乙草胺、扑草净、异丙甲草胺、二甲戊灵、丁草胺、丙草胺和乙氧氟草醚等。
样品用乙腈提取,采用N–丙基乙二胺(PSA)和石墨化炭黑(GCB)净化,选择离子监测模式(SIM)进行检测,外标法定量。
2.QuEChERS方法:该方法结合气相色谱-质谱联用仪,适用于多种除草剂的残留分析。
样品用乙腈提取,采用N–丙基乙二胺(PSA)和石墨化炭黑(GCB)净化,选择离子监测模式(SIM)进行检测,外标法定量。
除以上两种方法外,还可采用高效液相色谱法、液相色谱-串联质谱法等检测方法。
无论采用哪种方法,都需要根据具体的除草剂种类和检测需求进行选择和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
除草活性测定方法
南开方法:
汉语文献来源:
任康太,宋洪海,杨秀凤等.3-烷氧基-6-取代苯氧基哒嗪的合成及其除草活性的构效关系[J].高等学校化学学报.2000,21(12):1840-1843.
P I50测定
根据所设定的药剂处理浓度, 称取各待测样品, 用DM F 溶解后再用蒸馏水定容, 配制成乳剂,在50 mL 小烧杯的底部放一张直径4 cm 的滤纸片, 吸取预先配制好的待测药液5 mL , 加入小杯内, 选取萌发稗草种子10 粒均匀播种在滤纸片上, 将其置于28 ℃恒温光室
中培养, 72 h 后测量稗草株高, 与用蒸馏水处理的对照相比较计算株高抑制百分数, 取3 次测试结果的平均值, 按线性回归方程y = a+ bx 计算化合物抑制50% 的摩尔浓度( IC50) 和p I50 (~lg IC50) 值。
盆栽除草活性测试
在装有过筛土壤的塑料盆中, 定量播种稗草、马唐、油菜、苋菜种子, 复土后在自然光照条件下, 温室培养. 按1. 5 kg.g.i/h a (有效成份) 的用药量分别称取各供试样品, 用溶剂溶解后加水配成乳剂, 于植物播种后出苗前进行土壤和茎叶处理. 每处理重复2次, 随机排列. 药剂处理后12 d 测量每种植物地上部分的鲜重, 与不施药对照比较, 以鲜重减少百分数作为评价药效指标。
英文文献来源:
W.Q M,S.K H,C.H Y,etal. Synthesis and Herbicidal Activity of
2-Cyano-3-substituted-pyridinemethylaminoacrylates[J].Journal of Agricultural and Food Chemistry.2003,51:5030-5035.
Plant Material. (原材料)
The three broadleaf species used to test the herbicidal activity of compounds were alfalfa (Medicago sativa L. 苜蓿), rape (B.napus 油菜), and amaranth pigweed (Amaranthus retroflexus反枝苋). Seeds of A.retroflexus were reproduced outdoors and stored at room temperature.Seeds of alfalfa and rape were bought from the Institute of Crop, Tianjin Agriculture Science Academy.
Culture Method. (培养方法)
Seeds were planted in 6 cm diameter plastic boxes containing artificial mixed soil. Before plant emergence, the boxes were covered with plastic film to keep moist. Plants were grown in the greenhouse. Fresh weight of the above ground tissues was measured 10 days after treatment. The inhibition percent was used to describe the control efficiency of the compounds.
Treatment. (处理)
The dosage (activity ingredient) for each compound was 1.5 kg/ha
(0.1kg/mu;150mg/m2). Purified compounds were dissolved in 100 μL of N,N-dimethylformamide(DMF) with the addition of a little Tween 20 and were then sprayed using a laboratory belt sprayer delivering a 750
L/ha (50L/mu;75ml/m2)spray volume. The mixture of the same amount of water,N,N-dimethylformamide,and Tween 20 was sprayed as control. Preemergence Treatment.苗前处理
Compounds were sprayed immediately after seed plantings. There were two replicates for each treatment.
Postemergence Treatment.苗后处理
Compounds were sprayed after the first true leaf expanded.
西农方法:
徐冉、吴文君等的种子萌发法并略加改动。
在直径9 cm 培养皿中加入提取1mL (对照加丙酮1 mL)和9mL蒸馏水, 混合均匀, 使提取物浓度达100mg/ mL- 1, 盖上2层滤纸。
然后将10粒作物种子(高粱和油菜种子使用前催芽24 h)水平摆成1行。
所有处理均重复3次, 于( 26 ±1) ℃恒温箱中黑暗培养, (4天)96 h后(高粱和油菜种子培养72 h (3天))分别测量作物幼苗的根长(小麦测量最长根)和茎长, 按下式计算抑制率。
抑制率= 〔(对照根或茎生长长度- 处理根或茎生长长度) /对照根或茎生长长度〕×100%
选取在100 mg/ mL- 1浓度下对4种作物种子具有突出抑制率的不同溶剂提取物, 用丙酮将其稀释至50、25、12. 5、6. 25和3. 125 mg/ mL- 1, 然后按照上述方法进一步研究不同浓度提取物对供试作物幼苗生长的抑制作用。
参考文献:
徐冉, 续荣治. 用荞麦秸秆粉防除杂草的初步研究[ J] . 植物保护,
2002, 28 ( 5) : 24 - 26.
吴文君. 植物化学保护实验技术导论[M ] . 西安: 陕西科学技术出版社, 1988.。