典型铣削零件加工的工艺分析及编程(供毕业设计参考用)

合集下载

典型盘套零件数控铣削加工工艺分析及程序设计资料

典型盘套零件数控铣削加工工艺分析及程序设计资料

毕业设计(论文)课题:典型盘套零件数控铣削加工工艺分析及程序设计系部:专业:班级:姓名:学号:导师:二O 年月摘要本文主要介绍了典型盘套零件的数控铣削加工工艺及其编程,开篇首先介绍了数控技术的概述,紧接着对零件图进行了简要的分析,然后确定零件的毛坯、定位基准、装夹方式、刀具、量具、切削用量等等,再制定出合理的加工方案,并制定相关的工艺文件,最后编制出零件的加工程序。

关键词:加工工艺;装夹方式;切削用量;程序IAbstractSet, this paper mainly introduces the typical set of numerical control milling process and its programming, begins with the first introduced the overview of numerical control technology, followed by a brief analysis was carried out on the part drawing, and then determine the blank, the locating datum for the parts, the clamping way, cutting tools, measuring tool, cutting dosage, etc., to develop reasonable processing scheme, and formulate the relevant process documents, finally develop the parts processing program.Key words: process;The clamping way;Cutting parameter;The programII目录摘要 (I)ABSTRACT .....................................................................................I I 第一章绪论 . (1)1.1数控机床的产生和发展 (1)1.2数控加工的特点 (2)1.3本课题的主要内容及任务 (2)第二章零件的图样分析 (3)2.1零件的结构特点分析 (3)2.2零件的技术要求分析 (3)第三章零件的工艺规程设计 (5)3.1毛坯的选择 (5)3.2定位基准的选择 (5)3.3装夹方式的选择 (5)3.4表面加工方法的选择 (6)3.5加工顺序的安排 (6)3.6工艺路线的确定 (7)3.6.1 可能采取的工艺路线方案 (7)3.6.2 工艺路线方案比较 (8)第四章设备及其工艺装备的确定 (9)4.1机床的选择 (9)4.2夹具的选择 (9)4.3刀具的选择 (10)4.4冷却液的选择 (11)第五章切削用量的选取 (12)第六章设计工艺和工序卡片 (14)6.1工艺过程卡 (14)6.2数控加工工序卡 (14)第七章数控加工程序的编制 (16)7.1编程方法的选择 (16)7.2编程坐标系的确定 (16)7.3加工程序清单 (16)总结 (22)致谢 (23)参考文献 (24)III第一章绪论1.1 数控机床的产生和发展数控机床(Numerical Control Machine Tools)是用数字代码形式的信息(程序指令),控制刀具按给定的工作程序、运动速度和轨迹进行自动加工的机床,简称数控机床。

典型零件的数控铣削加工 毕业论文(设计)任务书【呕心沥血整理版】

典型零件的数控铣削加工 毕业论文(设计)任务书【呕心沥血整理版】
毕业论文(设计)任务书
(由指导教师填写)
学生
姓名
专业
班级
题目
典型零件的数控铣削加工
一、毕业设计(论文)的内容和要求
薄壁零件铣削时变形是多方面的。主要由于装夹工件时的夹紧力,切削工件时的切削力,工件阻碍刀具切削时产生的弹性变形和塑性变形,使切削区温度升高而产生热变形。课题主要通过铣削加工薄壁配合件的数控工艺分析与加工,综合所学的专业基础知识,全面考虑可能影响在铣削、钻削、绞削加工 中的因素,设计其加工工艺和编辑程序,完成配合要求
二、参考文献
(1)机械设计手册;
(2)《数控加工工艺》
(3)《数控机床及应用》
(4)《机械制造技术》
(5)《数控加工工艺与程序编制》
(6)其他有关资料,书籍。

三、毕业设计(论文)进度计划
序号
各阶段工作内容
起讫日期
备注
1
下达任务书
12。12。6至12。12.10
2
撰写文献综述
12。12。11至12.30
课题成果的基本要求:(包括毕业设计(论文)、图表、实物样品等)
(1)、绘制零件图(A0图纸)。
(2)、设计零件数控加工工艺及填写数控加工工艺卡。
(3)、绘制加工走刀路线图或刀具循环图。
(4),编制数控加工刀具调整卡。
(5),设计数控加工程序。
(6),编制设计说明书(手写,打印稿均可,要求6000字以上),要有详细的设计步骤及演算过程。2。开题报告1份源自3。论文1份(6000字以上)
3
撰写开题报告
13。1。1至13.3.1
4
完成论文初稿
13。3。2至13。3.31
5
完成论文二稿

数控铣床零件加工工艺分析与程序设计毕业论文

数控铣床零件加工工艺分析与程序设计毕业论文

数控铣床零件加工工艺分析与程序设计毕业论文数控铣床是一种用数控技术控制刀具在工件上进行铣削加工的设备。

在数控铣床零件加工过程中,合理的工艺分析和程序设计对于保证加工精度和提高加工效率至关重要。

本文将以数控铣床零件加工工艺分析与程序设计为研究内容,分析其重要性并提出相应的设计方法。

首先,工艺分析对于数控铣床零件加工至关重要。

工艺分析是指通过对零件特点、材料性能等进行分析,确定合理的加工方法和加工工艺参数。

在数控铣床零件加工过程中,不同的零件要求不同的加工方法和参数,只有通过工艺分析才能确定最佳的加工工艺路线和参数,以保证零件的加工质量和效率。

工艺分析还可以提前预测可能出现的问题,如加工难度较大的区域、切削力较大的位置等,从而采取相应的措施,保证加工的顺利进行。

其次,程序设计是数控铣床零件加工的核心环节。

程序设计是指根据工艺分析的结果,编写数控程序,以实现对数控铣床的控制。

程序设计的质量直接影响加工结果,良好的程序设计可以提高加工精度和效率。

在程序设计过程中,需要根据零件的几何形状、尺寸和加工要求,确定数控刀具的刀补和补偿方案,编写合理的切削路径和切削轨迹,以保证零件的尺寸精度和表面质量。

此外,程序设计还需要考虑加工过程中可能出现的问题,如加工力的控制、材料的选择等,以提高加工的效率和稳定性。

在数控铣床零件加工工艺分析与程序设计过程中,可以采取以下方法:1.对零件进行全面的分析。

包括几何形状、尺寸、材料特性等方面的分析,确定加工目标和要求。

2.根据零件的特点和加工目标,选择合适的加工方法和加工工艺参数。

如铣床的进给速度、主轴转速、切削进给量等。

3.根据工艺分析结果,编写数控程序。

程序要考虑到零件的几何形状、加工道具的特点和刀具的路径。

4.在程序设计过程中,需要进行模拟实验和试加工。

通过试验和实际加工,检验程序的准确性和可行性。

5.对程序进行评估和调整。

根据试加工和实际情况,对程序进行调整和改进,以提高加工效率和质量。

典型数控铣零件工艺分析及程序编制

典型数控铣零件工艺分析及程序编制

技术学院毕业设计题目典型数控铣零件工艺分析及程序编制系别机电工程系专业机电一体化技术班级机电姓名学号 0441 指导教师日期 2011年9月设计任务书设计题目:典型数控铣零件工艺分析及程序编制设计要求:第一:熟悉数控铣床结构及加工性能第二:零件图的分析及确定加工内容第三:AUTO CAD图形的绘制第四:三维图形的绘制第五:选定加工设备第六:切削用量及刀具选择、装夹第七:制定零件的加工工艺路线第八:编写程序,完成加工操作设计进度要求:第一周搜集资料和前期准备工作第二周零件的工艺分析第三周零件的尺寸计算第四周整个零件工艺尺寸的计算部分第五周校核、修改、成文和定稿第六周电子稿的输入和排版第七周毕业答辩指导教师(签名):摘要质量优、性能好、效率高、能耗低、价格廉的机械产品是国民经济各个部门迫切需要的,伴随着科学技术和工业生产的飞速发展,产品设计是决定产品性能、质量水平、市场竞争力和经济效益的重要环节。

数控加工效率高、质量好、加工精度高,数控技术是与机床的自动控制密切结合而发展起来的,如今数控技术已广泛应用于化工生产、石油精炼、造纸、钢铁生产等工艺流程控制及其他各个方面。

近代大工业生产中,机械加工工艺过程的自动化是提高产品质量和生产率的重要措施。

数控机床的诞生,较好解决了精密复杂多品种单件或小批量机械零件加工自动化的问题。

为了能充分发挥、利用数控机床的各种功能,使数控机床能安全、可靠、高效的工作,在这里选择了一件最适宜在数控机床上进行加工的零件作为设计,并严格按照毕业设计要求,进行包括数控加工工艺分析、数控刀具及切削参数的选择、工件装夹方式与数控夹具的选择、程序编制中的数字计算、数控加工程序的编制等。

本设计主要介绍数控加工技术概述、数控加工的铣削基础、数控加工工艺设计及数控加工工艺文件、数控加工的工具系统、数控加工夹具、典型形状零件的数控加工工艺、数控铣削的加工工艺。

由于本课题所选的零件属于板类零件,二维加工,而且内、外轮廓的几何要素都是由直线和圆弧组成的,故采用手工编程方式即可完成全部数控编程任务。

数控铣削加工工艺设计与及编程加工毕业设计

数控铣削加工工艺设计与及编程加工毕业设计

数控铣削加工工艺设计与及编程加工毕业设计在数控铣削加工工艺设计与编程加工毕业设计中,我们可以从以下几个方面进行讨论。

一、研究背景和意义(200字)数控铣削加工在制造业中具有广泛应用,其高精度、高效率的特点受到了广泛关注。

通过深入研究数控铣削加工的工艺设计和编程加工,可以提高加工效率,降低生产成本,提高产品质量,促进制造业的发展。

因此,本研究对于推动制造业转型升级具有重要意义。

二、研究内容和方法(300字)本研究的主要内容包括数控铣削加工工艺设计和编程加工两个方面。

在数控铣削加工工艺设计中,我们将研究如何选择合适的刀具和工作参数,优化切削参数以提高加工效率和降低加工成本。

在编程加工中,我们将研究如何编写高效、精确的数控程序,以实现复杂零件的加工。

研究方法包括文献研究和实验研究两个方面。

通过对国内外相关文献的梳理,了解数控铣削加工的现状和发展趋势。

同时,通过动手实验,验证设计的可行性和优化方案的有效性。

三、预期目标和创新点(300字)本研究的预期目标是提出一套完整的数控铣削加工工艺设计与编程加工方法,以提高加工效率、降低加工成本和改善产品质量。

具体目标包括:1.提出一种刀具选择和工作参数优化的方法,以减少刀具磨损和加工时间。

2.提出一种数控程序编写方法,能够自动化生成高效、精确的数控程序。

3.提出一种工艺设计优化方法,在保证加工精度的前提下,最大限度地降低材料损耗和加工时间。

创新点主要包括:1.提出了一种基于刀具选择和工作参数优化的加工工艺设计方法,以减少刀具磨损和加工时间。

2.提出了一种基于机器学习的自动化数控程序编写方法,能够生成高效、精确的数控程序。

3.提出了一种基于工艺设计优化的降低材料损耗和加工时间的方法。

四、研究计划(300字)1.第一阶段:对数控铣削加工的相关文献进行深入研究,了解现有的加工工艺设计和编程加工方法,并进行总结和比较。

2.第二阶段:进行数控铣床的实验研究,优化刀具选择和工艺参数,提高加工效率和产品质量。

典型铣削零件加工的工艺分析及编程

典型铣削零件加工的工艺分析及编程

典型铣削零件加工的工艺分析及编程1. 引言铣削是一种常见的机械加工方法,广泛应用于零件加工领域。

在铣削加工中,我们通常需要进行工艺分析和编程,以保证零件加工的准确性和效率。

本文将针对典型铣削零件的加工过程进行工艺分析,并介绍如何进行编程。

2. 零件加工的工艺分析在进行铣削零件加工之前,我们首先需要对零件的形状、尺寸、加工材料进行分析,以确定合适的工艺路线和加工参数。

2.1 零件形状分析零件的形状对于确定铣削工艺有重要影响。

常见的零件形状包括平面零件、曲面零件、孔型零件等。

不同形状的零件需要采用不同的加工策略和工艺路线。

2.2 尺寸分析零件的尺寸要求对于决定加工工艺参数也非常重要。

尺寸分析包括零件的最大尺寸、最小尺寸、公差要求等。

根据不同的尺寸要求,我们可以选择合适的刀具和机床进行加工。

2.3 加工材料分析加工材料的硬度、韧性、热传导性等性质也会对加工工艺产生影响。

选择合适的切削速度、进给量和切削深度可以提高加工质量和效率。

3. 零件加工的编程在确定了合适的工艺路线和加工参数之后,我们需要进行编程,将加工过程转化为机床可以理解和执行的指令。

3.1 编程语言介绍目前,常用的铣削加工编程语言包括G代码和M代码。

G代码用于定义运动轨迹和加工方式,M代码用于定义辅助功能和机床控制。

3.2 编程步骤编程的步骤包括创建编程文件、选择刀具和工艺路线、编写加工指令、设定初始位置等。

在编程过程中,需要考虑刀具半径补偿、切削参数调整和刀具路径优化等问题。

3.3 编程实例以下是一个简单的铣削编程实例:1. G90 G54 G17 G40 ;刀具半径编程方式选择,选择工作坐标系,选择平面2. M3 S1000 ;主轴启动,设置主轴转速3. G0 X0 Y0 Z20 ;快速定位到初始位置4. G1 Z-5 ;快速下刀到指定深度5. G2 X50 Y0 I25 J0 F200 ;顺时针沿圆弧加工6. G1 X100 ;快速移动到指定位置7. G1 Z-10 F100 ;沿Z轴下刀到指定深度8. G1 X50 ;移动到指定位置9. G1 Z-20 ;下刀到指定深度10. G2 X0 Y0 I-25 J0 ;逆时针沿圆弧加工11. G0 Z20 ;快速抬刀12. M5 ;主轴停止13. M30 ;程序结束4. 总结本文针对典型铣削零件的加工过程进行了工艺分析,并介绍了编程的相关知识。

毕业设计典型铣削类零件加工工艺分析

毕业设计文献综述赵奎设计题目:典型铣削类零件加工工艺分析学生系别:机电工程系专业班级: 07数二指导教师:张静职称:高级烟台汽车工程职业学院二零一零年二月文献综述一、课题的研究意义数控技术,简称数控(Numerical control,NC)是利用以数值和符号构成的数字化信息自动控制机床的运转。

采用数控技术进行控制的机床,称为数控机床(Nc机床)。

它是—种综合应用了计算机技术、自动控制技术、精密测量技术和机床分析等先进技术的典型机电一体化产品,是现代制造技术的基础。

机床控制也是数控技术应用最早、最广泛的领域,数控机床的水平代表了当前数控技术的性能、水平和发展方向数控技术及数控机床的广泛应用,给机械制造业的产业结构、产品种类和档次以及生产方式带来了革命性的变化。

二、研究现状数控技术在国外起源较早,因而在国外的发展也比较好,数控技术也比较完善,美、德、日三国是当今世上在数控机床科研、分析、制造和使用上,技术最先进、经验最多的国家,美国政府非常重视机床工业还积极网罗人才,故其高性能数控机床技术在世界也一直领先;德国政府一贯重视机床工业的重要战略地位,在多方面大力扶植,德国数控机床在质量、性能上居世界前列;日本政府对机床工业之发展异常重视,日本在发展数控机床的过程中,狠抓关键,突出发展数控系统。

日本FANUC公司战略正确,仿创结合,针对性地发展市场所需各种低中高档数控系统,在技术上领先,在产量上居世界第一。

目前国外机械设备的数控化率已达到85%以上。

近年来,我国机床的数控化率逐年提高。

1990年,我国机床产量数控化率为2.24%,2000年上升为7.96%,2005年机床产量数控化率达到了13.23%的较高水平;就产值数控化率而言,2001年为26.2%,2003年提高到33%,2005年达到41%左右。

预计2008年机床工具行业增速会在20%左右的水平,机床行业的工业总产值将超过3000亿元人民币。

如今数控系统和计算机技术的发展始终保持同步,至今已经历了从电子管、晶体管、集成电路、计算机到微处理机的演变,系统的功能日益增强,应用领域口益扩大,发展异常迅速更新换代十分频繁。

典型铣削零件加工的工艺分析及编程(供毕业设计参考用)

典型铣削零件加工的工艺分析及编程1.工艺分析的基本知识数控加工工艺性分析涉及内容很多,从数控加工的可能性和方便性分析,应主要考虑:1.1零件图样上尺寸数据的标注原则1)零件图上尺寸标注应符合编程方便的特点在数控加工图上,宜采用以同一基准引注尺寸或直接给出坐标尺寸。

这种标注方法,既便于编程,也便于协调设计基准、工艺基准、检测基准与编程零点的设置和计算。

2)构成零件轮廓的几何元素的条件应充分自动编程时要对构成零件轮廓的所有几何元素进行定义。

在分析零件图时,要分析几何元素的给定条件是否充分,如果不充分,则无法对被加工的零件进行造型,也无法编程。

1.2零件各加工部位的结构工艺性应符合数控加工的特点1)零件所要求的加工精度、尺寸公差应能得到保证。

2)零件的内腔和外形最好采用统一的几何类型和尺寸,尽可能减少刀具规格和换刀次数。

3)零件的工艺结构设计应确保能采用较大直径的刀具进行加工。

采用大直径铣刀加工,能减少加工次数,提高表面加工质量。

4)零件铣削面的槽底回角半径或腹板与缘板相交处的圆角半径r不宜太大。

由于铣刀与铣削平面接触的最大直径d=D-2r,其中D为铣刀直径。

因此,当D 一定时,圆角半径r越大,铣刀端刃铣削平面的面积就越小,铣刀端刃铣削平面的能力就越差;效率越低,工艺性也越差。

5)应采用统一的基准定位。

数控加工过程中,若零件需重新定位安装而没有统一的定位基准。

会导致加工结束后正反两面上的轮廓位置及尺寸的不协调。

因此,要尽量利用零件本身具有的合适的孔或设置专门的工艺孔或以零件轮廓的基准边等作为定位基准,保证两次装夹加工后相对位置的准确性。

1.3加工方法选择及加工方案确定1)加工方法选择在数控机床上加工零件,一般有以下两种情况:一是有零件图样和毛坯,要选择适合加工该零件的数控机床;二是己经有了数控机床,要选择适合该机床加工的零件。

无论哪种情况,都应根据零件的种类和加工内容选择合适的数控机床和加工方法。

平面轮廓零件的轮廓多由直线、圆弧和曲线组成,一般在两坐标联动的数控铣床上加工;具有三维曲面轮廓的零件,多采用三坐标或三坐标以上联动的数控铣床或加工中心加工。

毕业论文数控铣床零件加工工艺分析与程序设计

毕业论文数控铣床零件加工工艺分析与程序设计1000字本文主要从数控铣床零件加工工艺分析和程序设计两方面进行论述,探讨如何使用数控铣床进行零件加工,提高零件生产的效率和精度。

一、数控铣床零件加工工艺分析数控铣床是一种高精度、高效率的金属加工设备,其加工精度和速度远远高于传统的机械加工设备。

在加工过程中,需要对零件材质、加工要求、工件定位等因素进行分析,选择合适的刀具、切削参数和加工路径。

1.零件材料数控铣床适用于各种金属材料的加工,如钢、铜、铝、铸铁等。

不同的材质有着不同的硬度、韧性和塑性,需要采用不同的切削参数和工艺。

2.加工要求零件的加工要求包括尺寸精度、表面粗糙度、几何形状等。

根据要求,选择不同的刀具和切削参数,控制加工深度和速度,保持加工精度和加工质量。

3.工件定位工件定位是数控铣床加工中重要的一环,其准确度关系到加工的精度和质量。

在定位时需要考虑工件尺寸、形状、材质和加工要求等因素,采用适当的夹具和定位方式,确保工件的固定和稳定。

二、数控铣床零件加工程序设计数控铣床加工程序是指按照设计要求和工艺要求编制的加工指令集,通常由CAD/CAM软件生成。

数控铣床加工程序设计需要根据实际加工情况进行优化和修改,从而实现加工过程的高效和精密。

1.加工路径在数控铣床加工程序中,加工路径是指刀具在工件表面上的轨迹路线。

根据零件的几何形状和加工要求,选择适当的加工路径,控制刀具的进给速度、转速和加工深度,以实现精确的加工。

2.刀具选择数控铣床加工中需要根据不同的工件形状和加工要求,选择合适的刀具。

刀具的选择要考虑切削性能、刀具材料、刀具刃数等因素,在保证加工质量的前提下,尽量提高加工效率。

3.切削参数设定切削参数包括进给速度、转速和加工深度等。

根据零件材质和加工要求,合理设置切削参数,以确保加工效率和加工质量。

同时,需要严格控制切削温度和切削力,避免对工件造成损伤。

综上所述,数控铣床零件加工工艺分析和程序设计是数控加工技术的重要组成部分,需要充分考虑实际加工情况和加工要求,优化加工方案,提高零件加工的效率和质量。

毕业设计方案数控铣削加工工艺设计方案与编程加工

一.设计说明本设计要求操作人员根据如图1所示的零件图,通过图样分析、工艺分析、加工用量的选择、程序的编制完成工件的仿真加工。

图1零件图1.工件表面去毛倒棱2.加工表面粗糙度侧平面及孔Ra1.6µm.底平面为Ra3.2µm3.材料45钢图2立体图二.图样分析在图样分析中,首先要正确分析零件图,确定零件的加工部位与顺序,并根据零件图的技术要求,分析零件的形状、基准面、尺寸公差和粗糙度要求等。

1.图面分析如图1-1所示的零件是典型的方圆结合类零件,通过对此零件图的分析可知道:此零件的外轮廓圆台、正方圆弧凸台、三角凸台,中心有一个通孔。

虽然该零件轨迹曲线不太复杂,但有着严格的几何精度要求,必须保证其尺寸精度和几何精度,所以加工难度较大。

2.精度分析(1>尺寸精度如图1-1所示的零件中精度要求较高的尺寸主要有四方体尺寸加工误差为0.03mm、六边形和整圆尺寸的加工误差为0.04mm、深度尺寸为0.05mm、孔的尺寸为Ф10H8等。

对于尺寸精度要求,主要通过加工过程中的精确对刀,正确选用刀具的磨损量和正确选用合适的加工工艺等措施来保证。

<2)形位精度如图1-1所示的零件中主要的形位精度有四方体、六方体、整圆相对于外形中心线的对称度,加工表面相对于工件底平面的平行度等。

对于形位精度的要求,在对刀精确的情况下,主要通过工件在夹具中的正确安装等措施来保障。

<3)表面粗糙度如图1-1所示的零件中,所加工表面底面的表面粗糙度R3.2µm,所加工表面侧平面和孔的表面粗糙度要求均为R1.6µm。

对于表面粗糙度要求,主要通过选用正确的粗、精加工路线,选用合适的切削用量等措施来保证。

加工完成后需要进行清根操作,同时还要对整个零件进行手动去毛倒棱,自检自查。

三.工艺分析及处理数控铣削加工工艺的实质,就是在分析零件精度和表面粗糙度的基础上,对数控铣削的机床选择、毛坯选择、加工方法、装夹方式、切削加工进给路线、刀具选择以及切削用量等工艺内容进行正确而合理的选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型铣削零件加工的工艺分析及编程1.工艺分析的基本知识数控加工工艺性分析涉及内容很多,从数控加工的可能性和方便性分析,应主要考虑:1.1零件图样上尺寸数据的标注原则1)零件图上尺寸标注应符合编程方便的特点在数控加工图上,宜采用以同一基准引注尺寸或直接给出坐标尺寸。

这种标注方法,既便于编程,也便于协调设计基准、工艺基准、检测基准与编程零点的设置和计算。

2)构成零件轮廓的几何元素的条件应充分自动编程时要对构成零件轮廓的所有几何元素进行定义。

在分析零件图时,要分析几何元素的给定条件是否充分,如果不充分,则无法对被加工的零件进行造型,也无法编程。

1.2零件各加工部位的结构工艺性应符合数控加工的特点1)零件所要求的加工精度、尺寸公差应能得到保证。

2)零件的内腔和外形最好采用统一的几何类型和尺寸,尽可能减少刀具规格和换刀次数。

3)零件的工艺结构设计应确保能采用较大直径的刀具进行加工。

采用大直径铣刀加工,能减少加工次数,提高表面加工质量。

4)零件铣削面的槽底回角半径或腹板与缘板相交处的圆角半径r不宜太大。

由于铣刀与铣削平面接触的最大直径d=D-2r,其中D为铣刀直径。

因此,当D 一定时,圆角半径r越大,铣刀端刃铣削平面的面积就越小,铣刀端刃铣削平面的能力就越差;效率越低,工艺性也越差。

5)应采用统一的基准定位。

数控加工过程中,若零件需重新定位安装而没有统一的定位基准。

会导致加工结束后正反两面上的轮廓位置及尺寸的不协调。

因此,要尽量利用零件本身具有的合适的孔或设置专门的工艺孔或以零件轮廓的基准边等作为定位基准,保证两次装夹加工后相对位置的准确性。

1.3加工方法选择及加工方案确定1)加工方法选择在数控机床上加工零件,一般有以下两种情况:一是有零件图样和毛坯,要选择适合加工该零件的数控机床;二是己经有了数控机床,要选择适合该机床加工的零件。

无论哪种情况,都应根据零件的种类和加工内容选择合适的数控机床和加工方法。

平面轮廓零件的轮廓多由直线、圆弧和曲线组成,一般在两坐标联动的数控铣床上加工;具有三维曲面轮廓的零件,多采用三坐标或三坐标以上联动的数控铣床或加工中心加工。

经粗铣的平面,尺寸精度可达IT12~IT14级(指两平面之间的尺寸),表面粗糙度(或Ra值)可达12.5μm~50μm。

经粗、精铣的平面,尺寸精度可达IT7~IT9级,表面粗糙度Ra值可达1.6μm~3.2μm。

孔加工的方法比较多,有钻削、扩削、铰削和镗削等。

大直径孔还可采用圆弧插补方式进行铣削加工。

对于直径大于φ30mm己铸出或锻出毛坯孔的孔加工,一般采用粗镗→半精镗→孔口倒角一精镗加工方案。

孔径较大的可采用立铣刀粗铣一精铣加工方案。

有空刀槽时可用锯片铣刀在半精镗之后、精镗之前铣削完成,也可用镗刀进行单刃螳削,但单刃模削效率低。

对于直径小于φ30mm的无毛坯孔的孔加工,通常采用饶平端面→打中心孔→钻→扩→孔口倒角→铰加工方案。

有同轴度要求的小孔,须采用饶平端面→打中心孔→钻→半精螳→孔口倒角→精镗(或铰)加工方案。

为提高孔的位置精度,在钻孔工步前须安排锪平端面和打中心孔工步。

孔口倒角安排在半精加工之后、精加工之前,以防孔内产生毛刺。

螺纹的加工根据孔径大小而定,一般情况下,直径在M5mm~M20mm之间的螺纹,通常采用攻螺纹的方法加工。

直径在M6mm以下的螺纹,在加工中心上完成底孔加工后,通过其他手段攻螺纹。

因为在加工中心上攻螺纹不能随机控制加工状态,小直径丝锥容易拆断。

直径在M25mm以上的螺纹,可采用镗刀片螳削加工。

加上方法的选择原则:是保证加工表面的精度和表面粗糙度的要求。

由于获得同一级精度及表面粗糙度的加工方法一般有许多,因而在实际选择时,要结合零件的形状、尺寸和热处理要求全面考虑。

例如,对于IT7级精度的孔采用镗削、铰削、磨削等方法加工可达到精度要求,但箱体上的孔一般采用镗削或铰削;而不采用磨削。

一般小尺寸的箱体孔选择铰削,当孔径较大时则应选择镗削。

此外,还应考虑生产率和经济性的要求,以及工厂的生产设备等实际情况。

2)加工方案确定确定加工方案时,首先应根据主要表面的尺寸精度和表面粗糙度的要求,初步确定为达到这些要求所需要的加工方法,即精加工的方法,再确定从毛坯到最终成形的加工方案。

在加工过程中,工件按表面轮廓可分为平面类和曲面类零件,其中平面类零件中的斜面轮廓又分为有固定斜角和变斜角的外形轮廓面。

外形轮廓面的加工,若单纯从技术上考虑,最好的加工方案是采用多坐标联动的数控机床,这样不但生产效率高,而且加工质量好。

但由于一般中小企业无力购买这种价格昂贵、生产费用高的机床,因此应考虑采用2.5轴控制和3轴控制机床加工。

2.5轴控制和3轴控制机床上加工外形轮廓面,通常采用球头铣刀,轮廓面的加工精度主要通过控制走刀步长和加工带宽度来保证。

加工精度越高,走刀步长和加工带宽度越小,编程效率和加工效率越低。

如图1所示,球头刀半径为R ,零件曲面上曲率半径为ρ,行距为S,加工后曲面表面残留高度为H。

则有:ρρ±∙-=R H R H S )2(2式中,当被加工零件的曲面在ab 段内是凸的时候取“+”号,是凹的时候取“一”号。

图1 行距的计算图1.4工艺设计1)工序和工步的划分在数控机床上加工零件,工序应尽量集中,一次装夹应尽可能完成大部分工序。

数控加工工序的划分有下列方法:(1)按加工内容划分工序对于加工内容较多的零件,按零件结构特点将加工内容分成若干部分,每一部分可用典型刀具加工。

例如加工内脏、外型、干面或曲面等、加工内腔时,以外形夹紧:加工外腔时,以内腔的孔夹紧。

(2)按所用刀具划分工序这样可以减少换刀次数,压缩空行程和减少换刀时间,减少换刀误差。

(3)按粗、精加工划分工序对于容易发生加工变形的零件,通常粗加工后需要进行矫形,这时粗加工、精加工作为两道工序,即先粗加工再精加工,可用不同的机床或不同的刀具进行加工。

为了便于分析和描述较复杂的工序,在工序内又分为工步,工步的划分主要从加工精度和效率两方面考虑。

如零件在加工中心上加工,对于同一表面按粗加工、半精加工、精加工依次完成,整个加工表面按先粗后精加工分开进行:对于既有铣面又有镗孔的零件,可先铣面后镗孔,以减少因铣削切削力大,造成零件可能发生变形而对孔的精度造成影响:对于具有回转工作台的加工中心,若回转时间比换刀时间短,可采用按刀具划分工步,以减少换刀次数,提高加工效率。

但数控加工按工步划分后,三检制度(自检、互检、专检)不好执行,为了避免零件发生批次性质量问题,应采用分工步交检,而不是加工完整个工序之后再交检。

2)加工余量的选择加工余量指毛坯实体尺寸与零件(图纸)尺寸之差。

加工余量的大小对零件的加工质量和制造的经济性有较大的影响。

余量过大会浪费原材料及机械加工工时,增加机床、刀具及能源的消耗;余量过小则不能消除上道工序留下的各种误差、表面缺陷和本工序的装夹误差,容易造成废品。

因此,应根据影响余量的因素合理地确定加工余量。

零件加工通常要经过粗加工、半精加工、精加工才能达到最终要求。

因此,零件总的加工余量等于中间工序加工余量之和。

(1)工序间加工余量的选择原则采用最小加工余量原则,以求缩短加工时间,降低零件的加工费用。

应有充分的加工余量,特别是最后的工序。

(2)在选择加工余量时,还应考虑的情况由于零件的大小不同,切削力、内应力引起的变形也会有差异,工件大,变形增加,加工余量相应地应大一些。

零件热处理时引起变形,应适当增大加工余量。

加工方法、装夹方式和工艺装备的刚性可能引起的零件变形,过大的加工余量会由于切削力增大引起零件的变形。

(3)确定加工余量的方法查表法:这种方法是根据各工厂的生产实践和实验研究积累的数据,先制成各种表格,再汇集成手册。

确定加工余量时查阅这些手册,再结合工厂的实际情况进行适当修改后确定。

目前我国各工厂普遍采用查表法。

经验估算法:这种方法是根据工艺编制人员的实际经验确定加工余量。

一般情况下,为了防止因余量过小而产生废品,经验估算法的数值总是偏大。

经验估算法常用于单件小批量生产。

分析计算法:这种方法是根据一定的试验资料数据和加工余量计算公式,分析影响加工余量的各项因素,并计算确定加工余量。

这种方法比较合理,但必须有比较全面和可靠的试验资料数据。

目前,只在材料十分贵重,以及少数大量生产的工厂采用。

3)加工路线的确定在数控加工中,刀具刀位点相对于工件运动的轨迹称为加工路线,它是编程的依据,直接影响加工质量和效率。

在确定加工路线时要考虑下面几点:(1)保证零件的加工精度和表面质量,且效率要高。

(2)减少编程时间和程序容量:(3)减少空刀时间和在轮廓面上的停刀,以免划伤零件:(4)减少零件的变形;(5)位置精度要求高的孔系零件的加工应避免机床反向间隙的带入而影响孔的位置精度;(6)复杂曲面零件的加工应根据零件的实际形状、精度要求、加工效率等多种因素来确定是行切还是环切,是等距切削还是等高切削的加工路线等。

1.5刀具的选择。

数控加工刀具从结构上可分为:①整体式;②镶嵌式,它可以分为焊接式和机夹式。

机夹式根据刀体结构不同,又分为可转位和不转位两种;③减振式,当刀具的工作臂长与直径之比较大时,为了减少刀具的振动,提高加工精度,多采用此类刀具;④内冷式,切削液通过刀体内部由喷孔喷射到刀具的切削刃部;⑤特殊型式,如复合刀具、可逆攻螺纹刀具等。

数控加工刀具从制造所采用的材料上可分为:①高速钢刀具;②硬质合金刀具:③陶瓷刀具;④立方氮化硼刀具;⑤金刚石刀具:③涂层刀具。

数控铣床和加工中心上用到的刀具有:①钻削刀具,分小孔、短孔、深孔、攻螺纹、铰孔等;②镗削刀具,分粗镗、精镗等刀具:③铣削刀具,分面铣、立铣、三面刃铣等刀具。

1.6切削用量的确定切削用量包括切削速度、进给出速度、背吃刀量和侧吃刀量。

背吃刀量和侧吃刀量在数控加工中通常称为切削深度和切削宽度。

如图2所示。

图2 铣削切削用量选择切削用量的原则是:粗加工时,一般以提高生产率为主,但也应考虑经济性和加工成本;半精加和精加时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。

具体数值应根据机床说明书、切削用量手册,并结合经验而定。

从刀具的耐用度出发,切削用量的选择方法是:先确定切削深度或切削宽度,其次确定进给出量,最后确定切削速度。

1)切削深度aP①在工件表面粗糙度值要求为Ra12.5μm~25μm时,如果圆周铣削的加工余量小于5mm,端铣的加工余量小于6mm,粗铣一次进给就可以达到要求。

但在余量较大,工艺系统刚性较差或机床动力不足时,可分多次进给完成。

②在工件表面粗糙度值要求为Ra3.2μm~12.5μm时,可分粗铣和半精铣两步进行。

粗铣时切削深度或切削宽度选取同前。

粗铣后留0.5mm~1.0mm余量,在半精铣时切除。

相关文档
最新文档