现代控制理论的主要内容
1.2-现代控制理论的主要内容PPT优秀课件

最优控制(1/1)
1.2.2 最优控制
最优控制理论是研究和解决从一切可能的控制方案中寻找最 优解的一门学科。 ➢ 具体地说就是研究被控系统在给定的约束条件和性能指 标下,寻求使性能指标达到最佳值的控制规律问题。 ➢ 例如要求航天器达到预定轨道的时间最短、所消耗的燃 料最少等。
该分支的基本内容和常用方法为 ➢ 变分法; ➢ 庞特里亚金的极大值原理; ➢ 贝尔曼的动态规划方法。
8
随机系统理论和最优估计(2/2)
最优估计讨论根据系统的输入输出信息估计出或构造出随机 动态系统中不能直接测量的系统内部状态变量的值。 ➢ 由于现代控制理论主要以状态空间模型为基础,构成反馈 闭环多采用状态变量,因此估计不可直接测量的状态变量 是实现闭环控制系统重要的一环。 ➢ 该问题的困难性在于系统本身受到多种内外随机因素扰 动,并且各种输入输出信号的测量值含有未知的、不可测 的误差。
系统辨识是重要的建模方法,因此亦是控制理论实现和应用 的基础。 ➢ 系统辨识是控制理论中发展最为迅速的领域,它的发展还 直接推动了自适应控制领域及其他控制领域的发展。
11
自适应控制(1/5)
1.2.5 自适应控制
自适应控制研究当被控系统的数学模型未知或者被控系统的 结构和参数随时间和环境的变化而变化时,通过实时在线修正 控制系统的结构或参数使其能主动适应变化的理论和方法。 ➢ 自适应控制系统通过不断地测量系统的输入、状态、输 出或性能参数,逐渐了解和掌握对象,然后根据所得的信息 按一定的设计方法,做出决策去更新控制器的结构和参数 以适应环境的变化,达到所要求的控制性能指标。 ➢ 该分支诞生于1950年代末,是控制理论中近60年发展最为 迅速、最为活跃的分支。
12
自适应控制(2/5)
现代控制理论的概念、方法

THANKS FOR WATCHING和优化控制,注重系统的全局性、 最优性和鲁棒性。
现代控制理论的重要性
工业自动化
现代控制理论为工业自动化提供了理论基础和技 术支持,提高了生产效率和产品质量。
航天与航空
在航天和航空领域,现代控制理论的应用对于飞 行器的稳定性和安全性至关重要。
能源与环境
在能源和环境领域,现代控制理论有助于实现能 源的高效利用和环境的可持续发展。
VS
详细描述
线性二次型最优控制基于最优控制理论, 通过最小化系统状态和控制输入的二次型 代价函数来寻找最优的控制策略。这种方 法能够有效地优化系统的性能,提高系统 的稳定性和动态响应能力。
预测控制
总结词
预测控制是一种基于模型预测和滚动优化的 控制方法。
详细描述
预测控制通过建立系统的预测模型,对未来 的系统行为进行预测,并滚动优化控制策略 以减小预测误差。这种方法具有较好的鲁棒 性和适应性,广泛应用于工业过程控制和智 能控制等领域。
现代控制理论的历史与发展
历史
现代控制理论起源于20世纪50年代,随着计算机技术和数学理论的不断发展而 逐步完善。
发展
现代控制理论的发展涉及多个学科领域,如线性系统理论、最优控制、鲁棒控 制、自适应控制等,为复杂系统的控制提供了更广泛和深入的理论基础。
02 现代控制理论的基本概念
系统建模
总结词
系统建模是现代控制理论的基础,它通过数学模型描述系统的动态行为。
详细描述
性能指标是用来评估控制系统性能的关键因素,包括稳定性、准确性、快速性和鲁棒性 等。稳定性表示系统在受到扰动后恢复平衡的能力;准确性表示系统输出与理想输出之 间的误差大小;快速性表示系统达到稳定状态所需的时间;鲁棒性表示系统在存在不确
1.2 现代控制理论的主要内容

自适应控制
非线性系统理论 鲁棒性分析与鲁棒控制
分布参数控制
离散事件控制 智能控制
线性系统理论(1/2)
1.2.1 线性系统理论
线性系统是一类最为常见系统,也是控制理论中讨论得最为深 刻的系统。 该分支着重于研究线性系统状态的运动规律和改变这种 运动规律的可能性和方法,以建立和揭示系统结构、参数、 行为和性能间的确定的和定量的关系。 通常,研究系统运动规律的问题称为分析问题,研究改变运 动规律的可能性和方法的问题则为综合问题。
粗略地说,系统的鲁棒性是指所关注的系统性能指标对系 统的不确定性(如系统的未建模动态、系统的内部和外部 扰动等)的不敏感性。 目前该领域主要讨论稳定性的鲁棒性问题,涉及其他 性能指标的鲁棒性的不多。
鲁棒性分析与鲁棒控制(2/4)
鲁棒性分析讨论控制系统对所讨论的性能指标的鲁棒性, 给出系统能保持该性能指标的最大容许建模误差和内外 部扰动的上确界。 目前该问题中较受重视的问题是多项式簇的稳定性 问题。 在多项式簇问题中,2003年当选为中国科学院院 士的北京大学黄琳教授给出了著名的棱边定理。
非线性系统理论(4/4)
微分几何方法目前主要研究非线性系统的结构性理论,主 要成果: 能控能观性; 基于非线性变换(同胚变换)的线性化; 状态反馈线性化;
解耦;
结构性分解; 反馈镇定等。
鲁棒性分析与鲁棒控制(1/4)
1.2.7 鲁棒性分析与鲁棒控制
系统的数学模型与实际系统存在着参数或结构等方面的差异, 而我们设计的控制律大多都是基于系统的数学模型,为了保证 实际系统对外界干扰、系统的不确定性等有尽可能小的敏感 性,导致了研究系统鲁棒控制问题。
鲁棒性分析与鲁棒控制(3/4)
现代控制理论基本内容

(4)系统辨识 建立系统动态模型的方法: 根据系统的输入输出的试验数据,从一类给定的模型 中确定一个被研究系统本质特征等价的模型,并确定 其模型的结构和参数。
(5)最佳滤波理论(最佳估计器) 当系统中存在随机干扰和环境噪声时,其综合必须应 用概率和统计方法进行。即:已知系统数学模型,通 过输入输出数据的测量,利用统计方法对系统状态估 计。
1945年,美国Bode在《网络分析和反馈放大 器设计》中提出频率响应分析法-Bode图。
1948年,美国Wiener在《控制论-关于在动 物和机器中控制和通信的科学》中系统地论 述了控制理论的一般原理和方法。 ---标志控制学科的诞生
控制论:研究动物(包括人类)和机器内部 控制和通信的一般规律的学科。
(2)如何克服系统结构的不确定性及干扰带来 的影响?
(3)如何实现满足要求的控制策略?
(1)线性系统理论 研究线性系统在输入作用下状态运动过程 规律,揭示系统的结构性质、动态行为之 间的关系。
主要内容: 状态空间描述、能控性、能观性和稳定性、 状态反馈、状态观测器设计等。
(2)最优控制 在给定约束条件和性能指标下,寻找使系统性 能指标最佳的控制规律。
Kalman滤波器
1954年,钱学森的《工程控制论》在美国出 版。 ---奠定了工程控制论的基础
(1)经典控制理论 a.特点
研究对象:单输入、单输出线性定常系统。 解决方法:频率法、根轨迹法、传递函数。 非线性系统:相平面法和描述函数分析。 数学工具:拉氏变换、常微分方程。
b.局限性 难以应用于时变系统、多变量系统。 难以揭示系统更为深刻的特性。
第八章 现代控制理论初步
(完整版)现代控制理论

第一章线性离散系统第一节概述随着微电子技术,计算机技术和网络技术的发展,采样系统和数字控制系统得到广泛的应用。
通常把采样系统,数字控制系统统称为离散系统。
一、举例自动测温,控温系统图;加热气体图解:1. 当炉温h变化时,测温电阻R变化→R∆,电桥失去平衡状态,检流计指针发生偏转,其偏转角度为)e;(t2. 检流计是个高灵敏度的元件,为防磨损不允许有摩擦力。
当凸轮转动使指针),接触时间为τ秒;与电位器相接触(凸轮每转的时间为T3. 当炉温h 连续变化时,电位器的输出是一串宽度为τ的脉冲信号e *τ(t);4.e *τ(t)为常值。
加热气体控制阀门角度调速器电动机放大器h →→→→→→ϕ 二、相关定义说明(通过上例来说明) 1. 信号采样偏差)(t e 是连续信号,电位器的输出的e *τ(t)是脉冲信号。
连续信号转变为脉冲信号的过程,成为采样或采样过程。
实现采样的装置成为采样器。
To —采样周期,f s =--To1采样频率,W s =2πf s —采样角频率 2.信号复现因接触时间很小,τo T 〈〈τ,故可把采样器的输出信号)(t e *近似看成是一串强度等于矩形脉冲面积的理想脉冲,为了去除采样本身带来的高额分量,需要把离散信号)(t e *恢复到原信号)(t e 。
实现方法:是在采样器之后串联一个保持器,及信号复现滤波器。
作用:是把)(t e *脉冲信号变成阶梯信号e h (t)3.采样系统结构图r(t),e(t),c(t),y(t)为连续信号,)(t e *为离散信号)(s G h ,)(s G p ,)(s H 分别为保持器,被控对象和反馈环节的传递函数。
(t)r4.采样系统工作过程⇒由保持器5. 采样控制方式采样周期To ⎪⎩⎪⎨⎧=≠=⇒相位不同步采样常数常数6. 采样系统的研究方法(或称使用的数字工具)因运算过程中出现s 的超越函数,故不用拉式变换法,二采用z 变换方法,状态空间法。
现代控制原理

现代控制原理
现代控制原理是研究和设计控制系统的理论和方法,它广泛应用于工业、自动化、航空航天、机械、电子等各个领域。
现代控制原理主要包括系统建模、传递函数、状态空间、反馈控制、校正控制等内容。
在现代控制原理中,系统建模是一个重要的环节。
通过对被控对象进行建模,可以将其描述为数学方程或传递函数,从而方便进行后续的分析和设计。
传递函数是描述系统输入与输出之间关系的数学表达式,通过对传递函数的分析可以了解系统的动态特性和稳定性。
状态空间是现代控制原理中另一个重要的概念。
通过对系统的状态进行描述,可以更准确地表示系统的动态行为。
状态空间模型可以用来进行系统分析、控制器设计和状态估计等。
同时,利用状态反馈和状态估计可以提高系统的控制性能和鲁棒性。
在现代控制原理中,反馈控制是一种常用的控制策略。
通过将系统输出的信息反馈到控制器中进行调节,可以实现对系统性能和稳定性的控制。
反馈控制可以有效地抑制系统的扰动和误差,提高系统的稳定性和响应速度。
此外,校正控制是现代控制原理中的另一个重要内容。
校正控制可以根据实际系统的运行情况对控制器进行参数的校正和调整,以提高控制系统的性能和稳定性。
校正控制可以根据系统的动态响应和误差进行自适应调整,从而更好地适应实际应用需求。
总的来说,现代控制原理是一门应用广泛的学科,它通过对系统建模、状态空间、反馈控制和校正控制等内容的研究,为实际应用中的控制系统设计和优化提供了理论和方法。
通过不断深入研究和应用,现代控制原理在提高控制系统性能和稳定性方面发挥着重要的作用。
第1章 现代控制理论概述-控制理论发展

经典控制理论—标志阶段(7/9)
➢ 传递函数只描述了系统的输入输出间关系,没有内部变量 的表示。
➢ 经典控制理论的特点是以传递函数为数学工具,本质上是 频域方法,主要研究“单输入单输出”(Single-Input Single-output, SISO)线性定常控制系统的分析与设计,对线 性定常系统已经形成相当成熟的理论。
瓦特
经典控制理论—起步阶段(3/5)
瓦特离心调速器
Watt’s fly ball governor
This photograph shows a flyball governor used on a steam engine in a cotton factory near anchester in the United Kingdom.
➢ 这些系统的复杂性和对快速跟踪、精确控制的高性能追 求,迫切要求拓展已有的控制技术,促使了许多新的见解和 方法的产生。
➢ 同时,还促进了对非线性系统、采样系统以及随机控制系 统的研究。
➢ 可以说工业革命和战争促使了经典控制理论的发展。
经典控制理论—标志阶段(4/9)
以传递函数作为描述系统的数学模型,以时域分析法、根轨迹 法和频域分析法为主要分析设计工具,构成了经典控制理论的 基本框架。 ➢ 到20世纪50年代,经典控制理论发展到相当成熟的地步,形 成了相对完整的理论体系,为指导当时的控制工程实践发 挥了极大的作用。
经典控制理论—起步阶段(5/5)
经典控制理论—发展阶段(1/4)
3. 发展阶段
实践中出现的问题,促使科学家们从 理论上进行探索研究。
➢ 1868年,英国物理学家麦克斯韦 (J.C. Maxwell)通过对调速系统 线性常微分方程的建立和分析,
现代控制理论及其在工程中的应用

现代控制理论及其在工程中的应用现代控制理论是指以数学和理论为基础的系统控制方法和技术,它通过对系统的建模、分析和设计,使得工程系统能够以最佳方式运行。
现代控制理论的应用广泛,可以涵盖从自动化工程到航空航天工程等各个领域。
本文将探讨现代控制理论的基本原理以及它在工程中的实际应用。
一、现代控制理论基本原理现代控制理论的基本原理包括控制系统原理、线性控制理论、非线性控制理论、自适应和鲁棒控制等。
在控制系统原理中,主要研究控制系统的基本概念和结构,包括反馈控制、前馈控制等。
线性控制理论主要用于研究线性控制系统的建模和设计方法,其中包括经典控制理论和现代控制理论。
非线性控制理论则是用于研究非线性系统的建模和分析方法,它考虑了系统中的非线性因素。
自适应和鲁棒控制则是用于处理控制系统中的不确定性和变化环境的方法。
二、现代控制理论在工程中的应用1. 自动化工程现代控制理论在自动化工程中得到了广泛的应用。
例如,在工业生产中,通过引入现代控制理论,可以提高生产效率和质量。
自适应和鲁棒控制方法可以应对系统参数变化和外部干扰,使得系统能够更加稳定地运行。
另外,在自动化系统中,控制器的设计对系统性能至关重要,通过利用现代控制理论的方法,可以设计出更优秀的控制器,提高系统的响应速度和稳定性。
2. 电力工程在电力工程中,现代控制理论被广泛应用于电力系统的运行和控制中。
例如,在电力系统的稳定性分析中,线性控制理论可以用于建立电力系统的传输方程,从而评估系统的稳定性。
另外,在电力系统的控制中,现代控制理论的方法可以用于设计和优化发电机、变压器等设备的控制系统,提高电力系统的响应能力和稳定性。
3. 交通工程现代控制理论在交通工程中的应用也非常广泛。
例如,在交通信号控制中,现代控制理论可以用于对交通流进行建模和预测,从而在不同的交通状况下,自动调整交通信号的控制策略,使得交通流能够更加顺畅地运行。
另外,在交通系统中,现代控制理论的方法也可以用于设计和优化交通系统的控制器,提高交通系统的效率和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自适应控制(3/5)
自适应控制系统的类型主要有 自校正控制系统,
模型参考自适应控制系统,
自寻最优控制系统, 学习控制系统等。 最近,非线性系统的自适应控制,基于神经网络的自适应控制得到 重视,提出了一些新的方法。
自适应控制领域是少数几个中国人取得较大成就的领域。中 国科学院陈翰馥院士与郭雷院士在1990年代初圆满解决自适 应控制的收敛性问题。
随机系统理论就是研究这类随机动态系统的系统分析、 优化与控制。
随机系统理论和最优估计(2/2)
最优估计讨论根据系统的输入输出信息估计出或构造出随机 动态系统中不能直接测量的系统内部状态变量的值。 由于现代控制理论主要以状态空间模型为基础,构成反馈 闭环多采用状态变量,因此估计不可直接测量的状态变量 是实现闭环控制系统重要的一环。 该问题的困难性在于系统本身受到多种内外随机因素扰 动,并且各种输入输出信号的测量值含有未知的、不可测 的误差。 最优估计的早期工作是维纳在1940年代提出的维纳滤波器, 较系统完整的工作是卡尔曼在1960年代初提出的滤波器理论。 该分支的基础理论为概率统计理论、线性系统理论和最 优控制理论。
该分支的基本内容和常用方法为 变分法; 庞特里亚金的极大值原理; 贝尔曼的动态规划方法。
随机系统理论和最优估计(1/2)
1.2.3 随机系统理论和最优估计
实际工业、农业、社会及经济系统的内部本身含有未知或不 能建模的因素,外部环境上亦存在各种扰动因素,以及信号或 信息的检测与传输上往往不可避免地带有误差和噪音。 随机系统理论将这些未知的或未建模的内外扰动和误差, 用不能直接测量的随机变量及过程以概率统计的方式来 描述,并利用随机微分方程和随机差分方程作为系统动态 模型来刻划系统的特性与本质。
以空间分解为基础的几何方法。
最优控制(1/1)
1.2.2 最优控制
最优控制理论是研究和解决从一切可能的控制方案中寻找最 优解的一门学科。 具体地说就是研究被控系统在给定的约束条件和性能指 标下,寻求使性能指标达到最佳值的控制规律问题。 例如要求航天器达到预定轨道时间最短、所消耗的燃 料最少等。
自适应控制(1/5)
1.2.5 自适应控制
自适应控制研究当被控系统的数学模型未知或者被控系统的 结构和参数随时间和环境的变化而变化时,通过实时在线修正 控制系统的结构或参数使其能主动适应变化的理论和方法。 自适应控制系统通过不断地测量系统的输入、状态、输 出或性能参数,逐渐了解和掌握对象,然后根据所得的信息 按一定的设计方法,做出决策去更新控制器的结构和参数 以适应环境的变化,达到所要求的控制性能指标。
系统辨识(1/2)
1.2.4 系统辨识
简而言之,系统辨识就是 利用系统在试验或实际运行中所测得的输入输出数据, 运用数学方法归纳和构造出描述系统动态特性的数学模 型, 并估计出其模型参数的理论和方法。 该分支是由数理统计学发展而来的。
无论是采用经典控制理论或现代控制理论,在进行系统 分析、综合和控制系统设计时,都需要事先知道系统的 数学模型。
为了解决这些问题,科学家们从20世纪50年代末现代控制 理论的诞生至今,不断提出新的控制方法和理论,其内容相 当丰富、广泛,极大地扩展了控制理论的研究范围。
下面简单介绍现代控制理论的主要分支及所研究的内容:
线性系统理论 最优控制
现代控制理论的主要内容(2/2)
随机系统理论和最优估计 系统辨识
该分支诞生于1950年代末,是控制理论中近60年发展最为 迅速、最为活跃的分支。
自适应控制(2/5)
自适应控制系统应具有三个基本功能: 辨识对象的结构和参数,以便精确地建立被控对象的数学 模型; 给出一种控制律以使被控系统达到期望的性能指标; 自动修正控制器的参数。 因此自适应控制系统主要用于过程模型未知或过程模型结构已 知但参数未知且随机的系统。
线性系统理论的主要内容有
线性系统理论(2/2)
系统结构性问题,如能控性、能观性、系统实现和结 构性分解等; 线性状态反馈及极点配置; 镇定; 解耦;
状态观测器等。
近30年来,线性系统理论一直是控制领域研究的重点,其主要 研究方法有: 以状态空间分析为基础的代数方法; 以多项式理论为基础的多项式描述法;
Ch.1 绪 论
目录(1/1)
目录
1.1 控制理论发展概述
1.2 现代控制理论的主要内容 1.3 Matlab软件概述
1.4 课程的主要内容
参考教材 参考期刊
现代控制理论的主要内容(1/2)
1.2 现代控制理论的主要内容
在工业生产过程应用中,常常遇到被控对象精确状态空间模型 不易建立、合适的最优性能指标难以构造以及所得到最优的、 稳定的控制器往往过于复杂等问题。
自适应控制(4/5)
模型参考自适应控制系统的主要结构为
参考模型 前馈调节器 被控系统
反馈调节器 自适应机构 图1 模型参考自适应控制
系统辨识(2/2)
系统辨识包括两个方面:结构辨识和参数估计。 在实际的辨识过程中,随着使用的方法不同,结构辨识和参 数估计这两个方面并不是截然分开的,而是可以交织在一 起进行的。 系统辨识是重要的建模方法,因此亦是控制理论实现和应用 的基础。 系统辨识是控制理论中发展最为迅速的领域,它的发展还 直接推动了自适应控制领域及其他控制领域的发展。
自适应控制
非线性系统理论 鲁棒性分析与鲁棒控制
分布参数控制
离散事件控制 智能控制
线性系统理论(1/2)
1.2.1 线性系统理论
线性系统是一类最为常见系统,也是控制理论中讨论得最为深 刻的系统。 该分支着重于研究线性系统状态的运动规律和改变这种 运动规律的可能性和方法,以建立和揭示系统结构、参数、 行为和性能间的确定的和定量的关系。 通常,研究系统运动规律的问题称为分析问题,研究改变运 动规律的可能性和方法的问题则为综合问题。