多重共线性的解决之法

合集下载

多元线性回归中多重共线问题的解决方法综述

多元线性回归中多重共线问题的解决方法综述

多元线性回归中多重共线问题的解决方法综述摘 要在回归分析中,当自变量之间出现多重共线性现象时,常会严重影响到参数估计,扩大模型误差,并破坏模型的稳健性,因此消除多重共线性成为回归分析中参数估计的一个重要环节。

现在常用的解决多元线性回归中多重共线性的回归模型有岭回归(Ridge Regression )、主成分回归(Principal Component Regression 简记为PCR)和偏最小二乘回归(Partial Least Square Regression 简记为PLS)。

关键词:多重共线性;岭回归;主成分回归;偏最小二乘回归引言在多元线性回归分析中,变量的多重相关性会严重影响到参数估计,增大模型误差,并破坏模型的稳健性 由于多重共线性问题在实际应用中普遍存在,并且危害严重,因此设法消除多重性的不良影响无疑具有巨大的价值常用的解决多元线性回归中多重共线问题的回归模型主要有主成分回归岭回归以及偏最小二乘回归。

1、 多元线性回归模型1.1 回归模型的建立设Y 是一个可观测的随机变量,它受m 个非随机因素X 1,X 2,…,X p-1和随机因素ε的影响, 若有如下线性关系我们对变量进行了n 次观察,得到n 组观察数据(如下),对回归系数 进行估计一般要求n>P 。

于是回归关系可写为采用矩阵形式来表示0112211p p Y X X X ββββε--=+++++n i X X X Y p i i i i ,,1,,,,)1(2,1⋅⋅⋅=⋅⋅⋅-1011121211(1)12012122212(1)2011221(1)p p p p n n n p n p n Y X X X Y X X X Y X X X ββββεββββεββββε------=+++++⎧⎪=+++++⎪⎨⎪⎪=+++++⎩11121,(1)121222,(1)212,(1)111, 1 p p n n n n p n n pX X X Y X X X Y Y X Y X X X ---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦)1(10,,,p -⋅⋅⋅βββY 称为观测向量,X 称为设计矩阵,ε称为误差向量,β称为回归参数。

多元回归分析中的多重共线性及其解决方法

多元回归分析中的多重共线性及其解决方法

多元回归分析中的多重共线性及其解决方法在多元回归分析中,多重共线性是一个常见的问题,特别是在自变量之间存在高度相关性的情况下。

多重共线性指的是自变量之间存在线性相关性,这会造成回归模型的稳定性和可靠性下降,使得解释变量的效果难以准确估计。

本文将介绍多重共线性的原因及其解决方法。

一、多重共线性的原因多重共线性常常发生在自变量之间存在高度相关性的情况下,其主要原因有以下几点:1. 样本数据的问题:样本数据中可能存在过多的冗余信息,或者样本数据的分布不均匀,导致变量之间的相关性增加。

2. 选择自变量的问题:在构建回归模型时,选择了过多具有相似解释作用的自变量,这会增加自变量之间的相关性。

3. 数据采集的问题:数据采集过程中可能存在误差或者不完整数据,导致变量之间的相关性增加。

二、多重共线性的影响多重共线性会对多元回归模型的解释变量产生不良影响,主要表现在以下几个方面:1. 回归系数的不稳定性:多重共线性使得回归系数的估计不稳定,难以准确反映各个自变量对因变量的影响。

2. 系数估计值的无效性:多重共线性会导致回归系数估计偏离其真实值,使得对因变量的解释变得不可靠。

3. 预测的不准确性:多重共线性使得模型的解释能力下降,导致对未知数据的预测不准确。

三、多重共线性的解决方法针对多重共线性问题,我们可以采取以下几种方法来解决:1. 剔除相关变量:通过计算自变量之间的相关系数,发现高度相关的变量,选择其中一个作为代表,将其他相关变量剔除。

2. 主成分分析:主成分分析是一种降维技术,可以通过线性变换将原始自变量转化为一组互不相关的主成分,从而降低多重共线性造成的影响。

3. 岭回归:岭回归是一种改良的最小二乘法估计方法,通过在回归模型中加入一个惩罚项,使得回归系数的估计更加稳定。

4. 方差膨胀因子(VIF):VIF可以用来检测自变量之间的相关性程度,若某个自变量的VIF值大于10,则表明该自变量存在较高的共线性,需要进行处理。

4.4 多重共线性的补救措施

4.4  多重共线性的补救措施
第四节 多重共线性的补救措施
• 如果模型出现了严重的多重共线性,就应采取 必要的措施进行补救。然而,由于经济系统的 复杂性,要将多重共线性消除干净几乎是不可 能的,只能选择合适的方法减弱多重共线性对 模型的影响。目前,常用的方法有以下几种: • 一、增加样本容量
• 在计量经济模型中,如果变量样本数据太少,很 容易产生多重共线性。在这种情况下,增加样本容量, 将有助于减弱,甚至消除多重共线性。
• 本章实例参见教材P85~P88.
8
3
三、逐步回归法
• 1.目的:寻找最优回归方程——使R2较 大,F显著;每个回归系数显著 • 2.种类 • (1)逐个剔除法 • (2)逐个引入法 • (3)有进有出法 • 3.准则:一次只能引入或剔除一个自变 量,直至模型中所有自变量均显著 4
• 4、基本做法:
将应变量 Y 的每一个解释变量Xi (i=1,2, …,k)分别进行回归,对每一个回归方程根据 经济理论和统计检验进行综合分析判断,从中挑出一 个最优的基本回归方程,在此基础上,再逐一引入其 它解释变量,重新作回归,逐步扩大模型的规模,直 至从综合情况看,出现最好的模型估计形式。 5、变量取舍标准:在引进新解释变量的回归方程中: (1)如果新解释变量在符合经济意义的前提下,能使 拟合优度R2有所提高,并且,每个参数统计检验显著, 则采纳改变量。 (2)如果新解释变量不能改善拟合优度,同时,对 其它参数无明显影响,则可舍弃该变量。 (3)如果新解释变量能使拟合优度有所改善, R2 有所提高,但对其它参数的符号和数值有明显影响, 统计检验也不显著,则可以断定新解两个变量中,舍去 对应变量影响较小,经济意义相对次要的一个,保留 影响较大,经济意义相对重要的一个。 5
五、将时间序列数据与界面数据相结合

多重共线性的解决方法之——岭回归与LASSO

多重共线性的解决方法之——岭回归与LASSO

多重共线性的解决⽅法之——岭回归与LASSO 多元线性回归模型的最⼩⼆乘估计结果为如果存在较强的共线性,即中各列向量之间存在较强的相关性,会导致的从⽽引起对⾓线上的值很⼤并且不⼀样的样本也会导致参数估计值变化⾮常⼤。

即参数估计量的⽅差也增⼤,对参数的估计会不准确。

因此,是否可以删除掉⼀些相关性较强的变量呢?如果p个变量之间具有较强的相关性,那么⼜应当删除哪⼏个是⽐较好的呢?本⽂介绍两种⽅法能够判断如何对具有多重共线性的模型进⾏变量剔除。

即岭回归和LASSO(注:LASSO是在岭回归的基础上发展的)思想:既然共线性会导致参数估计值变得⾮常⼤,那么给最⼩⼆乘的⽬标函数加上基础上加上⼀个对的惩罚函数最⼩化新的⽬标函数的时候便也需要同时考虑到值的⼤⼩,不能过⼤。

在惩罚函数上加上系数k随着k增⼤,共线性的影响将越来越⼩。

在不断增⼤惩罚函数系数的过程中,画下估计参数(k)的变化情况,即为岭迹。

通过岭迹的形状来判断我们是否要剔除掉该参数(例如:岭迹波动很⼤,说明该变量参数有共线性)。

步骤:1. 对数据做标准化,从⽽⽅便以后对(k)的岭迹的⽐较,否则不同变量的参数⼤⼩没有⽐较性。

2. 构建惩罚函数,对不同的k,画出岭迹图。

3. 根据岭迹图,选择剔除掉哪些变量。

岭回归的⽬标函数式中,t为的函数。

越⼤,t越⼩(这⾥就是k)如上图中,相切点便是岭回归得出来的解。

是岭回归的⼏何意义。

可以看出,岭回归就是要控制的变化范围,弱化共线性对⼤⼩的影响。

解得的岭回归的估计结果为:岭回归的性质由岭回归的⽬标函数可以看出,惩罚函数的系数 (或者k)越⼤,⽬标函数中惩罚函数所占的重要性越⾼。

从⽽估计参数也就越⼩了。

我们称系数 (或者k)为岭参数。

因为岭参数不是唯⼀的,所以我们得到的岭回归估计实际是回归参数的⼀个估计族。

例如下表中:岭迹图将上表中回归估计参数与岭回归参数k之间的变化关系⽤⼀张图来表⽰,便是岭迹图当不存在奇异性是,岭迹应该是稳定地逐渐趋于0当存在奇异性时,由岭回归的参数估计结果可以看出来,刚开始k不够⼤时,奇异性并没有得到太⼤的改变,所以随着k的变化,回归的估计参数震动很⼤,当k⾜够⼤时,奇异性的影响逐渐减少,从⽽估计参数的值变的逐渐稳定。

回归分析中的多重共线性问题及解决方法(七)

回归分析中的多重共线性问题及解决方法(七)

回归分析是统计学中常用的一种方法,它用于研究自变量和因变量之间的关系。

然而,在实际应用中,经常会遇到多重共线性的问题,这给回归分析带来了一定的困难。

本文将讨论回归分析中的多重共线性问题及解决方法。

多重共线性是指独立自变量之间存在高度相关性的情况。

在回归分析中,当自变量之间存在多重共线性时,会导致回归系数估计不准确,标准误差增大,对因变量的预测能力降低,模型的解释能力受到影响。

因此,多重共线性是回归分析中需要重点关注和解决的问题之一。

解决多重共线性问题的方法有很多种,下面将介绍几种常用的方法。

一、增加样本量增加样本量是解决多重共线性问题的一种方法。

当样本量足够大时,即使自变量之间存在一定的相关性,也能够得到较为稳健的回归系数估计。

因此,可以通过增加样本量来减轻多重共线性对回归分析的影响。

二、使用主成分回归分析主成分回归分析是一种常用的处理多重共线性问题的方法。

主成分回归分析通过将原始自变量进行线性变换,得到一组新的主成分变量,这些主成分变量之间不存在相关性,从而避免了多重共线性问题。

然后,利用这些主成分变量进行回归分析,可以得到更为准确稳健的回归系数估计。

三、岭回归岭回归是一种经典的解决多重共线性问题的方法。

岭回归通过对回归系数施加惩罚项,从而减小回归系数的估计值,进而降低多重共线性对回归分析的影响。

岭回归的思想是在最小二乘估计的基础上加上一个惩罚项,通过调节惩罚项的系数来平衡拟合优度和模型的复杂度,从而得到更为稳健的回归系数估计。

四、逐步回归逐步回归是一种逐步选择自变量的方法,可以用来解决多重共线性问题。

逐步回归可以通过逐步引入或剔除自变量的方式,来得到一组最优的自变量组合,从而避免了多重共线性对回归系数估计的影响。

以上所述的方法都可以用来解决回归分析中的多重共线性问题。

在实际应用中,应该根据具体的情况选择合适的方法来处理多重共线性问题,从而得到准确可靠的回归分析结果。

总之,多重共线性是回归分析中需要重点关注的问题,通过合适的方法来处理多重共线性问题,可以得到更为准确稳健的回归系数估计,从而提高回归分析的预测能力和解释能力。

多重共线性解决方法

多重共线性解决方法

多重共线性解决方法
多重共线性是指在回归模型中,自变量之间存在高度相关性的情况,这会导致模型的解释能力下降,系数估计不准确,模型的稳定性受到影响。

以下是一些解决多重共线性问题的方法:
1.增加样本量:通过增加样本量可以减少模型中的抽样误差,从而减轻多重共线性的影响。

2.删除冗余变量:通过剔除高度相关的自变量,可以降低共线性的程度。

可以使用相关性矩阵或者变量膨胀因子(VIF)来判断哪些自变量之间存在高相关性,并选择保留一个或几个相关性较为弱的变量。

3.主成分分析(PCA):主成分分析可以将高度相关的自变量转换成一组无关的主成分,从而降低共线性的影响。

可以选择保留其中的几个主成分作为新的自变量,代替原始的自变量。

4.岭回归(Ridge Regression):岭回归是在普通最小二乘法的基础上加入一个正则化项,通过缩小系数估计的幅度,减少共线性对系数估计的影响。

岭回归可以通过交叉验证选择合适的正则化参数。

5.套索回归(Lasso Regression):套索回归也是在普通最小二乘法的基础上加入一个正则化项,不同的是套索回归使用L1范数作为正则化项,可以将一些系
数估计缩减为零,从而实现变量选择的效果。

6.弹性网回归(Elastic Net Regression):弹性网回归是岭回归和套索回归的结合,同时使用L1和L2范数作为正则化项,可以在预测准确性和变量选择之间进行权衡。

以上方法可以根据具体问题的特点和需求选择合适的方法来解决多重共线性问题。

如何进行多重共线性的剔除变量和合并变量处理

如何进行多重共线性的剔除变量和合并变量处理

如何进行多重共线性的剔除变量和合并变量处理在进行统计分析时,研究人员常常会面临多重共线性的问题。

多重共线性是指自变量之间存在高度相关性,这可能会导致回归模型的不准确性和不可靠性。

为了解决多重共线性问题,研究人员可以采取剔除变量和合并变量的处理方法。

1. 多重共线性的检测在进行多重共线性的处理之前,首先需要进行多重共线性的检测。

常用的方法包括计算变量间的相关系数矩阵、方差膨胀因子和特征值等。

当相关系数矩阵中存在高度相关的变量对,方差膨胀因子大于10或特征值接近于0时,便可以判断存在多重共线性的问题。

2. 剔除变量剔除变量是指在多重共线性问题较为严重的情况下,研究人员可以选择将相关性较高的变量从模型中剔除。

剔除变量的方法包括:(1)选择与因变量关系较弱的变量;(2)选择与其他自变量之间相关性较弱的变量;(3)通过逐步回归、岭回归等方法进行变量选择。

3. 合并变量合并变量是指将多个具有相关性的变量合并成一个新的变量。

合并变量的方法包括:(1)计算多个变量的平均值、加权平均值或标准化值作为新的变量;(2)进行主成分分析,提取主成分作为新的变量;(3)进行因子分析,提取公因子作为新的变量。

4. 多重共线性处理的注意事项在进行多重共线性处理时,还需要注意以下几点:(1)根据研究目的和背景知识选择要剔除或合并的变量;(2)确保剔除或合并后的变量仍能保持原有变量的信息;(3)在剔除或合并变量后重新评估回归模型的拟合程度和解释能力。

总结起来,解决多重共线性问题的方法包括剔除变量和合并变量。

通过合理选择要剔除或合并的变量,并进行适当的处理,可以提高回归模型的准确性和可靠性。

在实际应用中,根据研究目的和数据特点来选择合适的方法进行多重共线性处理,从而得到更可靠的统计分析结果。

第四章第四节 多重共线性的补救措施

第四章第四节  多重共线性的补救措施
Yt 1 2 X 2t 3 X 3t ut
其中, Yt 为商品的消费量, X 2t 为商品的价格,X3t 为消费者收入,若通过抽样调查得到截面数据从而
求得消费者收入的边际消费倾向估计量 ˆ3 ,则上式
变为:
Yt ˆ3 X3t 1 2 X2t ut
令 Yt* Yt ˆ3X3t ,则 Yt* 1 2 X 2t ut
如果原模型(4.4.13)式存在严重的多重共 线性,那么一般情况下,经过差分变换后 会对减轻或消除多重共线性。但是在对一 阶差分式的估计中极有可能会出现 ut 序 列相关的问题,将不满足高斯-马尔可夫 定理(古典假设)。所以,一般情况下, 差分形式应慎用。
五、逐步回归法
基本做法:1.将被解释变量Y对每一个解 释变量 Xi (i 1,2,, k) 分别进行回归,对每一个 回归方程根据经济理论和统计检验进行综合分 析判断,从中挑选出一个最优的基本回归方程。 2.在此基础上,再逐一引入其他解释变量,重 新作回归,逐步扩大模型的规模,直至从综合 情况看出现最好的模型估计形式。
但是劳动力的增长同资本的增长随时间的变换呈高
度相关。如果已知规模报酬不变,即 1 ,则 生产函数变为:
Qt

ALt
K
1 t
从而有:
ห้องสมุดไป่ตู้
Qt Kt

A( Lt ) Kt
Qt
Lt
其中 Kt 为资本产出率, Kt 为劳动对资本的
投入率。将上式两边去对数得:
ln( Qt ) ln A ln( Lt )

1


* 2
X 3t X 2t
ut
可回避原模型的多重共线性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 多重共线性教学目的及要求:1、重点理解多重共线性在经济现象中的表现及产生的原因和后果2、掌握检验和处理多重共线性问题的方法3、学会灵活运用Eviews 软件解决多重共线性的实际问题。

第一节 多重共线性的产生及后果一、多重共线性的含义1、含义在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,也就是说,解释变量X 1,X 2,……,X k 中的任何一个都不能是其他解释变量的线性组合。

如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。

多重共线性违背了解释变量间不相关的古典假设,将给普通最小二乘法带来严重后果。

2、类型多重共线性包含完全多重共线性和不完全多重共线性两种类型。

(1)完全多重共线性完全多重共线性是指线性回归模型中至少有一个解释变量可以被其他解释变量线性表示,存在严格的线性关系。

如对于多元线性回归模型i ki k i i i X X X Y μββββ+++++= 22110 (7-1)存在不全为零的数k λλλ,,,21 ,使得下式成立:0X X X 2211=+++ki k i i λλλ (7-2)则可以说解释变量k X ,,X ,X 21 之间存在完全的线性相关关系,即存在完全多重共线性。

从矩阵形式来看,就是0'=X X , 即1)(-<k X rank ,观测值矩阵是降秩的,表明在向量X中至少有一个列向量可以由其他列向量线性表示。

(2)不完全多重共线性不完全多重共线性是指线性回归模型中解释变量间存在不严格的线性关系,即近似线性关系。

如对于多元线性回归模型(7-1)存在不全为零的数k λλλ,,,21 ,使得下式成立:0X X X 2211=++++i ki k i i u λλλ (7-3)其中i u 为随机误差项,则可以说解释变量k X ,,X ,X 21 之间存在不完全多重共线性。

随机误差项表明上述线性关系是一种近似的关系式,大体上反映了解释变量间的相关程度。

完全多重共线性与完全非线性都是极端情况,一般说来,统计数据中多个解释变量之间多少都存在一定程度的相关性,对多重共线性程度强弱的判断和解决方法是本章讨论的重点。

二、多重共线性产生的原因多重共线性在经济现象中具有普遍性,其产生的原因很多,一般较常见的有以下几种情况。

(一)经济变量间具有相同方向的变化趋势在同一经济发展阶段,一些因素的变化往往同时影响若干经济变量向相同方向变化,从而引起多重共线性。

如在经济上升时期,投资、收入、消费、储蓄等经济指标都趋向增长,这些经济变量在引入同一线性回归模型并作为解释变量时,往往存在较严重的多重共线性。

(二)经济变量间存在较密切关系由于组成经济系统的各要素之间是相互影响相互制约的,因而在数量关系上也会存在一定联系。

如耕地面积与施肥量都会对粮食总产量有一定影响,同时,二者本身存在密切关系。

(三)采用滞后变量作为解释变量较易产生多重共线性一般滞后变量与当期变量在经济意义上关联度比较密切,往往会产生多重共线性。

如在研究消费规律时,解释变量因素不但要考虑当期收入,还要考虑以往各期收入,而当期收入与滞后收入间存在多重共线性的可能很大。

(四)数据收集围过窄,有时会造成变量间存在多重共线性问题。

三、多重共线性产生的后果由前述可知,多重共线性分完全多重共线性和不完全多重共线性两种情况,两种情况都会对模型进行最小二乘估计都会产生严重后果。

(一)完全多重共线性 产生的后果 以二元线性回归模型为例,i i i i u +++=22110X X Y βββ (7-4) 以离差形式表示,假设其中Y Y i i -=y ,111x X X i i -=,222x X X i i -=,i i X X 21λ=,常数0≠λ,则,i i x x 21λ= ,1β的最小二乘估计量为()∑∑∑∑∑∑∑--=22122212211221ˆiiiiiiiiiiix x x x y xx x y x x β00)x ()x (y x x y x x 22222222222222=--=∑∑∑∑∑∑i i ii i i i i λλλλ (7-5) 同理得到:0ˆ2=β (7-6)可见参数估计值1ˆβ和2ˆβ无法确定。

再考察参数估计量的方差,由前面章节可知:()()2u 22i 1i 22i21i22i1x x xx xˆvar σβ∑∑∑∑-= (7-7)将i i 21x x λ=代入上式,则22222222222^)x ()x (x )1var(∑∑∑-=ii iu λλσβ (7-8) =∞说明此种情况下1ˆβ方差为无穷大。

同理可以证明2ˆβ的方差在完全共线性下也为无穷大。

以上分析表明,在完全多重共线性条件下,普通最小二乘法估计的参数值不能确定,并且估计值的方差为无穷大。

(二)不完全多重共线性产生的后果假设上述二元线性回归模型中解释变量i X 1与i X 2的关系为i i i v X X +=21λ (7-9)其中i v 为随机项,满足0)(=i v E ,∑=02ii v X,代入1ˆβ估计表达得:∑∑∑∑∑∑∑+-++-+=22222222222221^])x (x [)x ]()x ([)]x (x )[x ()x )](x (y [^ii i i i i i i i i i i i i i v v v y v λλλλβ=∑∑2y ii i vv(7-10)由于∑≠02iv,因而1ˆβ是可确定估计的,但是其数值依赖i v 的数值,而iv 的数值随样本的变化有较大变化,所以1ˆβ估计值是很不稳定的。

同理可以证明2ˆβ也是可估计的,且数值具有不稳定性。

考察估计量的方差:由(7-1)式可知λ是i X 1、i X 2的相关系数,因此221121222212212xx )x x (r r r iii i ==∑∑∑λ (7-11) 参数估计量的方差可表达为:()∑∑∑-∑=2)2x 1x (22x 21x 22x 2ˆvar i i i i iμσβ2122121xriu -=∑σ (7-12)其中12r 为i 1X 和i 2X 之间的相关系数,从(7-12)式可见,||12r 的值越大,则共线程度越高,估计量方差()2ˆvar β越大,直至无穷。

综上所述,线性回归模型解释变量间存在多重共线性可能产生如下后果:增大最小二乘估计量的方差;参数估计值不稳定,对样本变化敏感;检验可靠性降低,产生弃真错误。

由于参数估计量方差增大,在进行显著性检验时,t 检验值将会变小,可能使某些本该参数显著的检验结果变得不显著,从而将重要变量舍弃。

第二节 多重共线性的检验多重共线性是较为普通存在的现象,从上节分析可知,较高程度的多重共线性会对最小二乘估计产生严重后果,因此,在运用最小二乘法进行多元线性回归时,不但要检验解释变量间是否存在多重共线性,还要检验多重共线性的严重程度。

一、不显著系数法情况1、2R 很大,t 小不显著系数法是利用多元线性回归模型的拟合结果进行检验。

如果拟合优度2R 的值很大(一般来说在0.8以上),然而模型中的全部或部分参数值估计值经检验却不显著,那么解释变量间有可能存在较严重的多重共线性。

情况2、理论性强,检验值弱如果从经济理论或常识来看某个解释变量对被解释变量有重要影响,但是从线性回归模型的拟合结果来看,该解释变量的参数估计值经检验却不显著,那么可能是解释变量间存在多重共线性所导致的。

情况3、新引入变量后,方差增大在多元线性回归模型中新引入一个变量后,发现模型中原有参数估计值的方差明显增大,则说明解释变量间可能存在多重共线性。

二、拟合优度2j R 检验对多元线性回归模型中各个解释变量相互建立回归方程,分别求出各回归方程的拟和优度,如果其中最大的一个接近1,i F 显著大于临界值,该变量可以被其他变量线性解释,则其所对应的解释变量与其余解释变量间存在多重共线性。

如设某多元线性回归模型中原有k 个解释变量k X ,,X ,X 21 ,将每个解释变量对其他解释变量进行回归,得到k 个回归方程:)X ,X ,X (X 321k f = )X ,X ,X (X 312k f =)X ,,X ,X (X 121-=k k f分别求出上述各个方程的拟合优度2K 2221R ,,, R R ,如果其中最大的一个2i R 接近于1,则它所对应的解释变量i X 与其余解释变量间存在多重共线性。

三、相关矩阵法考察多元线性回归模型k k Y X X 110βββ+++= (7-13)其解释变量之间的相关系数矩阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11121221112212222111211 k k k k kk k k k k r r r r r r r r r r r r r r r R (7-14)因为ji ij r r =,,所以上面相关阵为对称阵,1=jj r ,只需考察主对角线元素上方(或下方)某个元素绝对值是否很大(一般在0.8以上),就可以判断两个解释变量间是否存在多重共线性。

结论:另外需要特别注意的是,如果相关系数很大,则一定存在多重共线性,如果相关系数很小,不一定没有多重共线性。

四、Frisch 综合分析法1、方法及分析标准Frisch 综合分析法也叫逐步分析估计法,其基本思想是先将被解释变量对每个解释变量作简单回归方程,称为基本回归方程。

再对每一个基本回归方程进行统计检验,并根据经济理论分析选出最优基本方程,然后再将其他解释变量逐一引入,建立一系列回归方程,根据每个新加的解释变量的标准差和复相关系数来考察其对每个回归系数的影响,一般根据如下标准进行分类判别:1.如果新引进的解释变量使2R 得到提高,而其他参数回归系数在统计上和经济理论上仍然合理,则认为这个新引入的变量对回归模型是有利的,可以作为解释变量予以保留。

2.如果新引进的解释变量对2R 改进不明显,对其他回归系数也没有多大影响,则不必保留在回归模型中。

3.如果新引进的解释变量不仅改变了2R ,而且对其他回归系数的数值或符号具有明显影响,则可认为引进新变量后,回归模型解释变量间存在严重多重共线性。

这个新引进的变量如果从理论上分析是十分重要的,则不能简单舍弃,而是应研究改善模型的形式,寻找更符合实际的模型,重新进行估计。

如果通过检验证明存在明显线性相关的两个解释变量中的一个可以被另一个解释,则可略去其中对被解释变量影响较小的那个变量,模型中保留影响较大的那个变量。

2、具体实例例7-1 设某地10年间有关服装消费、可支配收入、流动资产、服装类物价指数、总物价指数的调查数据如表7-1,请建立需求函数模型。

相关文档
最新文档