数字信号处理实验作业
数字信号处理综合实验

数字信号处理综合实验一、实验目的本实验旨在通过数字信号处理技术的综合应用,加深对数字信号处理原理和方法的理解,提高学生的实际操作能力和问题解决能力。
二、实验原理数字信号处理是利用数字计算机对摹拟信号进行采样、量化和编码,然后进行数字运算和处理的技术。
本实验主要涉及以下几个方面的内容:1. 信号采集与预处理:通过摹拟信号采集电路将摹拟信号转换为数字信号,然后进行预处理,如滤波、降噪等。
2. 数字滤波器设计:设计和实现数字滤波器,包括FIR滤波器和IIR滤波器,可以对信号进行滤波处理,提取感兴趣的频率成份。
3. 时域和频域分析:对采集到的信号进行时域和频域分析,如时域波形显示、功率谱密度估计等,可以了解信号的时域和频域特性。
4. 信号重构与恢复:通过信号重构算法对采集到的信号进行恢复,如插值、外推等,可以还原信号的原始特征。
三、实验内容根据实验原理,本实验的具体内容包括以下几个部份:1. 信号采集与预处理a. 使用摹拟信号采集电路将摹拟信号转换为数字信号,并通过示波器显示采集到的信号波形。
b. 对采集到的信号进行预处理,如去除噪声、滤波等,确保信号质量。
2. 数字滤波器设计a. 设计并实现FIR滤波器,选择合适的滤波器类型和参数,对采集到的信号进行滤波处理。
b. 设计并实现IIR滤波器,选择合适的滤波器类型和参数,对采集到的信号进行滤波处理。
3. 时域和频域分析a. 对采集到的信号进行时域分析,绘制信号的时域波形图,并计算信号的均值、方差等统计指标。
b. 对采集到的信号进行频域分析,绘制信号的功率谱密度图,并计算信号的频域特性。
4. 信号重构与恢复a. 使用插值算法对采集到的信号进行重构,恢复信号的原始特征。
b. 使用外推算法对采集到的信号进行恢复,还原信号的原始特征。
四、实验步骤1. 搭建信号采集电路,将摹拟信号转换为数字信号,并通过示波器显示采集到的信号波形。
2. 对采集到的信号进行预处理,如去除噪声、滤波等,确保信号质量。
数字信号处理实验作业完全版

实验1:理想采样信号的序列,幅度谱,相位谱,以及改变参数后的图像。
源程序: clc;n=0:50;A=444.128;a=50*sqrt(2.0*pi;T=0.001;w0=50*sqrt(2.0*pi;x=A*exp(-a*n*T.*sin(w0*n*T;close allsubplot(3,2,1;stem(x,’.’;title('理想采样信号序列';k=-25:25;W=(pi/12.5*k;X=x*(exp(-j*pi/12.5.^(n'*k;magX=abs(X;s ubplot(3,2,2;stem(magX,’.’;title('理想采样信号序列的幅度谱';angX=angle(X;subplot(3,2,3;stem(angX;title('理想采样信号序列的相位谱'n=0:50;A=1;a=0.4,w0=2.0734;T=1; x=A*exp(-a*n*T.*sin(w0*n*T;subplot(3,2,4;stem(x,’.’; title('理想采样信号序列'; k=-25:25; W=(pi/12.5*k;X=x*(exp(-j*pi/12.5.^(n'*k; magX=abs(X; subplot(3,2,5; stem(magX,’.’title('理想采样信号序列的幅度谱';0204060-2000200理想采样信号序列020406005001000理想采样信号序列的幅度谱0204060-505理想采样信号序列的相位谱0204060-11理想采样信号序列020406012理想采样信号序列的幅度谱上机实验答案:分析理想采样信号序列的特性产生在不同采样频率时的理想采样信号序列Xa(n,并记录各自的幅频特性,观察频谱‚混淆‛现象是否明显存在,说明原因。
源程序:A=444.128;a=50*pi*sqrt(2.0;W0=50*pi*sqrt(2.0;n=-50:1:50; T1=1/1000;Xa=A*(exp(a*n*T1.*(sin(W0*n*T1;subplot(3,3,1;plot(n,Xa;title('Xa序列';xlabel('n';ylabel('Xa';k=-25:25;X1=Xa*(exp(-j*pi/12.5.^(n'*k;subplot(3,3,2; stem(k,abs(X1,'.';title('Xa的幅度谱';xlabel('k';ylabel('〃幅度';subplot(3,3,3;stem(k,angle(X1,'.';title('Xa的相位谱';xlabel('k';ylabel('相位';T2=1/300;Xb=A*(exp(a*n*T2.*(sin(W0*n*T2;subplot(3,3,4;plot(n,Xb;title('Xb序列';xlabel('n';ylabel('相位';k=-25:25;X2=Xb*(exp(-j*pi/12.5.^(n'*k;subplot(3,3,5; stem(k,abs(X2,'.'; title('Xb 的幅度谱';xlabel('k';ylabel('〃幅度';subplot(3,3,6;stem(k,angle(X2,'.'; title(' Xb 的相位谱';xlabel('k';ylabel('相位';T3=1/200;Xc=A*(exp(a*n*T3.*(sin(W0*n*T3; subplot(3,3,7;plot(n,Xc;title('Xc 序列'; xlabel('n';ylabel('Xc';k=-25:25;X3=Xc*(exp(-j*pi/12.5.^(n'*k;subplot(3,3,8; stem(k,abs(X3,'.'; title('Xc 的幅度谱'; xlabel('k';ylabel('幅度';subplot(3,3,9;stem(k,angle(X3,'.'; title('Xc 的相位谱';xlabel('k';ylabel('相位';-50050-5057X a 序列n X a-500500128X a 的幅度谱k 幅度-50050-55X a 的相位谱k相位-50050-50518X b 序列n 相位-50050051018X b 的幅度谱k 幅度-50050-55X b 的相位谱k相位-50050-505x 1026X c 序列nX c-500500510x 1026X c 的幅度谱k幅度-50050-505X c 的相位谱k相位由图可以看出:当采样频率为1000Hz时,采样序列在折叠频率附近处,无明显混叠。
数字信号处理实验课大作业

DSP 实验课大作业设计一 实验目的 在DSP 上实现线性调频信号的脉冲压缩、上实现线性调频信号的脉冲压缩、动目标显示(动目标显示(动目标显示(MTI MTI MTI)和动目标检测)和动目标检测)和动目标检测(MTD)(MTD)(MTD),,并将结果与MATLAB 上的结果进行误差仿真。
上的结果进行误差仿真。
二 实验内容1. MATLAB 仿真仿真设定带宽、脉宽、采样率、脉冲重复频率,用MATLAB 产生16个脉冲的LFM LFM,每个脉冲,每个脉冲有4个目标(静止,低速,高速),依次做:,依次做:1) 脉冲压缩;脉冲压缩;2) 相邻2脉冲做MTI MTI,产生,产生15个脉冲;个脉冲;3) 16个脉冲到齐后,做MTD MTD,输出,输出16个多普勒通道个多普勒通道4) 改变PRF 后,利用两次PRF 下不同的速度结果,求不模糊速度下不同的速度结果,求不模糊速度2. DSP 实现实现将MATLAB 产生的信号,在visual dsp 中做频域脉压、中做频域脉压、MTI MTI MTI、、MTD MTD,将,将MTI 和MTD 结果导入Matlab ,并将其结果与MATLAB 的结果作比较。
三 实验原理1.1. 频域脉冲压缩原理频域脉冲压缩原理一般通过匹配滤波实现脉冲压缩。
在接收机中设置一个与发射信号频率相匹配的压缩网络使经过调制的宽脉冲的发射信号(一般认为也是接受机输入端的回波信号)变成窄脉冲,使之得到良好的距离分辨力,这个过程就称为“脉冲压缩”。
而这个脉冲压缩网络实际上就是一个匹配滤波器网络。
络实际上就是一个匹配滤波器网络。
2.2. MTI 原理原理MTI MTI((Moving Target Indication Indication)即动目标显示是利用运动目标带来的多普勒频)即动目标显示是利用运动目标带来的多普勒频移来消除静止杂波。
当雷达按照一定的周期辐射LFM 信号时,目标与雷达的距离不同会使得回波的相位有所不同。
数字信号处理 实验作业:离散LSI系统的时域分析

实验2 离散LSI 系统的时域分析一、.实验目的:1、加深对离散系统的差分方程、单位脉冲响应、单位阶跃响应和卷积分析方法的理解。
2、初步了解用MA TLAB 语言进行离散时间系统时域分析的基本方法。
3、掌握求解离散时间系统的单位脉冲响应、单位阶跃响应、线性卷积以及差分方程的程序的编写方法,了解常用子函数的调用格式。
二、实验原理:1、离散LSI 系统的响应与激励由离散时间系统的时域分析方法可知,一个离散LSI 系统的响应与激励可以用如下框图表示:其输入、输出关系可用以下差分方程描述:[][]NMkk k k ay n k b x n m ==-=-∑∑2、用函数impz 和dstep 求解离散系统的单位脉冲响应和单位阶跃响应。
例2-1 已知描述某因果系统的差分方程为6y(n)+2y(n-2)=x(n)+3x(n-1)+3x(n-2)+x(n-3) 满足初始条件y(-1)=0,x(-1)=0,求系统的单位脉冲响应和单位阶跃响应。
解: 将y(n)项的系数a 0进行归一化,得到y(n)+1/3y(n-2)=1/6x(n)+1/2x(n-1)+1/2x(n-2)+1/6x(n-3)分析上式可知,这是一个3阶系统,列出其b k 和a k 系数: a 0=1, a ,1=0, a ,2=1/3, a ,3=0 b 0=1/6,b ,1=1/2, b ,2=1/2, b ,3=1/6程序清单如下: a=[1,0,1/3,0]; b=[1/6,1/2,1/2,1/6]; N=32; n=0:N-1; hn=impz(b,a,n); gn=dstep(b,a,n);subplot(1,2,1);stem(n,hn,'k');课程名称 数字信号处理 实验成绩 指导教师 ***实 验 报 告院系 班级学号 姓名 日期title('系统的单位序列响应'); ylabel('h(n)');xlabel('n');axis([0,N,1.1*min(hn),1.1*max(hn)]); subplot(1,2,2);stem(n,gn,'k'); title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n');axis([0,N,1.1*min(gn),1.1*max(gn)]); 程序运行结果如图2-1所示:102030系统的单位序列响应h (n )n1020300.20.30.40.50.60.70.80.911.11.2系统的单位阶跃响应g (n )n图2-13、用函数filtic 和filter 求解离散系统的单位序列响应和单位阶跃响应。
数字信号处理实验作业分解

实验5 抽样定理一、实验目的:1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。
2、进一步加深对时域、频域抽样定理的基本原理的理解。
3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和内插公式的编程方法。
二、实验原理:1、时域抽样与信号的重建 (1)对连续信号进行采样例5-1 已知一个连续时间信号sin sin(),1Hz 3ππ=0001f(t)=(2f t)+6f t f ,取最高有限带宽频率f m =5f 0,分别显示原连续时间信号波形和F s >2f m 、F s =2f m 、F s <2f m 三情况下抽样信号的波形。
程序清单如下:%分别取Fs=fm ,Fs=2fm ,Fs=3fm 来研究问题 dt=0.1; f0=1; T0=1/f0; m=5*f0; Tm=1/fm; t=-2:dt:2;f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); subplot(4,1,1); plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-2:Ts:2;f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end程序运行结果如图5-1所示:原连续信号和抽样信号-2-1.5-1-0.500.51 1.52-2-1.5-1-0.500.51 1.52图5-1(2)连续信号和抽样信号的频谱由理论分析可知,信号的频谱图可以很直观地反映出抽样信号能否恢复原模拟信号。
因此,我们对上述三种情况下的时域信号求幅度谱,来进一步分析和验证时域抽样定理。
数字信号处理上机实验dft

本科实验报告实验名称:数字信号处理上机实验作业1:用DFT 分析周期序列的频谱任务:设周期序列()cos(0.48)cos(0.52)xn n n ππ=+ 截取 N 点长得到 ()()()N x n x n R n = (1)N=10,做10点DFT ,得到 X1(k);(2)N=10,做100点补零DFT ,得到 X2(k); (3)N=100,做100点DFT ,得到 X3(k)。
要求:针对以上三种情况,分别输出|X1(k)|、|X2(k)|、|X3(k)|的图形,并进行比较、分析和讨论。
程序:clear all ; n=0:1000;xn=cos(pi*0.48*n)+cos(pi*0.52*n); Xk1=fft(xn(1:10),10); X1=abs(Xk1); subplot(3,1,1); stem(X1,'.'); xlabel('k'); ylabel('|X1(k)|'); title('N=10,10点DFT'); Xk2=fft(xn(1:10),100); X2=abs(Xk2); subplot(3,1,2); stem(X2,'.'); xlabel('k'); ylabel('|X2(k)|');title('N=10,100点补零DFT'); Xk3=fft(xn(1:100),100); X3=abs(Xk3); subplot(3,1,3); stem(X3,'.'); xlabel('k'); ylabel('|X3(k)|'); title('N=100,100点DFT');运行结果:k|X 1(k )|N=10,10点DFTk|X 2(k )|N=10,100点补零DFTk|X 3(k )|N=100,100点DFT分析:从幅度谱中我们可以明显看出,X1(k)的相邻谱线间隔大,栅栏效应明显,频率分辨率低。
数字信号处理实验作业

实验6 数字滤波器的网络结构一、实验目的:1、加深对数字滤波器分类与结构的了解。
2、明确数字滤波器的基本结构及其相互间的转换方法。
3、掌握用MA TLAB 语言进行数字滤波器结构间相互转换的子函数及程序编写方法。
二、实验原理:1、数字滤波器的分类离散LSI 系统对信号的响应过程实际上就是对信号进行滤波的过程。
因此,离散LSI 系统又称为数字滤波器。
数字滤波器从滤波功能上可以分为低通、高通、带通、带阻以及全通滤波器;根据单位脉冲响应的特性,又可以分为有限长单位脉冲响应滤波器(FIR )和无限长单位脉冲响应滤波器(IIR )。
一个离散LSI 系统可以用系统函数来表示:M-m-1-2-m mm=0012m N -1-2-k-k12k k k=1bz b +b z +b z ++b z Y(z)b(z)H(z)====X(z)a(z)1+a z +a z ++a z1+a z ∑∑L L 也可以用差分方程来表示:N Mk m k=1m=0y(n)+a y(n-k)=b x(n-m)∑∑以上两个公式中,当a k 至少有一个不为0时,则在有限Z 平面上存在极点,表达的是以一个IIR 数字滤波器;当a k 全都为0时,系统不存在极点,表达的是一个FIR 数字滤波器。
FIR 数字滤波器可以看成是IIR 数字滤波器的a k 全都为0时的一个特例。
IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、直接Ⅲ型、级联型和并联型。
FIR 数字滤波器的基本结构分为横截型(又称直接型或卷积型)、级联型、线性相位型及频率采样型等。
本实验对线性相位型及频率采样型不做讨论,见实验10、12。
另外,滤波器的一种新型结构——格型结构也逐步投入应用,有全零点FIR 系统格型结构、全极点IIR 系统格型结构以及全零极点IIR 系统格型结构。
2、IIR 数字滤波器的基本结构与实现 (1)直接型与级联型、并联型的转换 例6-1 已知一个系统的传递函数为-1-2-3-1-2-38-4z +11z -2z H(z)=1-1.25z +0.75z -0.125z将其从直接型(其信号流图如图6-1所示)转换为级联型和并联型。
(完整版)数字信号处理实验二

y = filter(num,den,x,ic);
yt = a*y1 + b*y2;
d = y - yt;
subplot(3,1,1)
stem(n,y);
ylabel('振幅');
title('加权输入: a \cdot x_{1}[n] + b \cdot x_{2}[n]的输出');
subplot(3,1,2)
%扫频信号通过2.1系统:
clf;
n = 0:100;
s1 = cos(2*pi*0.05*n);
s2 = cos(2*pi*0.47*n);
a = pi/2/100;
b = 0;
arg = a*n.*n + b*n;
x = cos(arg);
M = input('滤波器所需的长度=');
num = ones(1,M);
三、实验器材及软件
1.微型计算机1台
2. MATLAB 7.0软件
四、实验原理
1.三点平滑滤波器是一个线性时不变的有限冲激响应系统,将输出延时一个抽样周期,可得到三点平滑滤波器的因果表达式,生成的滤波器表示为
归纳上式可得
此式表示了一个因果M点平滑FIR滤波器。
2.对线性离散时间系统,若y1[n]和y2[n]分别是输入序列x1[n]和x2[n]的响应,则输入
plot(n, y);
axis([0, 100, -2, 2]);
xlabel('时间序号 n'); ylabel('振幅');
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验5 抽样定理一、实验目的:1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。
2、进一步加深对时域、频域抽样定理的基本原理的理解。
3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和插公式的编程方法。
二、实验原理:1、时域抽样与信号的重建 (1)对连续信号进行采样例5-1 已知一个连续时间信号sin sin(),1Hz 3ππ=0001f(t)=(2f t)+6f t f ,取最高有限带宽频率f m =5f 0,分别显示原连续时间信号波形和F s >2f m 、F s =2f m 、F s <2f m 三情况下抽样信号的波形。
程序清单如下:%分别取Fs=fm ,Fs=2fm ,Fs=3fm 来研究问题 dt=0.1; f0=1; T0=1/f0; m=5*f0; Tm=1/fm; t=-2:dt:2;f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); subplot(4,1,1); plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-2:Ts:2;f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end程序运行结果如图5-1所示:原连续信号和抽样信号图5-1(2)连续信号和抽样信号的频谱由理论分析可知,信号的频谱图可以很直观地反映出抽样信号能否恢复原模拟信号。
因此,我们对上述三种情况下的时域信号求幅度谱,来进一步分析和验证时域抽样定理。
例5-2编程求解例5-1中连续信号及其三种抽样频率(F s>2f m、F s=2f m、F s<2f m)下的抽样信号的幅度谱。
程序清单如下:dt=0.1;f0=1;T0=1/f0;fm=5*f0;Tm=1/fm;t=-2:dt:2;N=length(t);f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t);wm=2*pi*fm;k=0:N-1;w1=k*wm/N;F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]);for i=1:3;if i<=2 c=0;else c=1;endfs=(i+c)*fm;Ts=1/fs;n=-2:Ts:2;N=length(n);f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n);wm=2*pi*fs;k=0:N-1;w=k*wm/N;F=f*exp(-j*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]);end程序运行结果如图5-2所示。
由图可见,当满足F s≥2f m条件时,抽样信号的频谱没有混叠现象;当不满足F s≥2f m 条件时,抽样信号的频谱发生了混叠,即图5-2的第二行F s<2f m的频谱图,,在f m=5f0的围,频谱出现了镜像对称的部分。
0246810121416182002468101214161820024681012141618202468101214161820图5-2(3)由插公式重建信号信号重建一般采用两种方法:一是用时域信号与理想滤波器系统的单位冲激响应进行卷积积分;二是用低通滤波器对信号进行滤波。
本实验只讨论第一种方法。
由理论分析可知,理想低通滤波器的单位冲激响应为j Ωt πt sin()1T h(t)=H(j Ω)e d Ω=πt 2πT∞-∞⎰ 抽样信号a ˆx(t)通过滤波器输出,其结果应为a ˆx (t)与h(t)的卷积积分: sin[()/]ˆˆ()()()()()()()()/a a a a a n t nT T y t x t xt h t x h t d x nT t nT T πτττπ∞∞-∞=-∞-==*=-=-∑⎰该式称为插公式。
由式可见,x a (t)信号可以由其抽样值x a (nT)及插函数重构。
MATLAB 中提供了sinc 函数,可以很方便地使用插公式。
例5-3 用上面推导出的插公式重建例5-1给定的信号。
程序清单如下:dt=0.01;f0=1;T0=1/f0;fm=5*f0;Tm=1/fm;t=0:dt:3*T0;x=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t);subplot(4,1,1);plot(t,x);axis([min(t),max(t),1.1*min(x),1.1*max(x)]); title('用时域卷积重建抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=0:(3*T0)/Ts; t1=0:Ts:3*T0;x1=sin(2*pi*f0*n/fs)+1/3*sin(6*pi*f0*n/fs);T_N=ones(length(n),1)*t1-n'*Ts*ones(1,length(t1)); xa=x1*sinc(fs*pi*T_N); subplot(4,1,i+1);plot(t1,xa);axis([min(t1),max(t1),1.1*min(xa),1.1*max(xa)]); end程序运行结果如图5-3所示:用时域卷积重建抽样信号00.511.522.53图5-32、频域抽样与信号恢复 (1)频域抽样定理从理论学习可知,在单位圆上对任意序列的Z 变换等间隔采样N 点得到:2πj k N2πjnk Nz=e n=-X(k)=X (z)=x(n)e∞∞∑ k=0,1,…,N-1该式实现了序列在频域的抽样。
那么由频域的抽样得到的频谱的序列能否不失真地恢复原时域信号呢? 由理论学习又知,频域抽样定理由下列公式表述:r=-x(n)=x(n+rN)∞∞∑表明对一个频谱采样后经IDFT 生成的周期序列x(n)是原非周期序列x(n)的周期延拓序列,其时域周期等于频域抽样点数N 。
假定有限长序列x(n)的长度为M ,频域抽样点数为N ,原时域信号不失真地由频域抽样恢复的条件如下:① 如果x(n)不是有限长序列,则必然造成混叠现象,产生误差;② 如果x(n)是有限长序列,且频域抽样点数N 小于序列长度M (即N<M ),则x(n)以N 为周期进行延拓也将造成混叠,从x(n)中不能无失真地恢复出原信号x(n)。
③ 如果x(n)是有限长序列,且频域抽样点数N 大于或等于序列长度M (即N ≥M ),则从x(n)中能无失真地恢复出原信号x(n),即N N N N r=-x (n)=x (n)R (n)=x(n+rN)R (n)=x(n)∞∞∑(2)从频谱抽样恢复离散时间序列 例5-4 已知一个时间序列的频谱为j ω-j ωn -j ω-j2ω-j3ω-j4ωn=-X(e )=x(n)e =3+2e +e +2e +3e ∞∞∑用IFFT 计算并求出其时间序列x(n),并绘图显示时间序列。
分析:该题使用了数字频率,没有给出采样周期,则默认Ts=1S,另外,从j ωX(e )的解析式可以直接看出时域序列xn=[3,2,1,2,3]。
但为说明问题,仍编写程序求解如下:程序清单如下: Ts=1;N0=[3,5,10]; for r=1:3; N=N0(r);D=2*pi/(Ts*N);kn=floor(-(N-1)/2:-1/2); kp=floor(0:(N-1)/2); w=[kp,kn]*D;X=3+2*exp(-j*w)+1*exp(-j*2*w)+2*exp(-j*3*w)+3*exp(-j*4*w); n=0:N-1; x=ifft(X,N)subplot(1,3,r);stem(n*Ts,abs(x)); box end程序运行结果如图5-4所示:012024图5-4注意:程序中数字频率的排序进行了处理,这是因为j ωX(e )的排列顺序是从0开始,而不是从-(N-1)/2开始。
程序运行后将显示数据:x=5.0000 5.0000 1.0000x=3.0000 2.0000 1.0000 2.0000 3.0000x=3.0000 - 0.0000i 2.0000 + 0.0000i 1.0000 - 0.0000i 2.0000 + 0.0000i 3.0000 - 0.0000 -0.0000 + 0.0000i 0 - 0.0000i -0.0000 + 0.0000i 0.0000 - 0.0000i -0.0000 + 0.0000i由jωX(e)的频谱表达式可知,有限长时间序列x(n)的长度M=5,现分别取频域抽样点数为N=3,5,10,由图5-4显示的结果可以验证:①当N=5和N=10时,N≥M,能够不失真地恢复出原信号x(n);②当N=3时,N<M,时间序列有泄漏,形成了混叠,不能无失真地恢复出原信号x(n)。
混叠的原因是上一周期的后2点与本周期的前两点发生重叠,如下所示:3 2 1 2 33 2 1 2 3例5-5已知一个频率围在[-62.8,62.8]rad/s间的频谱sin0.275ΩX(jΩ)=sin0.025Ω,用IFFT计算并求出时间序列x(n),用图形显示时间序列。
分析:本题给出了模拟频率Ω,其中Ωm=62.8,需将其归一化为数字频率。
根据奈奎斯特定理可知,(1/Ts)=Fs≥(2Ωm/2π),可以推导出Ts≤(π/Ωm),取Ts=0.05s,即采样频率Fs为20Hz或40π。
程序清单如下:wm=62.8;Ts=pi/wm;N0=[8,20];for r=1:2N=N0(r);D=2*pi/(Ts*N);k=[0:N-1]+eps;omg=k*D;X=sin(0.275*omg)./sin(0.025*omg);n=0:N-1;x=abs(ifft(X,N));subplot(1,2,r);stem(n*Ts,abs(x));boxend程序运行结果如图5-5所示:图5-5由N=20的结果可知,时间序列x(n)是一个矩形窗。
根据DFT的循环移位性质可知,非零数据存在于n=-5:5的区域,有限长序列的长度为11。