圆周率的计算历程及意义

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周率π的计算历程及意义

李毫伟

数学科学学院数学与应用数学学号:080412047

指导老师:王众杰

摘要: 圆周率π这个数,从有文字记载的历史开始,就引起了人们的兴趣.作为一个非常重要的常数,圆周率π最早是出于解决有关圆的计算问题.仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了.几千年来作为数学家们的奋斗目标,古今中外的数学家为此献出了自己的智慧和劳动.回顾历史,人类对π的认识过程,反映了数学和计算技术发展情形的一个侧面.π的研究在一定程度上反映这个地区或时代的数学水平.

关键词: 圆周率; 几何法; 分析法; 程序

1、实验时期

通过实验对π值进行估算,这是计算π的第一个阶段.这种对π值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出来

π=这个数据,最早见于有文字记载的基督教《圣经》的.在古代,实际上长期使用3

中的章节,其上取圆周率π为3.这一段描述的事大约发生在公元前950年前后.其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值.在我国刘徽之前“圆径一而周三”曾广泛流传.我国第一部《周髀算经》中,就记载有“圆周三径一”这一结论.在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七,”意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线

之长约为7,这正反应了人们早期对π这两个无理数的粗略估计.东汉时期,官方还明文规定圆周率取3为计算圆的面积的标准,后人称之为古率.

早期的人们还使用了其它的粗糙方法.如古埃及、古希腊人曾用谷粒摆在圆形

上,以数粒数与方形对比的方法取得数值.或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率π的稍好些的值.如古埃及人应用了约四千年的

()≈2984 3.1605.在印度,公元前六世纪,曾取π≈10≈3.162.在我国东、西汉之交,新朝王莽令刘歆制造量的容器――律嘉量斛.刘歆在制造标准容器的过程中就需要用到圆周率π的值.为此,他大约也是通过做实验,得到一些关于圆周率π的并不划一的近似值.现在根据铭文推算,其计算值分别取为3.1547、3.1992、3.1498、

3.2031比径一周三的古率已有所进步.人类的这种探索的结果,当主要估计圆田面积时,对当时没有太大影响,但以此来制造器皿或其他计算就不太合适了.

2、几何法时期

凭直观推测或实物度量,来计算π值的实验方法所得到的结果是相当粗略的.真正使圆周率π计算建立在科学的基础上,首先应归功于阿基米德.他是科学地研究这一常数的第一个人,是他首先提出了一种能够借助数学过程而不是通过测量的,能够把π精确到任意精度的方法.由此,开始了π计算的第二个计算阶段.

图 1

圆周长大于内接正四边形而小于外切正四边形,因此22<π<4.当然,这是一个差劲透顶的例子.据说阿基米德用到了正96边形才算出他的值域.阿基米德求圆周率π的更精确近似值的方法,体现在他的一篇论文《圆的测定》之中.在这一书中阿基米德第一次创造性地用上、下界来确定π的近似值,他用几何方法证明了“圆周长与圆直径之比小于()317+而大于()31071+”,他还提供了误差的估计.重要的是这种方法从理论上而言,能够求得圆周率π的更准确的值.阿波罗尼奥斯得到了3.1416π≈.

到公元前150年左右,希腊天文学家托勒密得出301417π≈,377120π≈取得了自阿基米德以来的巨大进步.

图 2

割圆术,不断地利用勾股定理,来计算正n 边形的边长.

在我国,首先是由数学家刘徽得出较精确的圆周率π.公元263年前后,刘徽提出著名的割圆术,得出 3.14π≈,通常称为“徽率”,他指出这是不足近似值.虽然他提出割圆术的时间比阿基米德晚一些,但其方法确有着较阿基米德方法更美妙之处.割圆术仅用内接正多边形就确定出了π的上、下界,比阿基米德用内接同时又用外切正多边形简捷得多.另外,有人认为在割圆术中刘徽提供了一种绝妙的精加工办法,以致于他将割到192边形的几个粗糙的近似值通过简单的加权平均,竟然获得具有4位有效数字的圆周率39271250 3.1416π≈≈.而这一结果,正如刘徽本人指出的,如果通过割圆计算得出这个结果,需要割到3072边形.这种精加工方法的效果是奇妙的.这一神奇的精加工技术是割圆术中最为精彩的部分,令人遗憾的是,由于人们缺乏对它的理解而被长期埋没了.

大家熟悉的是祖冲之对π所做出的贡献.对此,《隋书·律历志》有如下记载:"宋末,南徐州从事祖冲之更开密法.以圆径一亿为丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间.密率:圆径一百一十三,圆周三百五十五.约率,圆径七,周二十二."这一纪录指出,祖冲之关于圆周率的两大贡献.一是求得圆周率()3.1415926,3.1415927π∈,二是,得到π的两个近似分数即:约率为22;密率为355113.他算出的8位可靠数字,不但在当时是最精密的圆周率,而且从480年到1429年,祖率在世界数学史上领先

了900多年.1912年,日本数学家三上义夫提议把355113π≈称为祖率.

这一结果是如何获得的呢?追根溯源,正是基于对刘徽割圆术的继承和发展,祖冲之才能得到这一非凡的成果.因而当我们称颂祖冲之的功绩时,不要忘记他的成就的取得是因为他站在数学伟人刘徽的肩膀上的缘故.后人曾推算若要单纯地通过计算圆内接多边形边长的话,得到这一结果,需要算到圆内接正12288边形,才能得到这样精确度的值.祖冲之是否还使用了其它的巧妙办法来简化计算呢?这已经不得而知,因为记载其研究成果的著作《缀术》早已失传了.这在中国数学发展史上是一件令人痛惜的事.

祖冲之的这一研究成果在国内外享有声誉:我国邮电部发行了祖冲之纪念邮票,且把紫金山天文台1964年11月9日发现的小行星命名为"祖冲之星".1959年,苏联宇宙火箭发现的月球环形山命名为"祖冲之山".巴黎“发现宫”科学博物馆的墙壁上著文介绍了祖冲之求得的圆周率π,莫斯科大学礼堂的走廊上镶嵌有祖冲之的大理石塑像.

对于祖冲之的关于圆周率π的第二点贡献,即他选用两个简单的分数尤其是用密率来近似地表示π这一点,通常人们不会太注意.然而,实际上,后者在数学上有重要的意义.

密率与π的近似程度很好,但形式上却很简单,并且很优美,只用到了1、3、5、.数学史家梁宗巨教授验证出:分母小于16604的一切分数中,没有比密率更接近π的分数.在国外,祖冲之死后一千多年,西方人才获得这一结果.

可见,密率的提出是一件很不简单的事情.人们自然要追究他是采用什么办法得到这一结果的呢?他是用什么办法把圆周率π从小数表示的近似值化为近似分数的呢?这一问题历来为数学史家所关注.由于文献的失传,祖冲之的求法已不为人知.后人对此进行了各种猜测.

让我们先看看国外历史上的工作,希望能够提供出一些信息.1573年,德国人奥托得出这一结果.他是用阿基米德成果722与托勒密的结果120377用类似于加成法“合成”的:()()113355712022377=--.

1858年,荷兰人安托尼兹用阿基米德的方法先求得:333106377120π<<,用

相关文档
最新文档