TC4电子束熔炼的XRD分析

合集下载

电子束表面超快速熔凝冷却速率对形成非晶层的影响_

电子束表面超快速熔凝冷却速率对形成非晶层的影响_

第10卷 第4期 石油化工高等学校学报Vol.10 N o.4 1997年12月JOURNAL OF PET ROCH EM ICAL UNIVERSIT IES Dec.1997电子束表面超快速熔凝冷却速率对形成非晶层的影响*胡传顺 陈晓风 孙长义(中国科学院金属研究所,辽宁沈阳 110015)摘 要 为探索制备大面积表面非晶层的新途径,采用电子束表面超快速熔凝处理的方法,通过显微硬度、金相组枳和X射线衍射及透射电镜分析,研究了电子束表面超快速熔凝冷却速率对形成非晶层的影响。

结果表明,电子束与基体的交互作用时间愈短,加热和冷却速率愈大。

随冷却速率增大凝固组织细化,熔凝层显微硬度增大。

当冷却速率为3.34 107 /s时,即可获得可检测的非晶层。

为一般结构材料的表面直接转变为非晶层开辟了新途径。

关键词 电子束; 表面熔凝; 非晶层中图分类号 T G156.99非晶态合金作为一种新材料在国内外已受到愈来愈广泛的重视。

特别是从1974年日本人首次发现Fe-Cr-P-C非晶合金作为阳极材料具有很强的耐蚀性以来[1],二十几年的研究发现[2~5],非晶态合金是盐水电解极佳的阳极材料,例如经表面活化后的非晶钯基合金,在3%盐水静电解实验中电流效率高达95%,迄今为止尚无任何一种阳极材料的电化性能能与之媲美[6]。

然而,尽管非晶态合金具有许多优异的性能,但受到常规 M elt-spun 法制备的非晶尺寸的限制,严重制约了它们的应用[7]。

高能束快速辐照金属表面能快速熔化表面金属而成为快速凝固的有效方法之一[8]。

高能束激光表面熔凝处理因受冷却速率的限制,多采用基体表面涂敷工艺而未取得突破性进展。

尽管电子束表面熔凝处理的研究起步较晚,但远比激光效率高,可实现高速扫描,因此可获得比激光更大的冷却速率。

本文采用无涂敷T C4钛合金,研究了脉冲电子束表面超快速熔凝冷却速率对形成非晶层的影响。

1 实验方法电子束表面处理方法示意图如图1所示,电收稿日期:1997-09-22第一作者:男,36岁,硕士,在读博士,讲师,抚顺石油学院教师。

电子束焊接TC4整体叶盘结构的变形控制

电子束焊接TC4整体叶盘结构的变形控制
不同的焊接顺序对会产生不同的温度热循环,而由 此产生的温度应力和变形也会有所不同,而且随着焊接 过程的进行,后焊焊缝的初始温度会越来越高,各条焊 缝之间温度的相互影响就越来越大。因此,选择整体叶 盘的典型焊接顺序时,按温度影响最小原则。按照排列 的思想,焊接顺序是有规律可寻的,应采用对称排列法 焊接焊缝。
基于焊接结构中的理论,在焊接时采用刚性固定 的方法可以有效地控制焊接变形,这主要是因为刚性固
图 3 叶环结构图 Fig.3 Diagram of blade-ring structure
92 航空制造技术· 2009 年第 23 期
图 4 电子束焊接顺序 Fig.4 Welding order of EBW
定可以避免或者减少结构的外观变形,使得结构的焊接 应力异于常规焊接,刚性夹具卸除后,仅会由于应力的 重新分布产生一定的弹性变形。如果在卸除夹具之前 进行一定的真空时效热处理,则在高温条件下,焊接残 余应力将会释放,出炉卸除夹具后期变形量将会大大降 低。因而对于整体叶盘的变形控制设计应用了这 2 种 变形控制技术。
表 1 TC4 钛合金的化学成分
w/%
Ti Al V Fe C
N
H
O
基 5.82 3.99 <0.05 0.019 0.003 2 0.000 7 0.063
2 电子束焊接工艺参数的确定
由于直接在具有叶片的楔形段上进行工艺试验费 用较高,因此工艺研究采用 35mm 的 TC4 钛合金板材为 研究对象,分析工艺参数对焊缝形状、变形等方面的影 响,在工艺参数确定后再在实际的工件上进行焊接。
具体的电子束焊接工艺参数主要包括高压、电流、 焊接速度以及脉冲波型、频率。由于 TC4 电子束焊接 技术已经比较成熟,这里判断工艺的标准主要为焊缝

TC4钛合金电子束焊缝质量缺陷分析与预防

TC4钛合金电子束焊缝质量缺陷分析与预防

制造技术研究航天制造技术饲奄技jIc研茄TC4钛合金电子束焊缝质量缺陷分析与预防张永和何俊张涛(兰州空间技术物理研究所,兰州730000)摘要:在分析钛及其合金的焊接性的基础上,总结了电子束焊接Tc4钛合金过程中容易出现的典型焊缝质量缺陷,如裂纹、气孔以及咬边等,阐述了各种缺陷的形成机理,归纳并提出了各种缺陷的预防措施。

关键词:钛合金;电子束;缺陷;预防AnalysisandPreVentionofQualityDefectsofTC4TitaIliumAlloyWreldbyElectronBeamW.eldingzh姐gYon曲eHeJunZhallgTao(I舢zhouIIlstitutcofPhysics,LallZllou730000)Abstract:BasedontIleweldabilityanalysisofti谢umanditsalloys,tllispapersurmI谢zesthetypicalquah够de‰tSofTC4titaIliumalloyweldusedelec缸伽be锄welding,suchascracks,bubbleaIldundercut.nlen,fb肌ationmechaIlismof妞V砸ousdef&tSisdesc曲edandkiIldsofde钕tspfeVen矗onaresu衄撕zedandproposed.KeywOrtls:titaniumaUoy;electronbe锄weldiIlg;def&ts;preVention1引言钛及其合金是50年代兴起的一种重要金属结构材料,TC4钛合金由于比强度高、耐腐蚀性好、综合性能优越等特点,在航空航天、化工机械、医药工程和休闲行业中得到了广泛的应用。

目前,钛合金的焊接通常采用传统的钨极氩弧焊、熔化极氩弧焊或等离子弧焊进行焊接,但这几种焊接方法都需要填充焊接材料,由于保护气氛、纯度以及保护效果等因素的限制,容易出现焊缝区脆化、焊接气孔及裂纹等缺附卜41。

TC4钛合金焊后电子束局部热处理残余应力有限元分析

TC4钛合金焊后电子束局部热处理残余应力有限元分析
材扩展.
关键 词 :( 钛合金; T: 4 真空电f柬局部热处理; 数值模拟
中图 分类 号 : ( 3. 文献 标识码 : T ; 65 4 A
随着钛 合金 应 用的 日益广泛 . 合 金材料 焊接 特点 及其结 构 在使 用过 程 中安 食 可椎性 问题也 越 来 钛
越弓网格划分
计 材料熔 化潜 热和 相 变潜热 的影 响. 接 热源 的移 动是通 过焊 缝 单元 逐 步有 热 生成 来模 拟实现 . 于焊 焊 对
接后进行电子束局部热处理 , 电子束热源移动的模拟也按 卜 疗法进 行。 是热载荷时施 加在表面 单元 述
的节点 上. 局部 热处 理 的热 源 为表面 热 源. 即 在加热 宽度 为 6 的 范 I 内保持 外 表 面 温度 ・ . omm 韦 f 致 并保 证 受热 处理 区域 的温 度在 整 个 局部热 处理 过 程中控 制 在 8 0 90 C. 0 0 14 温 度场和 应 力场 计算 . 为简化 问题 。 假设 焊缝 金 属和 母材 的 热物 理性 能参 数相 同 . 其依 赖 于温度 而 变 化的 比热 和导热 系数 根据 资料 : 选 择 . 算 所 用 的 辐 射率 彳 北 京 航 空 工 艺 研 究所 测 定. 得 T 计 F 测 C4合金 室 温 下 的辐 射 率是
维普资讯
内 哉 古 工 业 大学 学 报
J) ( URNA[ OF I . NNER M ( N(( LI ) ) A
第 2 第 1瑚 5卷
VoI 2 No. 2 0 . 5 1 0 6
一 。 = === = =
文章 编 号 :0 1 17 2 0 ) I0 2 J l0 —5 (0 60 一0 1( 6 4
1 焊 接 温度 场 和 应 力场 有 限 元计 算

TC4钛合金表面磁控溅射+TiAlN+涂层的组织与性能

TC4钛合金表面磁控溅射+TiAlN+涂层的组织与性能

32
30 卷
转。 TiAlN 涂层的制备工艺为: 将试样装入镀膜机, 待真空室抽至极限真空度, 将真空室加热至 200 ℃, 然后通入氩气使分压至 1 ~3 Pa, 加负偏压 -800 ~ -1 200 V, 占空比为 60%, 进行氩离子轰击清洗约 10 min; 开启 TiAl 靶, 电流 0畅2 ~0畅4 A, 氩气分压 调至(1 ~3) ×10 -1 Pa , 沉积 TiAl 过渡层约 10 min, 制备一层约 100 nm 的 TiAl 过渡层以改善膜基附着 力, 然后调节氩气分压至(1 ~3) ×10 -1 Pa, 负偏压 调至 -100 ~-300 V, 通入氮气分压至( 5 ~8) × 10 -2 Pa, 沉积时间约 150 min。 通过调节 TiAl 靶电 流、 氮分压等改变磁控溅射的工艺参数, 共进行了 3 组工艺试验。
图 2 3 种磁控溅射工艺沉积的 TiAlN 涂层 XRD 图谱 Fig畅2 XRD patterns of TiAlN coating produced by three
magnetron sputtering technics
2畅3 TiAlN 涂层耐磨损性能 图 3 为 3 种磁控溅射工艺制备的 TiAlN 涂层试
层中 N 的 原 子 分 数 为 48畅42%, Al 的 原 子 分 数 为 22畅82%, Ti 的原子分数为 28畅76%, 高于 Al 的含 量。 工艺 3 沉积的涂层中 N 的原子分数为 48畅75%, Al 的原子分数为 25畅86%, Ti 的原子分数为 25畅39%,
表 1 3 种工艺制备的 TiAlN 涂层成分(%) Table 1 EDS of TiAlN coating produced by three processes

异种状态TC4钛合金电子束焊接性能分析

异种状态TC4钛合金电子束焊接性能分析

异种状态TC4钛合金电子束焊接性能分析
异种状态TC4钛合金电子束焊接性能分析
陈新民;耿雅辉;何迎春;张益坤;顾皞
【期刊名称】《宇航材料工艺》
【年(卷),期】2016(046)002
【摘要】针对相对疏松的铸造钛合金和相对密实的锻造钛合金的焊接问题,开展了两种状态的TC4钛合金电子束焊接工艺研究,对比了不同焊接参数对焊接质量的影响.研究结果表明,采用方波扫描可以较好地实现铸造钛合金与锻造钛合金的连接,焊缝成形良好,内部无缺陷;焊接接头力学性能分析表明,拉伸断裂位置全部在铸件母材区一侧.实焊结果证明,电子束焊接可以实现异种状态TC4钛合金焊接的工程化应用.
【总页数】5页(39-43)
【关键词】电子束焊接;异种材料状态;钛合金
【作者】陈新民;耿雅辉;何迎春;张益坤;顾皞
【作者单位】中国运载火箭技术研究院,北京100076;首都航天机械公司,北京100076;首都航天机械公司,北京100076;首都航天机械公司,北京100076;首都航天机械公司,北京100076
【正文语种】中文
【中图分类】TG406
【相关文献】
1.电子束焊接异种金属铌合金C103与钛合金TC4的工艺研究 [C], 关淑彩
2.热等静压TC4钛合金电子束焊接接头组织与性能[J], 葛一凡; 郎利辉; 黄宁; 刘鑫; 章朋田。

高温工况用激光选区熔化TC4钛合金组织和力学性能研究

高温工况用激光选区熔化TC4钛合金组织和力学性能研究

2020年06月高温工况用激光选区熔化TC4钛合金组织和力学性能研究李庆棠陈秀思王方彬(北京航天新风机械设备有限责任公司,北京100854)摘要:文章对激光选区熔化制备的TC4钛合金的显微组织和力学性能进行了研究。

结果表明,TC4为α+β两相合金,沉积态试样的内部晶粒粗大,成型件原始β晶内的微观组织主要由一定取向的针状马氏体组成;沉积态TC4的抗拉强度为1197MPa,断后伸长率为8%,相比标准TC4铸件强度有明显提升。

关键词:激光选区熔化;TC4钛合金;显微组织;力学性能0引言TC4属于(α+β)型钛合金,具有良好的综合力学性能。

尤其在高温条件下能够保持较好的强度和较低的热导率以及耐化学腐蚀性能[1]。

TC4钛合金被广泛应用于航空航天、化工、船舶等领域[2],用于制造耐高温结构件,如耐高温承力结构、高温反应器壳体、燃料储存容器、高温流体管路以及各类腐蚀性反应容器和管路等。

近年来,随着工程设计的不断完善,具有轻量化特点的各类高温承力TC4钛合金结构设计方法被逐步采用,而传统的结构加工方法不能满足这些轻量化结构的制造要求。

激光选区熔化技术(Selective Laser Melting,SLM)作为增材制造技术中重要的一类制造方法,可以实现复杂结构的快速成型,是解决现有加工难题的主要途径[3]。

增材工艺状态下的钛合金组织特征和缺陷特征直接影响其力学性能,进而影响结构的力学指标。

因此研究TC4钛合金激光选区熔化条件下的组织特征及对力学性能的影响规律具有工程应用价值。

1实验试件成形过程在华曙高科FS271M激光3D打印设备上进行,以打磨擦洗后的TC4钛合金板为沉积基板,制备时采用氩气作为保护气体,采用的打印成型工艺参数为:激光功率225W,扫描速度1000mm/s,层厚30µm。

本文中采用的成型粉末为钛合金球形粉末TC4,粉末粒度为15~53µm,化学成分如表1所示。

表1TC4的化学成分表合金元素质量分数Al6.09V4.18O≤0.20Fe0.09C≤0.10H≤0.015N≤0.05Ti其余为了研究沉积态TC4合金的显微组织,用VHX-600E的光学显微镜进行金相组织观察。

激光选区熔化成形TC4钛合金焊接接头组织与力学性能探究

激光选区熔化成形TC4钛合金焊接接头组织与力学性能探究

激光选区熔化成形TC4钛合金焊接接头组织与力学性能探究摘要:激光选区熔化技术(Selectivelasermelting,SLM)是一种利用激光束熔融粉末凝固成形的增材制造技术,能基于CAD模型,以逐层成形的方式制造零件。

在每层的成形过程中,扫描振镜控制激光束在已铺好粉的表面按照计算的路径进行扫描,使粉末在激光扫描的位置形成熔池并迅速冷却凝固,在完成一层的扫描后,铺粉继续下一层的扫描,直至成形完成,这种离散的成形方式相较于传统的铸造等方式能够成形更为复杂的结构。

随着零件尺寸的不断增大,单台激光器的激光选区熔化设备因扫描振镜、场镜等器件的限制,难以实现大尺寸零件的成形。

而使用双激光甚至多激光的激光选区设备不仅解决了可成形零件在尺寸方面的限制,还因激光器数量的增加提高了成形效率。

基于此,本篇文章对激光选区熔化成形TC4钛合金激光焊接头组织与力学性能进行研究,以供参考。

关键词:激光选区熔化成形;TC4钛合金;激光焊接头组织;力学性能引言为满足轻量化、整体化的制造要求,水下装备零件逐渐朝精密、复杂、薄壁化和结构性能一体化的方向发展,大量复杂内腔、超薄格栅和悬臂等结构的设计对制造技术提出全新的挑战,采用传统技术方法时遇到了瓶颈。

而近年来飞速发展的增材制造技术为复杂精密构件的制造提供了新途径和方案,激光选区熔化成形被认为是最具发展潜力的增材制造技术,国外已尝试应用于航空发动机喷嘴及飞机结构连接部位。

激光选区熔化技术适用于成形形状复杂、精密度高的小型零件,但受设备尺寸及工艺特点等因素影响,大尺寸零部件较为理想的制造方案是成型后进行拼焊连接。

电子束焊接技术具有能量密度高、焊接变形小、焊缝质量高、可控性好等优点,不仅可实现高质量的薄壁件焊接,还能实现大厚度材料的深穿透焊接,可满足SLM成形材料不同结构不同厚度的焊接要求。

1钛合金激光焊接技术常用于焊接的激光器类型有光纤激光、碟片激光、CO2激光和Nd:YAG激光。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Evaluating the Effect of Processing Parameters on Porosity in Electron Beam Melted Ti-6Al-4V via Synchrotron X-ray MicrotomographyROSS CUNNINGHAM,1,3SNEHA P.NARRA,2TUGCE OZTURK,1JACK BEUTH,2and A.D.ROLLETT11.—Department of Materials Science and Engineering,Carnegie Mellon University,Pittsburgh,PA,USA.2.—Department of Mechanical Engineering,Carnegie Mellon University,Pittsburgh,PA,USA.3.—e-mail:rwcunnin@Electron beam melting(EBM)is one of the subsets of direct metal additivemanufacturing(AM),an emerging manufacturing method that fabricatesmetallic parts directly from a three-dimensional(3D)computer model by thesuccessive melting of powder layers.This family of technologies has seensignificant growth in recent years due to its potential to manufacture complexcomponents with shorter lead times,reduced material waste and minimalpost-processing as a‘‘near-net-shape’’process,making it of particular interestto the biomedical and aerospace industries.The popular titanium alloy Ti-6Al-4V has been the focus of multiple studies due to its importance to these twoindustries,which can be attributed to its high strength to weight ratio andcorrosion resistance.While previous research has found that most tensileproperties of EBM Ti-6Al-4V meet or exceed conventional manufacturingstandards,fatigue properties have been consistently inferior due to a signifi-cant presence of porosity.Studies have shown that adjusting processingparameters can reduce overall porosity;however,they frequently utilizemethods that give insufficient information to properly characterize theporosity(e.g.,Archimedes’method).A more detailed examination of the resultof process parameter adjustments on the size and spatial distribution of gasporosity was performed utilizing synchrotron-based x-ray microtomographywith a minimum feature resolution of1.5l m.Cross-sectional melt pool areawas varied systematically via process mapping.Increasing melt pool areathrough the speed function variable was observed to significantly reduceporosity in the part.INTRODUCTIONElectron Beam Melting(EBM)Additive Manufacturing(AM)Additive manufacturing(AM)encompasses a wide range of technologies that utilize a layer-wise approach to manufacture near-net-shape parts from a computer generated three-dimensional(3D)model.1One subset of these,the powder bed-based systems,have gener-ated significant interest due to the recent availability of commercial systems,and their potential to manu-facture complex parts with high resolution and dimensional tolerance.1,2These machines utilize an energy beam to selectively melt areas on a uniformly spread powder bed,sequentially building parts layer by layer.These types of systems are distinguished by their energy source,which is either a laser in selective laser melting(SLM)systems,or an electron beam in electron beam melting(EBM)systems.While SLM and EBM systems share many properties and challenges,there are some defining differences between the two:for example,EBM systems operate in a vacuum,whereas SLM systems use an inert atmosphere.This study focuses on the EBM systems,specifically an Arcam A2.JOM,Vol.68,No.3,2016DOI:10.1007/s11837-015-1802-0Ó2016The Minerals,Metals&Materials Society (Published online January19,2016)765Properties of EBM Ti-6Al-4VThe titanium alloy system Ti-6Al-4V is a popular AM material due to its interest within the biomed-ical and aerospace industries.3–5Results have shown that EBM Ti-6Al-4V components can meet or exceed the tensile properties of conventionally manufactured materials,but have significantly worse and highly variable fatigue properties.3,5–9 Fracture surface analysis from surface-finished fatigue samples has determined that the cause of the poor fatigue resistance in the as-built condition is due to the high porosity levels generally observed in additively manufactured components.5This is not surprising,as pores have been known to serve as preferred fatigue crack initiation sites,after manu-facturing defects and surfaceflaws.10The current approach taken to reduce porosity is to apply a hot isostatic press(HIP)treatment,which has been shown to improve fatigue properties,but at the cost of adding another processing step and reducing strength.6,8Therefore,being able to control porosity levels without the need for post-processing would provide significant benefits toward the commercial-ization of this technology.9Porosity in EBM Ti-6Al-4VMultiple types of porosity have been observed in additively manufactured ck of fusion porosity is formed by insufficient melting of a new powder layer to a previously deposited layer,or between adjacent beam passes.These pores are generally large(>100l m),and are identified by their irregular shape(Fig.1a).9Another type of commonly observed porosity is usually referred to as trapped gas porosity,and it will be the focus of this study.It is characterized by a near-spherical mor-phology attributed to its believed source as gas trapped in the melt that forms a bubble(Fig.1b).9,11 Due to the vacuum environment required for EBM, any source of gas must be from the supplied metal. One commonly attributed source comes from argon trapped in the powder during atomization that is transferred to the melt.9,11,12It is unlikely that other types of gas will precipitate out as pores due to their high solubility in solid titanium.9,13,14The alloy may also vaporize under high energy input conditions,forming voids in the material known as keyhole pores(Fig.1c).11,15Keyhole pores tend to be large and rounded,though not as spherical as the trapped gas porosity,and are frequently accompa-nied by a very narrow and deep melt pool.15 However,this is believed to be more of an issue with SLM technologies than EBM due to the process parameter controls put in place on EBM machines that prevent excessive energy input.13Prior studies on porosity in AM parts heavily relied on conventional methods such as the Archi-medes’method or metallographic analysis.15How-ever,density-based methods do not give sufficient information on pore morphology or size and spatial distribution.This makes it difficult to determine the type of porosity in the part or their potential impact on properties.Some recent studies have startedto Fig.1.Different morphologies of characteristic porosity seen in EBM Ti-6Al-4V.(a)Irregularly shaped lack of fusion porosity,(b)backscat-tered SEM image of spherical porosity generally attributed to gas trap-ped in starting powder,and(c)keyhole porosity observed in a longitudinal cross section of an SLM Ti-6Al-4V melt pool on rolled plate.Cunningham,Narra,Ozturk,Beuth,and Rollett766utilize x-ray computed tomography(XCT)to over-come this issue.9,16,17XCT is an x-ray absorption-based method that generates a3D model of a material’s external and internal structure from a series of two-dimensional radiographs of a rotating sample.This method allows for pore size,morphol-ogy and spatial distribution to be determined, allowing for trends to be much more definitively observed compared to traditional methods.XCT is being strongly considered as an ideal non-destructive industrial inspection method for AM parts due to its ability to inspect the complex internal structures AM is capable of producing,as well asflaws such as pores and cracks.18However, due to the high x-ray attenuation of metals,the resolution of full-part scans is limited by the sample size,material,and equipment used(25–70l m in prior studies).9,16,17X-ray microtomography(l XCT) is limited to a small volume of material,thus requiring sectioning of most parts,but offers signif-icantly better resolution( 5l m for laboratory-scale instruments).Few studies to date have utilized l XCT to analyze porosity in AM components at high resolution.7This study utilizes synchrotron-based l XCT,which offers a number of advantages over laboratory-scale instruments,as the high-energy x-rays with accompanying high brilliance provided by the synchrotron source allow rapid acquisition times with resolutions on the order of1l m.18–20 Some studies have show that processing param-eters can have an effect on resulting porosity,but results are not definitive.Studies using the Archi-medes’method have shown that increasing energy by reducing speed or increasing power will reduce porosity,and is generally attributed to a reduction in lack of fusion porosity by providing sufficient melting between subsequent layers by having larger melt pools.9,15However,the effect of processing parameters on trapped gas porosity has not been the subject of significant study in the EBM process. Some results have shown that parameters resulting in larger melt pools may reduce trapped gas poros-ity,but the mechanism is not entirely understood, and few data are available with the required resolution to make conclusive claims on this effect.9,15EXPERIMENTAL METHODSample PreparationTest blocks for this study were fabricated on an Arcam A2machine at North Carolina State Univer-sity.Processing parameters were designed at Carnegie Mellon to vary the melt pool cross-sec-tional area(normal to the direction of beam move-ment)in a systematic manner.As shown in Table I, melt pool cross-sectional areas of1,2,4,½,and¼times the nominal value were prescribed through changes in the Arcam speed function.The process mapping approach developed by Beuth et al.has demonstrated that process outputs such as melt pool geometry can be related to primary process variables including beam power and travel velocity for direct metal AM.21Using the process mapping approach,Fox has shown that a constant melt pool cross-sectional area can be maintained throughout the Arcam EBM process space by adjusting the beam power and beam travel velocity.22Further,based on the process maps of constant melt pool cross-sectional area for the Arcam EBM process,Narra et al.observed that, during a build,for any specified beam current,beam travel velocity is adjusted such that melt pool cross-sectional area is constant throughout the process. These adjustments are made by the Arcam propri-etary beam speed function parameter.23A previous study made similar observations,namely that the speed function maintains a constant melt pool depth irrespective of the beam current.24Figure2pro-vides an experimentally derived plot of the variation of melt pool cross-sectional area withspeed Fig.2.Experimentally derived plot demonstrating the relationship between melt pool cross-sectional area and speed function.18 Table I.Speed functions used and resulting change in approximate melt pool cross-sectional areaApprox.relative melt poolarea(area/nominal area)aSpeed function(raster)1X362X204X101/2X721/4X152a Cross-sectional area of melt pool perpendicular to travel direc-tion.Evaluating the Effect of Processing Parameters on Porosity in Electron Beam MeltedTi-6Al-4V via Synchrotron X-ray Microtomography767function.Accordingly,this relationship between speed function and melt pool cross-sectional area was used to vary the speed function for the test blocks given in Table I.Ti-6Al-4V test blocks(cylinders)with dimensions of3cm(diameter)91.5cm(height)were fabri-cated from standard Arcam-supplied Ti-6Al-4V yer thickness,hatch spacing and start plate temperature were kept at the nominal values of70l m,200l m and750°C,respectively.The hatching direction was rotated by90°after each layer was deposited.The nominal beam spot size available on the machine was used for all specimens (which depends somewhat on the particular machine used and on the initial machine calibra-tion).Tomography specimens were then machined from the centers of each sample with dimensions of 1mm91mm915mm with the long axis parallel to the build direction.Synchrotron X-ray Microtomography Synchrotron x-ray microtomography was per-formed at the Advanced Photon Source at Argonne National Lab.The2-BM beamline operating in60-kV white beam mode was used in order to get sufficient contrast and penetration through the samples.A total of1500projections were taken over180°with a50-ms exposure time resulting in approximately a2-min scan time.A0.65-l m voxel size(edge length)was obtained.The radiographs were reconstructed andfiltered using TomoPy,a software package supplied by APS. TomoPy is a python-based package that provides preprocessing in the form of artifact removal,as well as image reconstruction through the Fourier-based GridRec method.20Avizo9software was used for segmentation and generating the3D reconstruc-tions from the reconstructed images.Analysis was performed in order to determine pore shape,vol-ume,and spatial distribution.RESULTSSynchrotron X-ray TomographyTwo scans were analyzed per sample,encompass-ing the regions from0–1.5mm to6.5–8mm from thefinal deposited layer surface.Morphology was determined using the‘anisotropy’function in Avizo 9with a value of0.7being the cutoff for gas porosity.Any porosity found outside of this range was considered lack of fusion porosity,with only a few exceptions noted below.Examples of each type are shown in Fig.3.Projections of these reconstruc-tions,displayed in Fig.4,show a significant differ-ence in porosity between samples of different melt pool area,as well as between regions of individual samples.Figures4show spherical porosity observed in each region highlighted in blue.For the½X and¼X samples,it was observed that a few pores with a higher anisotropy(>0.7)were spherical pores beginning to merge(Fig.3a),and were included in the data,but only accounted for a very small volume fraction.Due to the high resolution possible with synchrotron XCT,a minimum feature size of 1.5 l m diameter was achieved.A minimum of8face-connected voxels were required in order to be considered a valid feature.While there may be pores below this limit,they represent a very small volume fraction,and are likely inconsequential to mechanical properties.Statistical data on the observed porosity are given in Table II.DISCUSSIONThe approach described above uses synchrotron-based3D XCT to analyze porosity in EBM Ti-6Al-4V samples fabricated over a range of processing conditions at a resolution that,to our knowledge, has not been achieved before.The average diameter of spherical pores was foundto be below10l m.The nearly spherical morphology of this porosity suggests that it is caused by gas trapped during solidification.9,11 Because this process is carried out in a vacuum environment,the sources of gas that can be cap-tured in the melt are limited.A significant source of gas is believed to be argon trapped in the powder particles during atomization.Evidence of porosity in partially melted powder was observed in this study (Fig.3c).Tammas-Willams et al.showed evidence of porosity in Arcam Ti-6Al-4V powder of a similar size to that observed in these samples.9Our preliminary results from a follow-up experiment at the2-BM beamline appear to confirm theirfindings,as shown in Fig.5,and will be examined in more detail in a later paper.However,this does not entirelyexplain Fig.3.Examples of porosity from the½X sample.(a)Two spherical pores coming into contact and beginning to merge,(b)a large pore found in melted region,(c)pore located in interior of partially melted powder particle,and(d)flat lack of fusion porosity.Images were taken at the same magnification and merged into a singlefigure.Cunningham,Narra,Ozturk,Beuth,and Rollett768the source of this type of porosity,as the maximum size of porosity seen in the parts has been reported to be larger than any porosity seen in the powder.9It has been suggested that gas bubbles may get larger through expansion due to the vacuum atmo-sphere and low hydrostatic pressure from the small melt pool,or through consolidation of multiple pores in the melt pool.9,25With the exception of the results from the ½X and ¼X samples,the results also show a significant decrease in the number and overall volume fraction of pores as melt pool area increased (Fig.6).The ability of a bubble to escape the melt pool is thought to be affected by a combination of melt pool geometry,fluid flow in the melt pool,and buoyancy forces acting on the bubbles.9,25It has been suggested that larger melt pool depths for a given powder layer thickness will allow more remelting of previous layers,giving more opportu-nity for gas to escape.9The results from the scan of the surface of the 2X and 4X samples would appear to support this,as large pores are only located within one melt pool depth of the surface,where it has not been remelted by subsequent passes.Analysis of the lack of fusion porosity will be discussed in a future paper,but it was observed to significantly increase in volume fraction as melt pool areadecreased.Fig.4.Synchrotron XCT results with lack of fusion highlighted in red and spherical porosity in (a–e).The top 1.5mm region,while (f–j)the 6–8.5mm region.Significant variation in porosity is observed across different samples and between regions of individual samples.Table II.Summary of gas pore statistics determined from XCT analysisSample Location a Volume scanned (mm 3)b Pore count Vol.norm.pore count (#/mm 3)Volume fraction (%)Ave.spherical equivalent diameter (l m)Max.spherical equivalent diameter (l m)1/4X Top 1.323422590.03148.4242.9Middle 1.343942940.03098.2042.91/2X Top 1.09361331.20.04698.0156.2Middle 1.21445367.80.07438.0567.01X Top 0.723164226.80.0347 6.2158.6Middle 0.709293510.0150 4.6052.12X Top 0.9477073.90.009887.2836.7Middle 1.001111110.00146 4.4518.04XTop 0.9744849.30.008998.7055.1Middle0.9823838.70.0002733.8510.4aTop 0–1.5mm from surface;Middle 6.5–8mm from surface.b Lack of fusion porosity not included in volume scanned.Evaluating the Effect of Processing Parameters on Porosity in Electron Beam Melted Ti-6Al-4V via Synchrotron X-ray Microtomography769These results have shown that changing melt pool area through speed function has a profound effect on the resulting porosity.Further,they suggest that reducing speed function from nominal settings can significantly reduce spherical porosity.However,this may not necessarily have significant improve-ments on fatigue resistance,as the clustering of pores at the surface are particularly damaging to fatigue properties.26Larger melt pools have also been observed to impact microstructure and chem-istry,so further characterization is underway to determine to what extent other material properties are affected by these parameter adjustments.9,27–29CONCLUSIONSynchrotron-based XCT was used to characterize the effect of beam velocity on the size and spatial distribution of gas pores in EBM Ti-6Al-4V samples at a resolution higher than any previous work. Volume fraction of spherical porosity was ob-served to decrease with decreasing speed func-tion.Average spherical pore diameter for all samples was less than 10l m.Larger pores on the order of 50l m were found concentrated at the surface of the increased melt pool area samples.Lack of fusion porosity increases dramatically once melt pool area is decreased below nominal settings keeping other parameters constant.ACKNOWLEDGEMENTSThe authors acknowledge America Makes for providing funding for this research under the pro-ject entitled ‘‘A Database Relating Powder Proper-ties to Process Outcomes for Direct Metal AM,’’Award Number FA8650-12-2-7230,and the Na-tional Science Foundation for providing funding under Grant CMMI-1335298.They would also like to thank Dr.Xianghui Xiao and the rest of the 2-BM beamline staff at the Advanced Photon Source for assisting in the acquisition of the synchrotron tomography data,and North Carolina State and Dr.Ron Aman for assisting with the sample fabrication.REFERENCES1.W.E.Frazier,J.Mater.Eng.Perform.23,1917(2014).2.L.E.Murr,S.M.Gaytan, D.A.Ramirez, E.Martinez,J.Hernandez,K.N.Amato,P.W.Shindo,F.R.Medina,and R.B.Wicker,J.Mater.Sci.Technol.28,1(2012).3.L.E.Murr,E.V.Esquivel,S.A.Quinones,S.M.Gaytan,M.I.Lopez, E.Y.Martinez, F.Medina, D.H.Hernandez, E.Martinez,J.L.Martinez,S.W.Stafford, D.K.Brown,T.Hoppe,W.Meyers,U.Lindhe,and R.B.Wicker,Mater.Charact.60,96(2009).4. C.Qiu,N.J.E.Adkins,and M.M.Attallah,Mater.Sci.Eng.,A 578,230(2013).5.P.Edwards,A.O’Conner,and M.Ramulu,J.Manuf.Sci.Eng.135,061016(2013).6.S.S.Al-Bermani,M.L.Blackmore,W.Zhang,and I.Todd,Metall.Mater.Trans.A 41,3422(2010).Fig.5.Reconstructed XCT slice of Arcam Ti6Al4V powder from 2-BM beamline showing large ( 50l m diameter)internal porosity.Tomography experiment was run with nearly identical experimental parameters to those described in thispaper.Fig.6.(a)Volume fraction and (b)cumulative probability plot of size distribution of spherical porosity as it relates to melt pool area and rger melt pool area samples were observed to have a smaller size distribution of pores than reduced melt pool area sam-ples and the nominal case.Cunningham,Narra,Ozturk,Beuth,and Rollett7707.K.S.Chan,M.Koike,R.L.Mason,and T.Okabe,Metall.Metal.Trans.A44,1010(2013).8.L.Facchini,E.Magalini,P.Robotti,and A.Molinari,Rap.Prototyp.J.15,171(2009).9.S.Tammas-Williams,H.Zhao,F.Le´onard,F.Derguti,I.Todd,and P.B.Prangnell,Mater.Charact.102,47(2015).10.P.E.Magnusen,R.J.Bucci, A.J.Hinkle,J.R.Brocken-brough,and H.J.Konish,Int.J.Fatigue19,275(1997). 11. A.Safdar,L.Y.Wei,A.Snis,and i,Mater.Charact.65,8(2012).12.R.Gerling,R.Leitgeb,and F.P.Schimansky,Mater.Sci.Eng.,A252,239(1998).13.R.S.Vitt and K.Ono,Metall.Trans.2,608(1971).14. E.Herna´ndez-Nava,C.J.Smith,F.Derguti,S.Tammas-Williams,F.Le´onard,P.J.Withers,I.Todd,and R.Goodall, Acta Mater.85,387(2015).15.H.Gong,K.Rafi,G.Hengfeng,T.Starr,and B.Stucker,Addit.Manuf.1,87(2014).16. F.Le´onard,S.Tammas-Williams,P.B.Prangnell,I.Todd,and P.J.Withers,Conference on Industrial Computed Tomography(ICT)(2012).17.G.Zio´łkowski, E.Chlebus,P.Szymczyk,and J.Kurzac,Arch.Civ.Mech.Eng.14,608(2014).18.L.De Chiffre,S.Carmignato,J.P.Kruth,R.Schmitt,andA.Weckenmann,CIRP Ann.Manuf.Technol.63,655(2014).19.R.Bernhardt,D.Scharnweber,B.Mu¨ller,P.Thurner,H.Schliephake,P.Wyss,F.Beckmann,J.Goebbels,and H.Worch,Eur.Cell.Mater.7,42(2004).20. D.Gu¨rsoy,F.De Carlo,X.Xiao,and C.Jacobsen,J.Synch.Rad.21,1188(2014).21.J.Beuth and N.Klingbeil,JOM53,36(2001).22.J.Fox,Transient Melt Pool Response in Additive Manufac-turing of Ti-6Al-4V(Pittsburgh:Carnegie Mellon Univer-sity,2015).23.S.P.Narra,R.Cunningham,D.Christiansen,J.Beuth,andA.D.Rollett,Proceedings of Solid Freeform FabricationSymposium(2015).24. A.A.Antonysamy,Microstructure,Texture and MechanicalProperty Evolution During Additive Manufacturing of Ti6Al4V Alloy for Aerospace Applications(Manchester: University of Manchester,2012).25.G.K.L.Ng,A.E.W.Jarfors,G.Bi,and H.Y.Zheng,Appl.Phys.A97,641(2009).26.X.Zhiqiang,W.Wen,and T.Zhai,Metall.Trans.A43,2763(2012).27.V.Juechter,T.Scharowsky,R.F.Singer,and C.Ko¨rner,Acta Mater.76,252(2014).28.H.Fukuda,H.Takahashi,K.Kuramoto,and T.Nakano,Mater.Sci.Forum706,488(2012).29.J.Gockel,Ph.D.Dissertation,Carnegie Mellon University,Pittsburgh,2014.Evaluating the Effect of Processing Parameters on Porosity in Electron Beam MeltedTi-6Al-4V via Synchrotron X-ray Microtomography771。

相关文档
最新文档