高中物理力学常用图
高中物理:动力学中的图像问题

高中物理:动力学中的图像问题1.常见的图像形式在动力学与运动学问题中,常见、常用的图像是位移图像(x -t 图像)、速度图像(v -t 图像)和力的图像(F -t 图像)等,这些图像反映的是物体的运动规律、受力规律,而绝非代表物体的运动轨迹.2.图像问题的分析方法遇到带有物理图像的问题时,要认真分析图像,先从它的物理意义、点、线段、斜率、截距、交点、拐点、面积等方面了解图像给出的信息,再利用牛顿运动定律及运动学公式解题.[典例2] 如图,质量为M 的长木板,静止放在粗糙的水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度从左端冲上木板.从物块冲上木板到物块和木板都静止的过程中,物块和木板的v -t 图像分别如图中的折线所示,根据v -t 图像(g 取10 m/s 2),求:(1)m 与M 间动摩擦因数μ1及M 与地面间动摩擦因数μ2.(2)m 与M 的质量之比.(3)从物块冲上木板到物块和木板都静止的过程中,物块m 、长木板M 各自对地的位移.[解析] (1)由图可知,线段ac 为m 减速时的速度—时间图像,m 的加速度为 a 1=Δv 1Δt 1=4-104m /s 2=-1.5 m/s 2 对m ,由牛顿第二定律可得:-μ1mg =ma 1,所以μ1=a 1-g=0.15 由图可知,线段cd 为二者一起减速运动时的速度—时间图像,其加速度为a 3=Δv 3Δt 3=0-48m /s 2=-0.5 m/s 2 对m 和M 组成的整体,由牛顿第二定律可得:-μ2(m +M )g =(m +M )a 3所以μ2=a 3-g=0.05. (2)由图像可得,线段bc 为M 加速运动时的速度—时间图像,M 的加速度为a 2=Δv 2Δt 2=4-04m /s 2=1 m/s 2对M ,由牛顿第二定律可得:μ1mg -μ2(mg +Mg )=Ma 2把μ1、μ2代入上式,可得m ∶M =3∶2.(3)由图线acd 与横轴所围面积可求得m 对地位移:x m =12×4×6 m +(4+12)×42m =44 m 由图线bcd 与横轴所围面积可求得M 对地位移:x M =12×12×4 m =24 m. [答案] (1)0.15 0.05 (2)3∶2 (3)44 m 24 m[方法技巧]动力学中图像问题的处理技巧(1)图像信息①v -t 图像:可以从所提供图像获取运动的方向、瞬时速度、某时间内的位移以及加速度,结合实际运动情况可以确定物体的受力情况.②F -t 图像:首先应明确该图像表示物体所受的是哪个力,然后根据物体的受力情况确定加速度,从而研究它的运动情况.(2)图像问题两关注:正确认识图像的截距、斜率、面积以及正负的含义,要做到物体实际受力与运动情况的紧密结合.4.质量为2 kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t =0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F 的作用,F 随时间t 的变化规律如图所示.重力加速度g 取10 m/s 2,则物体在t =0至t =12 s 这段时间的位移大小为( )A .18 mB .54 mC .72 mD .198 m解析:物体与地面间最大静摩擦力f =μmg =0.2×2×10 N=4 N .由题图知0~3 s 内,F =4 N ,说明物体在这段时间内保持静止.3~6 s 内,F =8 N ,说明物体做匀加速运动,加速度a=F -f m=2 m /s 2,6 s 末物体的速度v =at =2×3 m/s =6 m /s ,在6~9 s 内物体以6 m/s 的速度做匀速运动.9~12 s 内又以2 m/s 2的加速度做匀加速运动.作v -t 图像如图所示,故0~12 s 内的位移s =12×3×6×2 m +6×6 m =54 m .故B 项正确.答案:B5.(多选)如图甲所示,用一水平外力F 拉着一个静止在倾角为θ的光滑斜面上的物体,逐渐增大F ,物体做变加速运动,其加速度a 随外力F 变化的图像如图乙所示,重力加速度g 取10 m/s 2.根据图乙中所提供的信息可以计算出( )A .物体的质量B .斜面的倾角C .加速度由2 m /s 2增加到6 m/s 2的过程中,物体通过的位移D .加速度为6 m/s 2时物体的速度解析:由题图乙可知,当水平外力F =0时,物体的加速度a =-6 m /s 2,此时物体的加速度a =-g sin θ,可求出斜面的倾角θ=37°,选项B 正确;当水平外力F =15 N 时,物体的加速度a =0,此时F cos θ=mg sin θ,可得m =2 kg ,选项A 正确;由于不知道加速度与时间的关系,所以无法求出物体在各个时刻的速度,也无法求出物体加速度由2 m/s 2增加到6 m/s 2过程中的位移,选项C 、D 错误.答案:AB6.在水平地面上有一质量为2 kg 的物体在水平拉力F 的作用下由静止开始运动,10 s 后拉力大小减为F 3,该物体的运动速度随时间t 的变化规律如图所示(g 取10 m/s 2),求:(1)物体受到的拉力F 的大小.(2)物体与地面之间的动摩擦因数.解析:由v -t 图像可知,物体的运动分两个过程,设匀加速运动过程的加速度为a 1,匀减速运动过程的加速度为a 2,则由题图知a 1=8-010m /s 2=0.8 m/s 2 a 2=0-814-10m /s 2=-2 m/s 2 两过程物体受力分别如图甲、乙所示.加速过程:F -μmg =ma 1减速过程:F 3-μmg =ma 2(或μmg -F 3=m |a 2|) 联立以上各式解得F =8.4 N ,μ=0.34. 答案:(1)8.4 N (2)0.34。
高中物理【动力学图像问题】

专题课6动力学图像问题题型一由运动学图像求物体受力1.常见的图像有:v-t图像,a-t图像,F-t图像,F-x图像,a-F图像等。
2.图像间的联系:加速度是联系v-t图像与F-t图像的桥梁。
3.图像的应用(1)已知物体在一过程中所受的某个力随时间变化的图像,要求分析物体的运动情况。
(2)已知物体在一运动过程中速度、加速度随时间变化的图像,要求分析物体的受力情况。
(3)通过图像对物体的受力与运动情况进行分析。
4.解题策略(1)弄清图像斜率、截距、交点、拐点、面积的物理意义。
(2)应用物理规律列出与图像对应的函数方程式,进而明确“图像与公式”“图像与物体运动”间的关系,以便对有关物理问题作出准确判断。
一质量为m的乘客乘坐竖直电梯上楼,其位移x与时间t的关系图像如图所示。
乘客所受支持力的大小用F N表示,速度大小用v表示。
重力加速度大小为g。
以下判断正确的是()A.0~t1时间内,v增大,F N>mgB.t1~t2时间内,v减小,F N<mgC.t2~t3时间内,v增大,F N<mgD.t2~t3时间内,v减小,F N>mg[解析]由x-t图像的斜率表示速度,可知在0~t1时间内速度增大,即乘客的加速度向上,F N>mg;在t1~t2时间内速度不变,即乘客匀速上升,F N=mg;在t2~t3时间内速度减小,即乘客减速上升,F N<mg,故A正确,B、C、D错误。
[答案] A两物块A、B并排放在水平地面上,且两物块接触面为竖直面。
现用一水平推力F作用在物块A上,使A、B由静止开始一起向右做匀加速运动,如图甲所示。
在A、B的速度达到6 m/s时,撤去推力F。
已知A、B质量分别为m A=1 kg、m B=3 kg,A与水平地面间的动摩擦因数为μ=0.3,B与地面没有摩擦,B物块运动的v-t图像如图乙所示。
g取10 m/s2,求:(1)推力F的大小;(2)A物块刚停止运动时,物块A、B之间的距离。
高中物理图集——力学图集

高中物理图集——力学图集-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2物理图集-力学图集2017-12-5图4A-1 图4A-6图1图2图3图4 图5图6 图7图8 v图9图10 图11图12图13图14图4A-3图4A-2图4A-4图4A-5 图12 图13图2 图3N图4图5 图6 图7 图8图9 图1图2 图3 甲 乙图4图5图6 甲乙图7图1 图1 图3图3图5图5 图6图9R图12图13图1图2图3图4图5θa图6C图8 图9图10图11图7图11图10图7南图102图145图12图1图2图32 v图4图5图6图7图8图9图10图1Q 图2图6图4图12f α A图3 αBCα fαDf图116图1图7P 1 n 1 n 2P 2 (a (b3 54 0 1 2 图8 图9 图10 图2 图3 图6图8 图4图7砂桶 图8P 1 n 1 n 2P 2 (a (b 3 5 4 0 1 2 图9 0 15 5 10图2-8 (单位:cm )7图3图4图5 图7 v 0m图8图12 图1 图2 图10 图11 图12图215图图8 图3 图5(单位:cm )图6图12图5图6图8 545图10O图12 图13图10′图5图5图6B-2 图10图1 图3图4图5图8图7图2图9545图10O x 图16892003-1-8图91 2图10-A-A12 -A -b 球图12′图13图1421题图17题图图3 图1B C A D图3B C A D图410图6图10 图12图13图12图1图2图3图4图5E 图6图7F 图8图9图10图11 (a )图12 (b图13图14 图15图16D 图17 图15′道平面卫星第17题图图1 图4图5图1 图3图4图5图6354(单位:cm )10 5 2015图7图12图13-第16图ABCD图2图3图4图5 图6图7 图8 图9 图10图11图5图15甲1v图18图ABCD图302003-3-23图36图1图2图3图6图9图15图9图14图A-19 图A-11′图14图1图3图4图5图12 图O图1-图1-3-图1-5图1-6x/×10-2 2图1-8 图1-90 0 0 0图1-11 图1-12图2-13ABC图1-11图1-2图1-3Q图1-4fA C 图1-5 B fα fα Df B A 图1-10图1-111-13 图14第18图 2-1图3-6 v ′图5-1 v 01图5-2 图5F –F 图6 图3图6 图13图1 P A O 图2BA 图6 -图14图2图6图8图2图11A图1B CO x图2图4图9乙甲。
高中物理竞赛《静力学》课件

式中,
M
M
M
Ox Oy Oz
(F) (F ) (F)
yFz zFx xFy
zFy xFz yFx
分别表示力 F 对过 O 的 x, y, z 轴之矩,用于描述力对刚 体绕这些轴转动的效应
3、力矩的平面问题
如果点O、P 和力 F 都在一个平面内,比如 xy 平面,则:
r x yT ,
M
M
d
F
F
F
d F
(a)
(b)
M
F
M
d/F
F
(c)
d
F
(d)
4、力偶系
刚体上作用多对力偶,构成力偶系,有矢量和
n
M Mi i 1
在参考基上展开,为:
n
n
n
M x M ix , M y M iy , M z M iz
i 1
i 1
i 1
第二章
力系的简化
提出问题
如果一个刚体上承受的力比较多, 多于3个,并且不是一个汇交力系, 这种情况下如何解决这个刚体的平 衡问题?如何研究这些力之间的关 系?再复杂些,比如还有力偶等等, 又如何处理?
F3
F2
公理四 作用与反作用定理
两个物体间相互作用的力,总是大小相等、方 向相反,同时分别作用在两个物体上。
§1-3 约束及约束反力
3-1 约束
3-1-1 约束与约束反力的概念
我们研究物体的运动时,可能遇到两种情况:
• 物体在空间的运动是不受限制的 • 物体在空间的运动受到某些限制
显然,气球作为一个自由物体运动,其运动形式无限多—— 自由物体。 绿色圆柱体在圆槽内的运动受到限制——非自由物体。 我们把那些对非自由物体的产生限制的其周围物体称为约束
高中物理中的常见力学现象

高中物理中的常见力学现象在我们的日常生活和学习中,力学现象无处不在。
高中物理中的力学部分,为我们揭示了许多有趣且实用的知识。
让我们一起来探索一下那些常见的力学现象。
首先,我们来谈谈重力。
当我们把一个物体抛向空中,它最终会落回地面,这就是重力在起作用。
重力的方向总是竖直向下的,其大小与物体的质量成正比。
比如,我们站在地球上,能稳稳地站在地面上,而不会飘起来,就是因为地球对我们施加了重力。
再说说摩擦力。
当我们推动一个沉重的箱子时,会感觉到有一种阻碍它运动的力,这就是摩擦力。
摩擦力分为静摩擦力、滑动摩擦力和滚动摩擦力。
静摩擦力在物体没有发生相对运动时存在,它的大小会随着外力的增大而增大,直到达到最大值,物体开始运动。
滑动摩擦力则在物体相对运动时产生,其大小与接触面的粗糙程度以及正压力有关。
比如,在粗糙的地面上推动箱子会比在光滑的地面上更费力,这就是因为粗糙地面的摩擦力更大。
还有弹力,常见的像弹簧。
当我们压缩或拉伸弹簧时,弹簧会产生一个反抗的力,想要恢复原状。
这种力就是弹力。
像蹦床、篮球等物品中都存在弹力的作用。
我们在蹦床上跳跃时,能被弹起来,就是蹦床的弹力在发挥作用。
惯性也是高中力学中一个重要的概念。
当汽车突然刹车时,我们的身体会向前倾;而当汽车突然加速时,我们的身体又会向后仰。
这就是惯性的表现。
惯性是物体保持原有运动状态的性质,质量越大,惯性越大。
在机械运动中,平抛运动是一个典型的例子。
比如,从水平飞行的飞机上投下一个物品,这个物品在水平方向上会保持原来的速度,在竖直方向上做自由落体运动。
这种运动在体育运动中的铅球投掷、投篮等动作中都有所体现。
圆周运动在生活中也很常见。
比如,游乐场中的摩天轮、自行车的车轮转动等。
在圆周运动中,物体需要一个向心力来维持运动。
如果向心力不足,物体就会做离心运动。
再比如拔河比赛,这看似简单的活动中也蕴含着丰富的力学知识。
比赛双方的拉力是相互的,决定胜负的关键往往不是力的大小,而是脚下的摩擦力。
高中物理力学典型模型解读

高中物理力学典型模型解读王二毛一、斜面问题在每年各地的高考卷中几乎都有关于斜面模型的试题.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法.1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tanθ.图9-1甲2.自由释放的滑块在斜面上(如图9-1 甲所示):(1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零;(2)加速下滑时,斜面对水平地面的静摩擦力水平向右;(3)减速下滑时,斜面对水平地面的静摩擦力水平向左.3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零(见一轮书中的方法概述).图9-1乙4.悬挂有物体的小车在斜面上滑行(如图9-2所示):图9-2(1)向下的加速度a=g sin θ时,悬绳稳定时将垂直于斜面;(2)向下的加速度a>g sin θ时,悬绳稳定时将偏离垂直方向向上;(3)向下的加速度a<g sin θ时,悬绳将偏离垂直方向向下.5.在倾角为θ的斜面上以速度v0平抛一小球(如图9-3所示):图9-3(1)落到斜面上的时间t=2v0tan θg;(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关;(3)经过t c=vtan θg小球距斜面最远,最大距离d=(v0sin θ)22g cos θ.6.如图9-4所示,当整体有向右的加速度a=g tan θ时,m能在斜面上保持相对静止.图9-47.在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab棒所能达到的稳定速度v m=mgR sin θB2L2.图9-58.如图9-6所示,当各接触面均光滑时,在小球从斜面顶端滑下的过程中,斜面后退的位移s=mm+ML.图9-6例1有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断.例如从解的物理量单位,解随某些已知量变化的趋势,解在一些特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性.举例如下:如图9-7甲所示,质量为M、倾角为θ的滑块A放于水平地面上.把质量为m的滑块B放在A的斜面上.忽略一切摩擦,有人求得B相对地面的加速度a=M+mM+m sin2θg sin θ,式中g为重力加速度.图9-7甲对于上述解,某同学首先分析了等号右侧的量的单位,没发现问题.他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都是“解可能是对的”.但是,其中有一项是错误..的,请你指出该项[2008年高考·北京理综卷]( )A.当θ=0°时,该解给出a=0,这符合常识,说明该解可能是对的B.当θ=90°时,该解给出a=g,这符合实验结论,说明该解可能是对的C.当M≫m时,该解给出a≈g sin θ,这符合预期的结果,说明该解可能是对的D.当m≫M时,该解给出a≈gsin θ,这符合预期的结果,说明该解可能是对的【解析】当A固定时,很容易得出a=g sin θ;当A置于光滑的水平面时,B 加速下滑的同时A向左加速运动,B不会沿斜面方向下滑,难以求出运动的加速度.图9-7乙设滑块A的底边长为L,当B滑下时A向左移动的距离为x,由动量守恒定律得:M xt=mL-xt解得:x=mL M+m当m≫M时,x≈L,即B水平方向的位移趋于零,B趋于自由落体运动且加速度a≈g.选项D中,当m≫M时,a≈gsin θ>g显然不可能.[答案] D【点评】本例中,若m、M、θ、L有具体数值,可假设B下滑至底端时速度v1的水平、竖直分量分别为v1x、v1y,则有:v 1y v 1x =hL-x=(M+m)hML1 2mv1x2+12mv1y2+12Mv22=mghmv1x=Mv2解方程组即可得v1x、v1y、v1以及v1的方向和m下滑过程中相对地面的加速度.例2在倾角为θ的光滑斜面上,存在着两个磁感应强度大小相同的匀强磁场,其方向一个垂直于斜面向上,一个垂直于斜面向下(如图9-8甲所示),它们的宽度均为L.一个质量为m、边长也为L的正方形线框以速度v进入上部磁场时,恰好做匀速运动.图9-8甲(1)当ab边刚越过边界ff′时,线框的加速度为多大,方向如何?(2)当ab边到达gg′与ff′的正中间位置时,线框又恰好做匀速运动,则线框从开始进入上部磁场到ab边到达gg′与ff′的正中间位置的过程中,线框中产生的焦耳热为多少?(线框的ab边在运动过程中始终与磁场边界平行,不计摩擦阻力)【解析】(1)当线框的ab边从高处刚进入上部磁场(如图9-8 乙中的位置①所示)时,线框恰好做匀速运动,则有:mg sin θ=BI1L此时I1=BLv R当线框的ab边刚好越过边界ff′(如图9-8乙中的位置②所示)时,由于线框从位置①到位置②始终做匀速运动,此时将ab边与cd边切割磁感线所产生的感应电动势同向叠加,回路中电流的大小等于2I1.故线框的加速度大小为:图9-8乙a=4BI1L-mg sin θm=3g sin θ,方向沿斜面向上.(2)而当线框的ab边到达gg′与ff′的正中间位置(如图9-8 乙中的位置③所示)时,线框又恰好做匀速运动,说明mg sin θ=4BI2L故I2=1 4 I1由I1=BLvR可知,此时v′=14v从位置①到位置③,线框的重力势能减少了32mgL sin θ动能减少了12mv2-12m(v4)2=1532mv2由于线框减少的机械能全部经电能转化为焦耳热,因此有:Q=32mgL sin θ+1532mv2.[答案] (1)3g sin θ,方向沿斜面向上(2)32mgL sin θ+1532mv2【点评】导线在恒力作用下做切割磁感线运动是高中物理中一类常见题型,需要熟练掌握各种情况下求平衡速度的方法.二、叠加体模型叠加体模型在历年的高考中频繁出现,一般需求解它们之间的摩擦力、相对滑动路程、摩擦生热、多次作用后的速度变化等,另外广义的叠加体模型可以有许多变化,涉及的问题更多.如2009年高考天津理综卷第10题、宁夏理综卷第20题、山东理综卷第24题,2008年高考全国理综卷Ⅰ 的第15题、北京理综卷第24题、江苏物理卷第6题、四川延考区理综卷第25题等.叠加体模型有较多的变化,解题时往往需要进行综合分析(前面相关例题、练习较多),下列两个典型的情境和结论需要熟记和灵活运用.1.叠放的长方体物块A、B在光滑的水平面上匀速运动或在光滑的斜面上自由释放后变速运动的过程中(如图9-9所示),A、B之间无摩擦力作用.图9-92.如图9-10所示,一对滑动摩擦力做的总功一定为负值,其绝对值等于摩擦力乘以相对滑动的总路程或等于摩擦产生的热量,与单个物体的位移无关,即Q 摩=f·s相.图9-10例3质量为M的均匀木块静止在光滑的水平面上,木块左右两侧各有一位拿着完全相同的步枪和子弹的射击手.首先左侧的射击手开枪,子弹水平射入木块的最大深度为d1,然后右侧的射击手开枪,子弹水平射入木块的最大深度为d2,如图9-11所示.设子弹均未射穿木块,且两子弹与木块之间的作用力大小均相同.当两颗子弹均相对木块静止时,下列说法正确的是(注:属于选修3-5模块)( )图9-11A.最终木块静止,d1=d2B.最终木块向右运动,d1<d2C.最终木块静止,d1<d2D.最终木块静止,d1>d2【解析】木块和射出后的左右两子弹组成的系统水平方向不受外力作用,设子弹的质量为m,由动量守恒定律得:mv-mv0=(M+2m)v解得:v=0,即最终木块静止设左侧子弹射入木块后的共同速度为v1,有:mv=(m+M)v1Q 1=f·d1=12mv2-12(m+M)v12解得:d1=mMv22(m+M)f对右侧子弹射入的过程,由功能原理得:Q 2=f·d2=12mv2+12(m+M)v12-0解得:d2=(2m2+mM)v02 2(m+M)f即d1<d2.[答案] C【点评】摩擦生热公式可称之为“功能关系”或“功能原理”的公式,但不能称之为“动能定理”的公式,它是由动能定理的关系式推导得出的二级结论.三、含弹簧的物理模型纵观历年的高考试题,和弹簧有关的物理试题占有相当大的比重.高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等,几乎贯穿了整个力学的知识体系.为了帮助同学们掌握这类试题的分析方法,现将有关弹簧问题分类进行剖析.对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件.因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题老师的青睐.如2009年高考福建理综卷第21题、山东理综卷第22题、重庆理综卷第24题,2008年高考北京理综卷第22题、山东理综卷第16题和第22题、四川延考区理综卷第14题等.题目类型有:静力学中的弹簧问题,动力学中的弹簧问题,与动量和能量有关的弹簧问题.1.静力学中的弹簧问题(1)胡克定律:F=kx,ΔF=k·Δx.(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力.例4如图9-12甲所示,两木块A、B的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,两弹簧分别连接A、B,整个系统处于平衡状态.现缓慢向上提木块A,直到下面的弹簧对地面的压力恰好为零,在此过程中A和B的重力势能共增加了( )图9-12甲A.(m1+m2)2g2 k1+k2B.(m1+m2)2g2 2(k1+k2)C.(m1+m2)2g2(k1+k2k1k2)D.(m1+m2)2g2k2+m1(m1+m2)g2k1【解析】取A、B以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A的力F恰好为:F=(m1+m2)g设这一过程中上面和下面的弹簧分别伸长x1、x2,如图9-12乙所示,由胡克定律得:图9-12乙x 1=(m1+m2)gk1,x2=(m1+m2)gk2故A、B增加的重力势能共为:ΔE p=m1g(x1+x2)+m2gx2=(m1+m2)2g2k2+m1(m1+m2)g2k1.[答案] D【点评】①计算上面弹簧的伸长量时,较多同学会先计算原来的压缩量,然后计算后来的伸长量,再将两者相加,但不如上面解析中直接运用Δx=ΔFk进行计算更快捷方便.②通过比较可知,重力势能的增加并不等于向上提的力所做的功W=F·x总=(m1+m2)2g22k22+(m1+m2)2g22k1k2.2.动力学中的弹簧问题(1)瞬时加速度问题(与轻绳、轻杆不同):一端固定、另一端接有物体的弹簧,形变不会发生突变,弹力也不会发生突变.(2)如图9-13所示,将A、B下压后撤去外力,弹簧在恢复原长时刻B与A 开始分离.图9-13例5一弹簧秤秤盘的质量m1=1.5 kg,盘内放一质量m2=10.5 kg的物体P,弹簧的质量不计,其劲度系数k=800 N/m,整个系统处于静止状态,如图9-14 所示.图9-14现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在最初0.2 s内F是变化的,在0.2 s后是恒定的,求F的最大值和最小值.(取g=10 m/s2)【解析】初始时刻弹簧的压缩量为:x 0=(m1+m2)gk=0.15 m设秤盘上升高度x时P与秤盘分离,分离时刻有:k(x-x)-m1gm1=a又由题意知,对于0~0.2 s时间内P的运动有:12at2=x解得:x=0.12 m,a=6 m/s2故在平衡位置处,拉力有最小值F min=(m1+m2)a=72 N分离时刻拉力达到最大值F max=m2g+m2a=168 N.[答案] 72 N 168 N【点评】对于本例所述的物理过程,要特别注意的是:分离时刻m1与m2之间的弹力恰好减为零,下一时刻弹簧的弹力与秤盘的重力使秤盘产生的加速度将小于a,故秤盘与重物分离.3.与动量、能量相关的弹簧问题与动量、能量相关的弹簧问题在高考试题中出现频繁,而且常以计算题出现,在解析过程中以下两点结论的应用非常重要:(1)弹簧压缩和伸长的形变相同时,弹簧的弹性势能相等;(2)弹簧连接两个物体做变速运动时,弹簧处于原长时两物体的相对速度最大,弹簧的形变最大时两物体的速度相等.例6如图9-15所示,用轻弹簧将质量均为m=1 kg的物块A和B连接起来,将它们固定在空中,弹簧处于原长状态,A距地面的高度h1=0.90 m.同时释放两物块,A与地面碰撞后速度立即变为零,由于B压缩弹簧后被反弹,使A刚好能离开地面(但不继续上升).若将B物块换为质量为2m的物块C(图中未画出),仍将它与A固定在空中且弹簧处于原长,从A距地面的高度为h2处同时释放,C压缩弹簧被反弹后,A也刚好能离开地面.已知弹簧的劲度系数k=100 N/m,求h2的大小.图9-15【解析】设A物块落地时,B物块的速度为v1,则有:1 2mv12=mgh1设A刚好离地时,弹簧的形变量为x,对A物块有:mg=kx从A落地后到A刚好离开地面的过程中,对于A、B及弹簧组成的系统机械能守恒,则有:1 2mv12=mgx+ΔEp换成C后,设A落地时,C的速度为v2,则有:12·2mv22=2mgh2从A落地后到A刚好离开地面的过程中,A、C及弹簧组成的系统机械能守恒,则有:12·2mv22=2mgx+ΔE p联立解得:h2=0.5 m.[答案] 0.5 m【点评】由于高中物理对弹性势能的表达式不作要求,所以在高考中几次考查弹簧问题时都要用到上述结论“①”.如2005年高考全国理综卷Ⅰ第25题、1997年高考全国卷第25题等.例7用轻弹簧相连的质量均为2 kg 的A、B两物块都以v=6 m/s的速度在光滑的水平地面上运动,弹簧处于原长,质量为4 kg的物块C静止在前方,如图9-16 甲所示.B与C碰撞后二者粘在一起运动,则在以后的运动中:图9-16甲(1)当弹簧的弹性势能最大时,物体A的速度为多大?(2)弹簧弹性势能的最大值是多少?(3)A的速度方向有可能向左吗?为什么?【解析】(1)当A、B、C三者的速度相等(设为v A′)时弹簧的弹性势能最大,由于A、B、C三者组成的系统动量守恒,则有:(m A+m B)v=(m A+m B+m C)v A′解得:v A′=(2+2)×62+2+4m/s=3 m/s.(2)B、C发生碰撞时,B、C组成的系统动量守恒,设碰后瞬间B、C两者的速度为v′,则有:m B v=(mB+m C)v′解得:v′=2×62+4=2 m/sA的速度为vA′时弹簧的弹性势能最大,设其值为E p,根据能量守恒定律得:E p =12(m B+m C)v′2+12mAv2-12(m A+m B+m C)v A′2=12 J.(3)方法一A不可能向左运动.根据系统动量守恒有:(m A+m B)v=m A v A+(m B+m C)v B 设A向左,则v A<0,v B>4 m/s则B、C发生碰撞后,A、B、C三者的动能之和为:E′=12mAv2A+12(m B+m C)v2B>12(m B+m C)v2B=48 J实际上系统的机械能为:E=Ep +12(m A+m B+m C)v A′2=12 J+36 J=48 J根据能量守恒定律可知,E′>E是不可能的,所以A不可能向左运动.方法二B、C碰撞后系统的运动可以看做整体向右匀速运动与A、B和C相对振动的合成(即相当于在匀速运动的车厢中两物块相对振动)由(1)知整体匀速运动的速度v0=v A′=3 m/s图9-16乙取以v0=3 m/s匀速运动的物体为参考系,可知弹簧处于原长时,A、B和C 相对振动的速率最大,分别为:vAO=v-v0=3 m/svBO=|v′-v0|=1 m/s由此可画出A、B、C的速度随时间变化的图象如图9-16乙所示,故A不可能有向左运动的时刻.[答案] (1)3 m/s (2)12 J (3)不可能,理由略【点评】①要清晰地想象、理解研究对象的运动过程:相当于在以3 m/s匀速行驶的车厢内,A、B和C做相对弹簧上某点的简谐振动,振动的最大速率分别为3 m/s、1 m/s.②当弹簧由压缩恢复至原长时,A最有可能向左运动,但此时A的速度为零.例8探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,其中内芯和外壳质量分别为m和4m.笔的弹跳过程分为三个阶段:图9-17①把笔竖直倒立于水平硬桌面,下压外壳使其下端接触桌面(如图9-17甲所示);②由静止释放,外壳竖直上升到下端距桌面高度为h1时,与静止的内芯碰撞(如图9-17乙所示);③碰后,内芯与外壳以共同的速度一起上升到外壳下端距桌面最大高度为h2处(如图9-17丙所示).设内芯与外壳的撞击力远大于笔所受重力,不计摩擦与空气阻力,重力加速度为g.求:(1)外壳与内芯碰撞后瞬间的共同速度大小.(2)从外壳离开桌面到碰撞前瞬间,弹簧做的功.(3)从外壳下端离开桌面到上升至h2处,笔损失的机械能.[2009年高考·重庆理综卷]【解析】设外壳上升到h1时速度的大小为v1,外壳与内芯碰撞后瞬间的共同速度大小为v2.(1)对外壳和内芯,从撞后达到共同速度到上升至h2处,由动能定理得:(4m+m)g(h2-h1)=12(4m+m)v22-0解得:v2=2g(h2-h1).(2)外壳与内芯在碰撞过程中动量守恒,即:4mv1=(4m+m)v2将v2代入得:v1=542g(h2-h1)设弹簧做的功为W,对外壳应用动能定理有:W-4mgh1=12×4mv21将v1代入得:W=14mg(25h2-9h1).(3)由于外壳和内芯达到共同速度后上升至高度h2的过程中机械能守恒,只有在外壳和内芯的碰撞中有能量损失,损失的能量E损=12×4mv21-12(4m+m)v22将v1、v2代入得:E损=54mg(h2-h1).[答案] (1)2g(h2-h1) (2)14mg(25h2-9h1)(3)54mg(h2-h1)由以上例题可以看出,弹簧类试题的确是培养和训练学生的物理思维、反映和开发学生的学习潜能的优秀试题.弹簧与相连物体构成的系统所表现出来的运动状态的变化,为学生充分运用物理概念和规律(牛顿第二定律、动能定理、机械能守恒定律、动量定理、动量守恒定律)巧妙解决物理问题、施展自身才华提供了广阔空间,当然也是区分学生能力强弱、拉大差距、选拔人才的一种常规题型.因此,弹簧试题也就成为高考物理题中的一类重要的、独具特色的考题.四、传送带问题从1990年以后出版的各种版本的高中物理教科书中均有皮带传输机的插图.皮带传送类问题在现代生产生活中的应用非常广泛.这类问题中物体所受的摩擦力的大小和方向、运动性质都具有变化性,涉及力、相对运动、能量转化等各方面的知识,能较好地考查学生分析物理过程及应用物理规律解答物理问题的能力.如2003年高考全国理综卷第34题、2005年高考全国理综卷Ⅰ第24题等.对于滑块静止放在匀速传动的传送带上的模型,以下结论要清楚地理解并熟记:(1)滑块加速过程的位移等于滑块与传送带相对滑动的距离;(2)对于水平传送带,滑块加速过程中传送带对其做的功等于这一过程由摩擦产生的热量,即传送装置在这一过程需额外(相对空载)做的功W=mv2=2E k=2Q摩.例9如图9-18甲所示,物块从光滑曲面上的P点自由滑下,通过粗糙的静止水平传送带后落到地面上的Q点.若传送带的皮带轮沿逆时针方向匀速运动(使传送带随之运动),物块仍从P点自由滑下,则( )图9-18甲A.物块有可能不落到地面上B.物块仍将落在Q点C.物块将会落在Q点的左边D.物块将会落在Q点的右边【解析】如图9-18乙所示,设物块滑上水平传送带上的初速度为v0,物块与皮带之间的动摩擦因数为μ,则:图9-18乙物块在皮带上做匀减速运动的加速度大小a=μmgm=μg物块滑至传送带右端的速度为:v=v2-2μgs物块滑至传送带右端这一过程的时间可由方程s=v0t-12μgt2解得.当皮带向左匀速传送时,滑块在皮带上的摩擦力也为:f=μmg物块在皮带上做匀减速运动的加速度大小为:a 1′=μmgm=μg则物块滑至传送带右端的速度v′=v02-2μgs=v物块滑至传送带右端这一过程的时间同样可由方程s=v0t-12μgt2解得.由以上分析可知物块仍将落在Q点,选项B正确.[答案] B【点评】对于本例应深刻理解好以下两点:①滑动摩擦力f=μF N,与相对滑动的速度或接触面积均无关;②两次滑行的初速度(都以地面为参考系)相等,加速度相等,故运动过程完全相同.我们延伸开来思考,物块在皮带上的运动可理解为初速度为v0的物块受到反方向的大小为μmg的力F的作用,与该力的施力物体做什么运动没有关系.例10如图9-19所示,足够长的水平传送带始终以v=3 m/s的速度向左运动,传送带上有一质量M=2 kg 的小木盒A,A与传送带之间的动摩擦因数μ=0.3.开始时,A与传送带之间保持相对静止.现有两个光滑的质量均为m=1 kg 的小球先后相隔Δt=3 s自传送带的左端出发,以v0=15 m/s的速度在传送带上向右运动.第1个球与木盒相遇后立即进入盒中并与盒保持相对静止;第2个球出发后历时Δt1=13s才与木盒相遇.取g=10 m/s2,问:图9-19(1)第1个球与木盒相遇后瞬间,两者共同运动的速度为多大?(2)第1个球出发后经过多长时间与木盒相遇?(3)在木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少?【解析】(1)设第1个球与木盒相遇后瞬间,两者共同运动的速度为v1,根据动量守恒定律得:mv-Mv=(m+M)v1解得:v1=3 m/s,方向向右.(2)设第1个球与木盒的相遇点离传送带左端的距离为s,第1个球经过时间t与木盒相遇,则有:t 0=sv设第1个球进入木盒后两者共同运动的加速度大小为a,根据牛顿第二定律得:μ(m+M)g=(m+M)a解得:a=μg=3 m/s2,方向向左设木盒减速运动的时间为t1,加速到与传送带具有相同的速度的时间为t2,则:t 1=t2=Δva=1 s故木盒在2 s内的位移为零依题意可知:s=v0Δt1+v(Δt+Δt1-t1-t2-t0)解得:s=7.5 m,t0=0.5 s.(3)在木盒与第1个球相遇至与第2个球相遇的这一过程中,设传送带的位移为s′,木盒的位移为s1,则:s′=v(Δt+Δt1-t0)=8.5 ms1=v(Δt+Δt1-t1-t2-t0)=2.5 m故木盒相对于传送带的位移为:Δs=s′-s1=6 m则木盒与传送带间因摩擦而产生的热量为:Q=fΔs=54 J.[答案] (1)3 m/s (2)0.5 s (3)54 J【点评】本题解析的关键在于:①对物理过程理解清楚;②求相对路程的方法.。
第二章静力学(高中物理基本概念归纳整理)
积大小无关
三.摩擦力
3.静摩擦力:两物体间有相对运动趋势产生的摩擦力
方向:与相对运动趋势方向相反,平行接触面。大小:由“平衡条件” “牛顿第 二定律”或者由“牛顿第三定律”求得。
注意: ①静摩擦力存在极大值,即0<f ≤ fmax ②一般最大静摩擦力大于滑动摩擦力,有些题目中假设最大静摩擦力等于滑动摩擦力, 具体看题中条件。 ③摩擦力可以是动力,也可以是阻力。 ④运动的物体受的摩擦力不一定是滑动摩擦力,静止的物体受的摩擦力也不一定是静摩 擦力。 ⑤摩擦力的方向可以与运动方向相同,相反,成任意角度。(注意相对运动与运动的区 别) ⑥摩擦力可以做正功,也可以做负功、不做功。
六.共点力的平衡 2.解题方法:
合成法 分解法 正交分解法 三角形法
3.实例应用:
图解法;相似三角形问题;整体法、隔离法;临界问题;极值问题;圆周角;其它变式 训练(参考应用一、二中几何画板动态课件及例题)
祝你学业有成
2024年4月28日星期日8时28分6秒
注意:A 不受墙壁 支持力
注意:若匀速运 动,B不受摩擦 力
斜面地面均粗糙,B 物体不动,分析A减 速上升过程中各物体 受力情况。
五.共点力、力的合成与分解
1.共点力的合成:
共点力:几个力如果都作用在物体的同一点,或者它们的作用线相交于一点,这几个力 叫做共点力。(注意三力平衡必共点,除平行力外) 合力与分力:如果某一个力单独作用的效果跟某几个力共同作用的效果相同,这一个力 就是那几个力的合力,这几个力就叫做那个力的分力。 注意:这是一种等效替代的思想。 力的合成:求几个力的合力的过程 遵循规律:平行四边形定则(三角形定则) 注意: ①合力是惟一的; ②只有同一物体所受的力才可合成;作用力与反作用力不可以合成 ③分力与合力在力的作用效果方面是一种等效替代关系,而不是物体的重复受力,故合 力与分力不能共存. 求合力的方法:①作图法②计算法 互成角度的合力与分力关系:0°30°60°90°120°180°…… 求二力,三力合力的范围:
高中物理力学
力学(高中物理)1、质点的直线运动
运动的描述:质点、参考系、位移路程、速度加速度
直线运动:匀速直线运动、匀变速直线运动
2、力力的定义:重力、弹力、摩擦力
力的合成分解及受力分析:正交分解、受力分析顺序牛顿三大定律:牛一(惯性)、牛二(F=ma )、牛三(作用力与反作用力)3、曲线运动运动的合成与分解平抛运动:tan=2tanα圆周运动:F=ma=mvv/r=mwwr=4兀兀r/TT
4、万有引力定律定义:F=Gmm/rr
g=GM/RR 天体圆周:GMm/rr=mvv/r
三种宇宙速度
5、动量
机械运动的物理量:p=mv 动量守恒定律
机械能守恒定律:动能与势能,力、动量、能量6、机械能功及计算:W=FS 、功率P=W/t 。
动能定理:动能E=1/2mvv
机械能守恒定律:势能mgh
7、机械振动和机械波简谐振动
单摆
受迫振动和共振
机械波
波的干涉和衍射
多普勒效应和惠更斯原理:v=f 入。
高中物理四大经典力学模型完全解析
四大经典力学模型完全解析一、斜面问题模型1.自由释放的滑块能在斜面上(如下图所示)匀速下滑时,m与M之间的动摩擦因数μ=g tanθ.2.自由释放的滑块在斜面上(如上图所示):(1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零;(2)加速下滑时,斜面对水平地面的静摩擦力水平向右;(3)减速下滑时,斜面对水平地面的静摩擦力水平向左.3.自由释放的滑块在斜面上(如下图所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零。
4.悬挂有物体的小车在斜面上滑行(如下图所示):(1)向下的加速度a=g sinθ时,悬绳稳定时将垂直于斜面;(2)向下的加速度a>g sinθ时,悬绳稳定时将偏离垂直方向向上;(3)向下的加速度a<g sinθ时,悬绳将偏离垂直方向向下.5.在倾角为θ的斜面上以速度v0平抛一小球(如下图所示):(1)落到斜面上的时间t=2v0tanθg;(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tanα=2tanθ,与初速度无关;6.如下图所示,当整体有向右的加速度a=g tanθ时,m能在斜面上保持相对静止。
例1在倾角为θ的光滑斜面上,存在着两个磁感应强度大小相同的匀强磁场,其方向一个垂直于斜面向上,一个垂直于斜面向下(如下图所示),它们的宽度均为L.一个质量为m、边长也为L的正方形线框以速度v进入上部磁场时,恰好做匀速运动。
(1)当ab边刚越过边界ff′时,线框的加速度为多大,方向如何?(2)当ab边到达gg′与ff′的正中间位置时,线框又恰好做匀速运动,则线框从开始进入上部磁场到ab边到达gg′与ff′的正中间位置的过程中,线框中产生的焦耳热为多少?(线框的ab边在运动过程中始终与磁场边界平行,不计摩擦阻力)【点评】导线在恒力作用下做切割磁感线运动是高中物理中一类常见题型,需要熟练掌握各种情况下求平衡速度的方法。
高中物理常见的物理模型
1专题:高中物理力学常见物理模型高考中常出现的物理模型:斜面模型、叠加体模型(包含滑块、子弹射入)、(弹簧、轻绳、轻杆)连接体模型、传送带模型、人船模型、碰撞模型等。
一、斜面模型每年各地高考卷中几乎都有关于斜面模型的试题。
以下结论有助于更好更快地理清解题思路和方法.1.自由释放的滑块能在斜面上(如右图)匀速下滑时,m 与M 之间的动摩擦因数μ=g tan θ.2.自由释放的滑块在斜面上(如右图所示):(1)静止或匀速下滑时,斜面M 对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左.3.自由释放的滑块在斜面上(如右图所示)匀速下滑时,M 对水平地面的静摩擦力为零,这一过程中再在m 上加上任何方向的作用力,(在m 停止前)M 对水平地面的静摩擦力依然为零..4.悬挂有物体的小车在斜面上滑行(如右图所示):(1)向下的加速度a =g sin θ时,悬绳稳定时将垂直于斜面;(2)向下的加速度a >g sin θ时,悬绳稳定时将偏离垂直方向向上; (3)向下的加速度a <g sin θ时,悬绳将偏离垂直方向向下.5.在倾角为θ的斜面上以速度v 0平抛一小球(如右 图所示):(1)落到斜面上的时间t =2v0tan θg;(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关;(3)经过t c =v 0tan θg小球距斜面最远,最大距离d =(v 0sin θ)22g cos θ.6.在如下图所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab 棒所能达到的稳定速度v m =mgR sin θB 2L 2. .7.如图所示,当整体有向右的加速度a =g tan θ时,m 能在斜面上保持相对静止8.如下图所示,当各接触面均光滑时,在小球从斜面顶端滑下的过程中,斜面后退的位移s =mm +ML .2v vtt二、叠加体模型叠加体模型(包括滑块、子弹打木块、滑环直杆、传送带等模型,传送带另详述)在高考中频现,常需求解摩擦力、相对滑动路程、摩擦生热、多次作用后的速度等。