实验1作物生长分析法
第一节 作物栽培学的性质、任务和研究法

第一章绪论第一节:作物栽培学的性质、任务和研究法一、导学二、引导视频、单元精讲三、学习内容(包括两个部分,1个是掌握部分,1个是拓展部分。
)要求,促进作物的生长发育,使之产量高且品质好。
因此,作物栽培学是一门综合性很强的直接服务于作物生产的科学。
作物栽培、蔬菜栽培和果树栽培等,共同构成了作物种植业。
作物种植业是农业的重要组成部分,是人类把作物品种的潜在生产力和环境资源转化为农产品的生产过程。
(二)作物栽培学的任务作物栽培学的任务在于根据作物品种的要求,为其提供适宜的环境条件,采取与之相配套的栽培技术措施,使作物品种的基因得以表达,使其遗传潜力得以发挥。
换句话说,作物栽培就是通过良种良法相配套,充分发挥作物品种的生产潜力。
二、作物栽培学的理论基础(一)作物栽培学与相关学科的关系作物栽培学是一门综合性很强的农业技术科学,与之发生关系的学科是很多的。
应当指出,作物栽培学并不是单纯地综合运用其他学科的研究成果,更不是简单地实施作物种、管、收等田间作业程序。
作物栽培学有其自己的理论基础——作物生理生理生态学。
作物栽培学是在充分研究和掌握作物个体生长发育和群体建成、产量形成及其对环境条件要求和反应规律的基础之上,综合运用本领域和相关学科的科技成果,加以集成和优化,形成作物生产的技术体系,用于生产。
(二)作物栽培学总论与各论的关系作物栽培学作为一门学科,它包括总论和各论。
从生产实际来说,栽培作物涉及丰富多彩的作物种类和品种,牵涉到千变万化的环境和条件,更离不开灵活多样的措施和技术。
这里面必定含有许多共同的原理和普遍的规律,这就是作物的“共性”。
同时,不同的作物又有其自身的特征特性,有其自己对环境条件的不同要求,这又是作物栽培的“个性”。
作物栽培学,由于有共有性,而有“总论”,又因为有个性,便不能没有“各论”。
“总论”讲述一般知识、基本原理、普遍应用的措施和技术,为各论做铺垫,打基础;“各论”讲述的则是各个作物的知识、原理、栽培措施和技术。
作物生长分析(共10张PPT)

分蘖比较 杀青(105℃,30-60min)
(3)比叶面积(Specific Leaf Area,SLA)
测定日期:
作物或栽培措施:
主茎叶片数比较 四 数据统计和指标计算
(2)叶面积比率(Leaf Area Rate,LAR) (2)叶面积比率(Leaf Area Rate,LAR)
相互关系分析
洗净去根后形态观察(株高茎、鞘分 蘖 、主茎叶数)叶
穗
(3)比叶面积(S0p.e7cificStLeemafaAn rdesah,eaSt hLA) L eaf
P anicle
(1)叶面积指数0(. 6LAI)
洗净去根后形态观0 .察5 (株高、分蘖、主茎叶数)
0.4
0.3
0.2
0.1
0
百 分率 P erce ntage (% )
0 14 28 42 0 14 28 42 0 14 28 42
始 穗 后 天 数 D after H eading(d)
B1
B2
B3
第4页,共10页。
(3)相对生长率(Relative Growth Rate.RGR)
RGR 1•dw 1nw 21nw 1
W dt
t2t1
(4)净同化率(Net Assimilation Rate,NAR)
分样(茎鞘、叶片、黄叶)
测定日期:
作物或栽培措施:
(1)叶面积指数(LAI)
叶面积指数计算(基本苗为10万/亩)及比较
叶面积指数计算(基本苗为10万/亩)及比较
运用生物观察法和作物生长分析法分析植株的物质积累、转运、分配情况及其与叶片、株高、叶面积等植物学形态特征的关系。
(LW 为叶片干重)
实验1 作物生长分析法

实验1 作物生长分析法一、实验目的1.学习生长分析法的测定与计算。
2.分析各生理指标间的关系。
3.学会使用各种仪器。
二、材料及用具玉米植株、钢卷尺、电子天平、剪刀、牛皮纸袋、干燥箱、真空干燥器三、内容说明生长分析法是以作物生育过程中干物质增长过程为中心进行研究的,在测定干物质增长的同时,也测定叶面积。
生长分析法的基本观点是作物产量以干物质重量来衡量,作物生育进程也以植株干物质增长过程为中心进行研究.其具体做法是每隔一定天数进行取样调查,测定植株不同器官的干物重并同时测定叶面积。
下面是一些重要的生长分析法考察的生理指标.1.叶面积指数(LAI)叶面积指数是指作物群体总绿色叶面积与该群体所占土地面积的比值。
即叶面积指数=总绿叶面积/土地面积.作物大田生产通常是依靠单位土地面积上的作物群体来进行的,所以计算叶面积指数时要以单位土地面积上的群体叶面积为准而不能以单株叶面积为准.表1为2001年6月13日取样时,高粱的单个叶片叶面积数据.取样株数为5株。
通过下表可计算6月13日的叶面积指数。
表1 2001年高粱资料(叶长、叶宽单位cm.株距20cm,行距50 cm)高粱的单叶叶面积=叶长×叶宽×0.75单株叶面积=各绿叶叶面积的和叶面积指数=平均单株叶面积/平均单株土地面积=平均单株叶面积/(株距×行距)同学们在学习叶面积指数时,可以先以上面的数据计算各处理的叶面积,加深自己的印象。
2.光合势(LAD )光合势是指在某一生育时期或整个生育时期内群体绿叶面积的逐日累积,光合势的单位以万m 2·d/ hm 2来表示。
计算某一时期内的光合势的方法,一般是以这一时期内单位土地上的日平均叶面积乘以这一时期延续的天数.在群体生长正常的条件下,群体干物质积累数量与光合势呈正相关。
假设在t 1~t 2时间内,平均有l /2(L 1十L 2)的叶面积进行光合生产,这一期间的阶段光合势为:LAD=1/2(L 2+L 1)(t 2-t 1) 全生育期总光合势为: LAD=∑LAD iL 2、L 1分别是t 2、t 1时的叶面积。
作物学实验报告

作物学实验报告作物学实验报告引言:作物学是农学的重要分支,通过实验研究,可以提高作物的产量和质量,为农业生产做出贡献。
本实验旨在探究不同施肥方式对小麦生长的影响,并分析其对产量和养分吸收的影响。
实验材料与方法:1. 实验材料:小麦种子、肥料、盆栽、土壤、水2. 实验方法:将小麦种子均匀分布于盆栽中,分为三组进行施肥处理。
第一组为常规施肥组,按照农业标准施加肥料。
第二组为有机施肥组,使用有机肥料进行施肥。
第三组为无肥料施加组,不施加任何肥料。
每组设置三个重复。
实验结果与分析:1. 植株高度:经过一段时间的生长,常规施肥组的小麦植株高度最高,有机施肥组次之,无肥料施加组最低。
这表明合理的施肥可以促进植物的生长,提高产量。
2. 叶片颜色:常规施肥组的叶片呈现深绿色,有机施肥组次之,无肥料施加组的叶片颜色较浅。
这说明肥料的施加对植物的叶绿素合成和养分吸收有重要影响。
3. 根系发育:常规施肥组的小麦根系发育良好,有机施肥组次之,无肥料施加组的根系较弱。
肥料的施加可以提供植物所需的养分,促进根系的生长和发育。
4. 产量:经过一段时间的生长,常规施肥组的小麦产量最高,有机施肥组次之,无肥料施加组产量最低。
这说明适当的施肥可以提高作物的产量。
结论:通过本次实验,我们可以得出以下结论:1. 合理的施肥可以促进作物的生长,提高产量。
2. 常规施肥可以使作物的叶片颜色更加鲜绿,根系发育更加良好。
3. 有机施肥虽然效果不如常规施肥明显,但仍能提高作物的生长和产量。
4. 不施加肥料会导致作物生长受限,产量较低。
实验的局限性和改进方向:本实验只探究了不同施肥方式对小麦生长的影响,未考虑其他因素的干扰。
为了得到更准确的结果,可以在今后的实验中增加更多的重复次数,同时考虑其他因素如温度、湿度等的影响。
未来研究方向:在进一步的研究中,可以探究不同种类的肥料对作物生长的影响,比较化学肥料和有机肥料的效果差异。
此外,可以研究不同施肥时间和施肥量对作物产量的影响,以制定更科学合理的施肥方案。
植物生长实验

植物生长实验植物生长实验是一种常见的科学实验,旨在研究植物在不同环境条件下的生长和发育过程。
这类实验不仅有助于我们了解植物生长的基本规律,还能帮助我们对植物生长过程进行控制和优化。
一、实验设计1. 实验目的:探索植物生长所需的最佳环境条件,如光照、温度、水分等。
2. 实验材料:种子、土壤、盆、水、测量仪器(如光照计、温度计、湿度计等)。
3. 实验步骤:a) 准备种子和土壤:选择一种适合实验的植物种子,将种子放入湿润的土壤中,确保土壤含水量适宜。
b) 设置实验组和对照组:根据实验目的,设置不同的环境条件组和对照组,如不同光照强度、不同温度、不同水分等。
c) 植物生长条件的控制:将不同组的植物放置在相应的环境中,保持环境条件的稳定,如每天确定的光照时间和强度、适宜的温度和湿度等。
d) 观察和记录:定期观察植物的生长和发育情况,记录植物的高度、叶片数量、花朵产生等相关数据。
e) 数据分析:根据观察记录,对不同组的植物生长情况进行比较和分析,找出最佳的生长条件。
二、实验结果根据实验目的的不同,实验结果可能有所差异。
以下是几个可能的实验结果:1. 光照强度对植物生长的影响:实验结果显示,适宜的光照强度(如15000流明)有助于促进植物的生长和光合作用,而过高或过低的光照强度则对植物的生长产生不利影响。
2. 温度对植物生长的影响:实验结果表明,在适宜的温度范围(如20-28摄氏度)内,植物的生长速度较快,而温度过高或过低则会导致植物发育受阻或生长缓慢。
3. 水分对植物生长的影响:实验结果显示,适宜的水分含量(如土壤湿度保持在50-70%)有利于植物根系的吸收和水分平衡,保证植物正常的生理活动。
三、实验意义植物生长实验具有重要的科学意义和应用价值:1. 增进对植物生长规律的认识:通过对植物生长实验的探索,可以深入了解植物的生长和发育过程,揭示其中的内在规律。
2. 探索植物适应环境的机制:植物能够适应各种环境条件,植物生长实验可以帮助我们揭示植物适应环境的生理和分子机制,并为植物育种和栽培提供理论基础。
作物生长模型的建立与模拟实验研究

作物生长模型的建立与模拟实验研究作物生长模型是用来描述作物在不同环境条件下生理、生化和生态过程的数学模型该模型对于指导农业生产、提高作物产量和质量具有重要意义作物生长模型的建立与模拟实验研究的方法和步骤1. 模型建立的基本原理作物生长模型建立的基本原理是基于作物生长的生理、生化和生态学原理,通过实地观测和试验,获取作物生长相关参数,构建数学模型,并利用计算机技术进行模拟和预测2. 模型建立的方法和步骤作物生长模型的建立主要包括以下几个步骤:(1)收集数据:通过实地观测、试验和文献资料收集,获取作物生长相关的基础数据,如生育期、株高、叶面积指数、干物质积累等(2)选择模型类型:根据作物生长特点和研究目的,选择合适的模型类型,如过程模型、经验模型或组合模型等(3)构建数学模型:根据模型类型和基础数据,构建描述作物生长过程的数学模型,包括生物学过程和环境因素的影响(4)参数估计:利用收集的数据,通过统计分析方法估计模型参数,如生长系数、环境阈值等(5)模型验证和优化:通过实地观测和试验数据,对模型进行验证和优化,提高模型的准确性和可靠性3. 模型模拟实验研究模型模拟实验研究是检验和应用作物生长模型的重要环节主要包括以下几个方面:(1)实验设计:根据研究目的和模型需求,设计实验方案,包括试验地点、品种、施肥、灌溉等农艺措施(2)数据采集:在实验过程中,严格按照数据采集标准,实时监测作物生长相关指标,如株高、叶面积指数、干物质积累等(3)模型应用:将建立的作物生长模型应用于实验数据,进行模拟预测,分析模型在不同环境条件和农艺措施下的适用性(4)结果分析:对比模型模拟结果与实际观测数据,评估模型的准确性和可靠性,为农业生产提供科学依据本文对作物生长模型的建立与模拟实验研究进行了探讨,为进一步提高作物产量和质量、优化农业生产提供理论支持和实践指导以上内容为文章的相关左右,主要包括了作物生长模型建立的基本原理、方法和步骤,以及模型模拟实验研究的重要性后续内容将详细介绍具体模型类型、参数估计方法以及模型在农业生产中的应用等4. 常见作物生长模型类型及特点4.1 过程模型过程模型是基于作物生长的生理过程,模拟作物生长过程中的关键参数,如光合作用、呼吸作用、养分吸收和运输等这类模型的优点是能够详细描述作物生长的内在生理机制,但需要较多的参数和复杂的计算4.2 经验模型经验模型是基于作物生长观测数据,通过统计方法构建的模型这类模型的优点是参数较少,计算简便,但可能无法准确描述作物生长的内在生理机制4.3 组合模型组合模型是将过程模型和经验模型相结合,取长补短,提高模型的准确性和适用性这类模型在实际应用中得到了广泛应用5. 参数估计方法参数估计是作物生长模型建立的关键环节,常用的参数估计方法有:(1)经验公式法:通过实测数据,拟合参数的的经验公式(2)优化算法:利用计算机技术,采用遗传算法、粒子群优化算法等,寻找最优参数(3)人工神经网络:利用人工神经网络模型,模拟作物生长过程,自动获取参数6. 模型在农业生产中的应用作物生长模型在农业生产中具有广泛应用,主要包括:(1)品种筛选:通过模型模拟,评估不同品种在特定环境条件下的产量和品质表现,筛选适宜品种(2)栽培管理:根据模型模拟结果,制定合理的施肥、灌溉、病虫害防治等农艺措施,提高作物产量和品质(3)产量预测:利用模型模拟,预测不同栽培管理条件下作物的产量表现,为农业生产决策提供依据(4)适应性研究:通过模型模拟,研究作物对不同环境变化的适应性,为培育适应性强的品种提供理论支持7. 模型发展趋势与挑战随着计算机技术和大数据的发展,作物生长模型呈现出以下发展趋势:(1)模型精细化:通过引入更多的生物学和环境因素,提高模型的精细化程度,使其更准确地描述作物生长过程(2)模型集成化:将作物生长模型与其他模型(如气象模型、土壤模型等)相结合,实现多模型集成,提高模型的适用性和准确性(3)模型智能化:利用技术,如深度学习、机器学习等,构建智能化的作物生长模型,实现模型的自动学习和优化然而,作物生长模型在发展过程中也面临一些挑战,如模型参数的获取和验证、模型的普适性和移植性、模型的实时监测和调控等需要进一步研究和解决这些问题,以推动作物生长模型的发展和应用8. 模型参数的获取和验证模型参数的获取和验证是作物生长模型建立的关键环节获取准确的参数对于模型的准确性和可靠性至关重要参数的获取主要依赖于实地观测和试验,包括生育期、株高、叶面积指数、干物质积累等指标的测定此外,通过文献资料和数据库收集也是获取参数的重要途径参数的验证通常采用模型模拟与实际观测数据对比的方法,评估模型的准确性和可靠性对于验证不合格的模型,需要重新调整参数,直至满足要求9. 模型的普适性和移植性模型的普适性和移植性是衡量作物生长模型应用价值的重要指标普适性指的是模型在不同地区、品种和栽培条件下的适用性为了提高模型的普适性,需要收集更多的数据,优化模型参数,使模型能够适应更广泛的环境条件移植性指的是模型在不同作物和生态系统中的应用能力对于具有较高普适性和移植性的模型,可以应用于更多的作物和环境,为农业生产提供更大的价值10. 模型的实时监测和调控模型的实时监测和调控是作物生长模型在农业生产中的关键应用通过对作物生长过程的实时监测,可以了解作物的生长状态,及时发现潜在的问题,为农业生产提供决策依据模型的调控功能可以通过制定合理的农艺措施来实现,如施肥、灌溉、病虫害防治等此外,利用物联网技术和遥感技术,可以实现对作物生长过程的远程监控和智能调控,提高农业生产的智能化水平11. 结论作物生长模型是描述作物生长过程的重要工具,对于指导农业生产、提高作物产量和质量具有重要意义本文对作物生长模型的建立与模拟实验研究进行了探讨,包括模型建立的基本原理、方法和步骤,模型模拟实验研究的重要性,常见模型类型及特点,参数估计方法,模型在农业生产中的应用,模型发展趋势与挑战,模型参数的获取和验证,模型的普适性和移植性,以及模型的实时监测和调控为进一步提高作物产量和质量、优化农业生产提供理论支持和实践指导。
作物栽培学总论第一章绪论

作物栽培学总论第一章绪论第一节作物栽培学的对象、性质、任务及研究法一、作物栽培学的对象、性质与任务(一)作物栽培学的定义。
作物栽培学是一门综合性、实践性、应用性的农业自然科学。
它研究作物生长发育规律、产量及品质形成规律及其与环境条件的关系,探讨作物高产、优质、高效的栽培理论和技术措施。
该定义已经指出了作物栽培学的研究对象、性质、特点及任务。
具体可从以下几方面分析这一定义的涵义。
1.该定义揭示了作物栽培学的研究对象(1)2个规律——作物生长发育规律、产量及品质形成规律。
作物栽培的对象包括粮、棉、油、糖等各种作物,作物是有机体,有机体有其自身生长发育、器官建成、产量和产品形成的规律。
为了种好庄稼,就必须了解和掌握这些规律,就必须“摸透庄稼的脾气”,即掌握作物的特征特性。
在农田作物栽培系统中,作物生产是以无数个体而组成的群体生产,因此,作物栽培学不仅要研究作物个体的生长发育规律和器官建成规律,还要研究作物群体的结构和动态发展规律,探讨如何协调群体与个体矛盾的理论与方法。
(2)1个关系——作物生长发育规律、产量及品质形成规律及其与环境条件的关系。
作物生长发育离不开外界环境条件——光、热、水、二氧化碳、矿质元素等。
不同的作物、不同的品种以至于不同的生育阶段、不同器官的形成过程,对外界环境有着不同的要求,因此,作物与外界环境条件之间的关系也是作物栽培学必须研究的。
在农田作物栽培系统中,作物所处的环境包括了气候因素(光、温、水、气等),土壤因素(土壤类型与结构、土壤养分及水分等)和生物因素(杂草、有益及有害昆虫、微生物等)。
作物生长发育需要有适宜的综合环境条件。
作物栽培学必须研究清楚作物生长发育过程中对这些环境条件的具体要求以及这些条件对作物器官建成和产量品质形成的影响。
(3)1个探讨——作物高产、优质、高效的栽培理论和技术措施。
了解了作物的特征特性,懂得了作物要求什么样的条件,还要相应地采用整地、施肥、播种、灌溉、中耕除草、防病治虫等各种栽培技术和措施去满足作物的要求,促进作物的生长发育,使之产量高且品质好。
育种学实践实验报告(3篇)

第1篇一、实验背景随着我国农业现代化的不断推进,育种学在农业生产中扮演着越来越重要的角色。
为了提高作物产量、改善品质、增强抗逆性,育种学的研究和实践日益受到重视。
本实验旨在通过实践操作,加深对育种学基本理论和方法的理解,提高实际操作技能。
二、实验目的1. 理解育种学的基本理论和方法。
2. 掌握种子采集、保存和鉴定技术。
3. 学习杂交育种、诱变育种等育种方法。
4. 培养实际操作能力和团队协作精神。
三、实验材料与仪器1. 材料:- 作物种子:小麦、水稻、玉米等。
- 育种工具:放大镜、剪刀、镊子、试管、酒精灯、显微镜等。
- 化学试剂:盐酸、酒精、碘液等。
2. 仪器:- 种子发芽箱- 电子天平- 显微镜- 培养皿四、实验步骤1. 种子采集与保存- 采集成熟作物种子,注意选择无病虫害、饱满的种子。
- 将种子置于干燥、通风、避光的环境中保存。
2. 种子鉴定- 使用放大镜观察种子形态、颜色、大小等特征。
- 使用显微镜观察种子内部结构。
3. 杂交育种- 选择优良品种进行杂交,配制杂交组合。
- 收集杂交后代,进行田间种植和观察。
4. 诱变育种- 使用化学试剂对种子进行处理,诱发变异。
- 收集变异后代,进行田间种植和观察。
5. 数据记录与分析- 记录种子发芽率、生长状况、产量、品质等数据。
- 分析实验结果,总结育种方法的效果。
五、实验结果与分析1. 种子发芽率:本实验中,小麦、水稻、玉米等作物的种子发芽率均在90%以上,说明种子质量较好。
2. 杂交育种:通过杂交育种,得到了一些具有优良性状的后代,如抗病性、产量等。
3. 诱变育种:部分处理后代的性状发生了变异,如株高、叶片颜色等。
4. 数据分析:通过对实验数据的分析,发现杂交育种和诱变育种在提高作物产量、改善品质、增强抗逆性等方面具有显著效果。
六、实验结论1. 育种学的基本理论和方法在农业生产中具有重要意义。
2. 种子采集、保存和鉴定技术是育种工作的基础。
3. 杂交育种和诱变育种是提高作物产量、改善品质、增强抗逆性的有效方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1 作物生长分析法
一、实验目的
1.学习生长分析法的测定与计算。
2.分析各生理指标间的关系。
3.学会使用各种仪器。
二、材料及用具
玉米植株、钢卷尺、电子天平、剪刀、牛皮纸袋、干燥箱、真空干燥器
三、内容说明
生长分析法是以作物生育过程中干物质增长过程为中心进行研究的,在测定干物质增长的同时,也测定叶面积。
生长分析法的基本观点是作物产量以干物质重量来衡量,作物生育进程也以植株干物质增长过程为中心进行研究。
其具体做法是每隔一定天数进行取样调查,测定植株不同器官的干物重并同时测定叶面积。
下面是一些重要的生长分析法考察的生理指标。
1.叶面积指数(LAI)
叶面积指数是指作物群体总绿色叶面积与该群体所占土地面积的比值。
即叶面积指数=总绿叶面积/土地面积。
作物大田生产通常是依靠单位土地面积上的作物群体来进行的,所以计算叶面积指数时要以单位土地面积上的群体叶面积为准而不能以单株叶面积为准。
表1为2001年6月13日取样时,高粱的单个叶片叶面积数据。
取样株数为5株。
通过下表可计算6月13日的叶面积指数。
表1 2001年高粱资料(叶长、叶宽单位cm。
株距20cm,行距50 cm)
高粱的单叶叶面积=叶长×叶宽×
单株叶面积=各绿叶叶面积的和
叶面积指数=平均单株叶面积/平均单株土地面积=平均单株叶面积/(株距×行距)同学们在学习叶面积指数时,可以先以上面的数据计算各处理的叶面积,加深自己的印象。
2.光合势(LAD)
光合势是指在某一生育时期或整个生育时期内群体绿叶面积的逐日累积,光合势的单位以万m2·d/ hm2来表示。
计算某一时期内的光合势的方法,一般是以这一时期内单位土地上的日平均叶面积乘以这一时期延续的天数。
在群体生长正常的条件下,群体干物质积累数量与光合势呈正相关。
假设在t1~t2时间内,平均有l/2(L1十L2)的叶面积进行光合生产,这一期间的阶段光合势为:
LAD=1/2(L2+L1)(t2—t1)
全生育期总光合势为:
LAD=∑LAD i
L 2、L 1分别是t 2、t 1时的叶面积。
表2为1999年夏玉米三次取样数据,根据表2可计算7月9日~7月19日和7月19日~7月29日这两个阶段三个处理的光合势、净同化率、群体生长率等。
表2 夏玉米叶面积与干物质资料(干物质单位为:g/m 2;时间为 : 月/日)
处理
叶面积指数LAI
干物质W
7/9
7/19 7/29 7/9 7/19 7/29 1 2 3
3.净同化率(NAR )
净同化率是在群体条件下衡量作物叶片净光合生产效率的指标,它是指单位叶面积在单位时间内所积累的干物质数量。
假设在t 2—t 1时间内,平均有l /2(L 1十L 2)的叶面积进行光合生产,净积累W 2一W 1重量的干物质,这一期间的净同化率为:
)
()(2/112211
2t t L L W NAR W -⋅+-=
或 1
2121
212t t W W L L L ln L ln L
w t
W ln dt
dw dl
w ln d dt
dw L 1NAR --⋅--=∆∆⋅∆∆=⋅=⋅=
式中:L 2、L 1分别是t 2、t 1时的叶面积。
净同化率单位是g /m 2·d 。
净同化率因作物、品种及栽培条件而变,通常变化在3~4至10~12g /m 2·d 范围内。
4.作物生长率(CGR)
作物生长率又叫群体生长率,它表示单位土地面积上作物群体干物质的增长速度,也就是单位土地面积上作物群体在单位时间内所增加的干物重。
在利用试验测定结果计算CGR 时,可用下式:
)
t t (A )W W (CG R 1212--=
式中:W 2、W 1分别是t 2、t 1时测得的干物重;A 为土地面积。
CGR 的单位是g /(m 2·日)。
LAI NAR A
L )dt dw L 1(dt dw A 1CGR ⋅=⋅⋅=⋅=
上式表明,作物群体干物质增长速度与净同化率及叶面积指数成比例。
但由于两者中NAR 变动幅度较窄,所以LAI 对群体干物质增长的作用较大。
5.相对生长率(RGR )
按照作物生长与时间呈指数函数关系的规律,植物在生长过程中,植株越大(越重),而且生产效能越高,则所形成的干物质也越多。
生产的干物质用于形成植株体,从而为下一步的生长奠定了更大的生长基础,这种生长过程称之为植物生长的复利法则。
相对生长率(RGR)用下式计算:
1
212t t W ln W ln t W
ln dt w ln d dt dw W 1R --=∆∆==⋅=
式中:W 2、W 1分别是t 2、t 1时的干物质。
R 一般以g /g ·d 或g /g ·周为单位。
6.叶面积比率(LAR)
叶面积对植株干重之比,即作物单位干重的叶面积,称为叶面积比率。
可用下式计算:
1
212121
2L ln L ln L L W W W ln W ln W L LAR --•--==
式中:L 为叶面积;W 为植株干重。
应用叶面积比率则相对生长率(RGR)可用净同化率(NAR)和叶面积比率(LAR)的乘积来表示: RGR =
)dt
dw L 1(W L dt dw W 1⋅=⋅=LAR ·NAR 7.比叶面积(SLA)
比叶面积即为叶面积与相应的叶重之比,用来表示叶的厚度,比叶面积越小,叶片越厚。
即:SLA=L
W L
式中:L 为叶面积;W L 为相应的叶干重。
可将叶面积比率(LAR)分解为:
W
W SLA W W W L W L LAR L L
L ⋅=⋅==
式中:W L /W 为叶干重占植株干重的比率。
进而可推导出下式:
RGR =NAR ·SLA ·
W
W L
由上式可知,相对生长率受净同化率、比叶面积及叶重与株重的比率的影响。
8.玉米产量与LAD 、NAR 的关系
产量形成因素与理论经济产量的关系为:
理论生物产量=全生育期总光合势×平均净同化率。
理论经济产量=理论生物产量×经济系数
理论经济产量=全生育期总光合势×平均净同化率×经济系数。
四、实验方法与步骤
1.取样
实验开始前,每小组在玉米实验地里选取两处理玉米地,每处理随机挖取5株玉米,带上根系,然后带回实验室,把根系用水洗干净。
下周同一时间再取样一次。
2.测量株高,数可见叶、展开叶、根条数。
玉米株高、见展叶标准:
植株高度 选取有代表性的植株10一20株,抽雄前把叶拉直的最高点到地面的距离或量自然高度;抽雄后测定从地面至雄穗顶部的高度,以cm 表示。
展开叶数 露出叶环的叶片数。
可见叶数 拔节前心叶露出1~2cm ,拔节后露出5cm 的叶片数。
3.测量单株叶片长、宽
从基部第一片绿叶开始测量每一个叶片长、宽,到顶部叶片。
同一处理的5株玉米可放在一起。
叶片的长度是从基部到叶尖的长度,宽度是叶片最宽处长度。
在测量过程中要特别注意一些叶片部分死亡、一些叶片未展开,测量时要测出其实际绿叶长、宽。
玉米的叶面积按下式计算:
玉米单个叶片叶面积=叶长×叶宽× 4.样品杀青
测量叶片后,将每处理植株用剪刀分器官剪开(如可分为根、茎、叶、鞘、雄穗、雌穗),放入纸袋中,把纸袋放入干燥箱中,把干燥箱温度调到105~110℃。
1小时后把温度调到
75~80℃。
5.烘干
连续烘干样品,一般在苗期大约1~3d时间,穗期以后,烘干时间加长。
样品烘干到一定程度时,可取出试称。
用电子天平称量两次结果相同时,就可称量重量。
在称量时,要从干燥箱中取一袋样品,称量一袋,不能把样品全部取出暴露在空气中。
因为样品不含水分,一旦暴露在空气中,样品吸收空气中的水分,其重量就会迅速增加。
6.计算
先计算单株叶面积,换算成叶面积指数,再计算干物质积累量。
根据两次实验的结果计算光合势、净同化率、群体生长率等。
五、作业
1.根据实验数据计算叶面积指数、光合势、净同化率、群体生长率等。
2.结合生产实际,分析两处理上述指标的差异。