高中数学例题:与长度有关的几何概型问题

合集下载

完整版几何概型的经典题型及答案

完整版几何概型的经典题型及答案

几何概型的常见题型及典例分析一•几何概型的定义1. 定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或 体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型 .2. 特点:(1) 无限性,即一次试验中,所有可能出现的结果(基本事件)有无限 多个;(2) 等可能性,即每个基本事件发生的可能性均相等 . 构成事件A 的区域长度(面积或体 积) 试验的全部结果所构成的区域长度(面积或体积)说明:用几何概率公式计算概率时,关键是构造出随机事件所对应 的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系:(1) 联系:每个基本事件发生的都是等可能的.(2) 区别:①古典概型的基本事件是有限的, 几何概型的基本事件是无 限的;②两种概型的概率计算公式的含义不同..常见题型(一)、与长度有关的几何概型分析:在区间[1,1]上随机取任何一个数都是一个基本事件.所取的数是 区间[1,1]的任意一个数,基本事件是无限多个,而且每一个基本事件的 发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的3.计算公式:P (A )例1、在区间[1,1]上随机取一个数x 1X ,cos 2-的值介于0到2之间的概率为().A.- 3B.C.D.区间长度有关,符合几何概型的条件 解:在区间[1,1]上随机取一个数X ,即x [0到-之间,需使x或 x22 2 33 2 2 2••• 1 x 2或-x 1,区间长度为3 3由几何概型知使cos —x 的值介于0到1之间的概率为2 22符合条件的区间长度 J 1所有结果构成的区间长 度 2 3 .例2、如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间 再随意安装两盏路灯 C,D ,问A 与C,B 与D 之间的距离都不小于10米的 概率是多少?思路点拨从每一个位置安装都是一个基本事件,基本事件有无限 多个,但在每一处安装的可能性相等,故是几何概型.解 记E : “ A 与C,B 与D 之间的距离都不小于10米”,把AB1等分,由于中间长度为妙3=10米,方法技巧我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生 则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型 就可以用几何概型来求解.例3、在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交 点在该直径上的位置是等可能的,求任意画的弦的长度不小于 R 的概率 思考方法:由平面几何知识可知,垂直于弦的直径平分这条弦,所以, 地分布在于平行弦垂直的直径上(如图1-1 ) O 也就是说,样本空间所对应的区域 G 是一维空 间(即直线)上的线段 MN 而有利场合所对 应的区域G 是长度不小于R 的平行弦的中点K 所在的区间。

高中数学 3.3.1 几何概型素材2 新人教A版必修3

高中数学 3.3.1 几何概型素材2 新人教A版必修3

3.3.1 几何概型几何概型是高中数学新增加的内容,其特点鲜明,题目类型较为固定.高中数学学习阶段所出现的几何概型问题总结如下.1.与长度有关的几何概型例1 有一段长为10米的木棍,现要将其截成两段,要求每一段都不小于3米,则符合要求的截法的概率是多大?分析:由于要求每一段都不小于3米,也就是说只能在距两端都为3米的中间的4米中截,这是一道非常典型的与长度有关的几何概型问题.解:记两段木棍都不小于3米为事件A,则P(A)=.2.与面积有关的几何概型这里有一道十分有趣的题目:例2 郭靖、潇湘子与金轮法王等武林高手进行一种比赛,比赛规则如下:在很远的地方有一顶帐篷,可以看到里面有一张小方几,要将一枚铜板扔到这张方几上.已知铜板的直径是方几边长的,谁能将铜板整个地落到方几上就可以进行下一轮比赛.郭靖一扔,铜板落到小方几上,且没有掉下,问他能进入下一轮比赛的概率有多大?分析:这是一道几何概型问题,在几何概型中,样本空间是问题所涉及的整个几何图形,在本题中,样本空间就是小方几的桌面面积.一个事件就是整个几何图形的一部分,这个事件发生的概率就是这部分面积与整个图形的面积比.解:不妨设小方几的边长为1,铜板落到小方几上,也就是铜板的中心落到方几上,而要求整个铜板落到小方几上,也就是要求铜板的中心落到方几中内的一个×的小正方形内(如上图),这时铜板中心到方几边缘的距离≥铜板边长的.整个方几的面积为1×1=1,而中央小正方形的面积为×=,所以郭靖进入下一轮比赛的概率为.例3 甲、乙两人相约在上午9:00至10:00之间在某地见面,可是两人都只能在那里停留5分钟.问两人能够见面的概率有多大?解:设甲到的时间为(9+x)小时,乙到的时间为(9+y)小时,则0≤x≤1,0≤y≤1.点(x,y)形成直角坐标系中的一个边长为1的正方形,以(0,0),(1,0),(0,1),(1,1)为顶点(如右图).由于两人都只能停留5分钟即小时,所以在|x-y|≤时,两人才能会面.由于|x-y|≤是两条平行直线x-y=与y-x=之间的带状区域,正方形在这两个带状区域是两个三角形,其面积之和为(1-)×(1-)=()2.从而带形区域在这个正方形内的面积为1-()2=,因此所求的概率为.3.与体积有关的几何概型例4 在5升水中有一个病毒,现从中随机地取出1升水,含有病毒的概率是多大?分析:病毒在这5升水中的分布可以看作是随机的,取得的1升水可以看作构成事件的区域,5升水可以看作是试验的所有结果构成的区域,因此可能用体积比公式计算其概率.解:“取出1升水,其中含有病毒”这一事件记作事件A,则P(A)= =0.2.从而所求的概率为0.2.现在我们将这个问题拓展一下:例5 在5升水中有两个病毒,现从中随机地取出1升水,含有病毒的概率是多大?分析:此题目与上一题有一点区别,即现在在5升水中含有两个病毒,我们不妨将这两个病毒分别记作病毒甲和病毒乙.随机地取1升水,由上题我们可知含有病毒甲的概率为,含有病毒乙的概率也是,而这两种情况都包括了“既有病毒甲又有病毒乙”的情况,所以应当将这种情况去掉.解:记“取1升水,含有病毒甲”为事件A;“取1升水,含有病毒乙”为事件B,则“既含有病毒甲又含有病毒乙”为事件AB.从而所求的概率为P=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B)= =0.36.4.与角度有关的几何概型例6 在圆心角为90°的扇形中,以圆心为起点作射线OC,求使得∠AOC和∠BOC都不小于30°的概率.解:设事件A是“作射线OC,求使得∠AOC和∠BOC都不小于30°”.则μa=90°-30°-30°=30°,而μΩ=90°,由几何概型的计算公式得P(A)=.注意:在高中数学阶段,我们对于与面积有关的几何概型和与体积有关的几何概型要求重点掌握.这里只是列出了几道与几何概型有关的题目,可以说,在高中数学学习阶段,这四种几何概率模型基本上包括了我们所要学习的几何概型,希望能对大家有一点帮助.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

几何概型的经典例题

几何概型的经典例题

几何概型的经典例题
一、例题
在区间[ - 1,2]上随机取一个数x,则| x|≤slant1的概率为多少?
二、解析
1. 首先确定全部结果构成的区域长度
- 区间[ - 1,2]的长度为2-( - 1)=3。

2. 然后确定满足条件| x|≤slant1,即-1≤slant x≤slant1的区域长度
- 区间[ - 1,1]的长度为1-( - 1)=2。

3. 最后根据几何概型的概率公式P(A)=(构成事件A的区域长度(面积或体积))/(试验的全部结果所构成的区域长度(面积或体积))
- 这里是在数轴上的区间问题,属于长度型几何概型,所以P = (2)/(3)。

三、例题
已知正方形ABCD的边长为2,在正方形ABCD内随机取一点P,求点P到正方形各顶点的距离都大于1的概率。

四、解析
1. 首先确定全部结果构成的区域面积
- 正方形ABCD的边长为2,则其面积S = 2×2 = 4。

2. 然后确定满足条件的区域面积
- 点P到正方形各顶点的距离都大于1,那么点P在以正方形各顶点为圆心,1为半径的四个四分之一圆的外部(这些圆在正方形内部的部分)。

- 四个四分之一圆的面积之和相当于一个半径为1的圆的面积,即
S_1=π×1^2=π。

- 满足条件的区域面积S_2=4 - π。

3. 最后根据几何概型的概率公式
- 这里是平面区域问题,属于面积型几何概型,所以P=frac{S_2}{S}=(4 - π)/(4)。

考点五十 几何概型学生

考点五十 几何概型学生

考点五十 几何概型知识梳理1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)3.几何概型的两个特点几何概型有两个特点:一是无限性;二是等可能性.4.几何概型与古典概型的区别古典概型与几何概型中基本事件发生的可能性都是相等的,但古典概型要求基本事件有有限个,而几何概型则是无限个.典例剖析题型一 与长度有关的几何概型例1 (2014·高考湖南卷)在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( ) A. 45 B. 35 C. 25 D. 15变式训练 (2015山东文)在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝⎛⎭⎫x +12≤1”发生的概率为( )A. 34B. 23C. 13D. 14解题要点 基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.题型二 与面积有关的几何概型例2 (2014·高考辽宁卷) 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A. π2B. π4C. π6D. π8变式训练 (2015福建文)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A. 16B. 14C. 38D. 12解题要点 求解与面积有关的几何概型的注意点:求解与面积有关的几何概型时,关键是弄清某事件对应的面积以求面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解. 题型三 与体积有关的几何概型例3 在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A. π12 B .1-π12 C. π6 D .1-π6变式训练 有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.解题要点 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.当堂练习1.(2015陕西文)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A. 34+12π B. 12+1π C. 14-12π D. 12-1π2.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A. 4π81B. 81-4π81C. 127D. 8273. 在区间⎣⎡⎦⎤-π2,π2上随机取一个x ,sin x 的值介于-12与12之间的概率为( ) A. 13 B. 2π C. 12 D. 234.在[-2,3]上随机取一个数x ,则(x +1)(x -3)≤0的概率为( )A. 25B. 14C. 35D. 455.利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”发生的概率为__________.课后作业一、 选择题1.在长为10cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25cm 2与49cm 2之间的概率为( )A. 25 B .15、 C. 45 D .3102.在区间(10,20]内的所有实数中,随机取一个实数a ,则这个实数a <13的概率是( ) A. 13 B .17 C. 310 D .7103.在长为12cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为( )A. 16 B .13 C. 23 D .454.如图,一个矩形的长为5,宽为2,在矩形内随机的撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积约为( )A. 235 B .215 C. 195 D .1655.假设△ABC 为圆的内接正三角形,向该圆内投一点,则点落在△ABC 内的概率( )A. 334π B .2π C. 4π D .33π46.一只蚂蚁在一直角边长为1cm 的等腰直角三角形ABC (∠B =90°)的边上爬行,则蚂蚁距A 点不超过1cm 的概率为( )A .22B .23C .2- 3D .2- 2 7.(2015湖北文)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( ) A .p 1<p 2<12 B .p 2<12<p 1 C.12<p 2<p 1 D .p 1<12<p 2 二、填空题8.在区间[20,80]内任取一个实数m ,则实数m 落在区间[50,75]内的概率为________.9.(2013·湖北卷)在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.10. (2014·福建文)如图所示,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.11.取一个边长为2a 的正方形及其内切圆如图,随机向正方形内丢一粒豆子,豆子落入圆内的概率为______________________.三、解答题12.已知关于x 的一元二次方程x 2-2(a -2)x -b 2+16=0.(1)若a ,b 是一枚骰子掷两次所得到的点数,求方程有两正根的概率;(2)若a ∈[2,6],b ∈[0,4],求方程没有实根的概率.13.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1内的概率;(2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于22的概率.。

几何概型例题及解析

几何概型例题及解析

几何概型例题及解析题目:在边长为2的正方形内随机取一个点,则该点到正方形四个顶点的距离都大于1的概率是( )。

A. 1/2B. 1/4C. 3/4D. 1/16解析:在边长为2的正方形内,到四个顶点距离都大于1的区域是一个边长为1的正方形。

因此,所求概率为小正方形的面积与大正方形面积之比,即1/4。

题目:在半径为2的圆内随机取一条弦,则弦长小于等于2√3的概率为( )。

A. 1/4B. 1/2C. 3/4D. √3/2解析:在半径为2的圆内,弦长小于等于2√3的弦对应的圆心角为120°。

因此,所求概率为120°/360° = 1/3,但选项中并没有这个值,可能题目有误或选项不完整。

题目:在区间[0, 2]上随机取两个数x和y,则满足x^2 + y^2 ≤ 2的概率是( )。

A. π/4B. π/2C. 1 - π/4D. 1 - π/2解析:在区间[0, 2]上随机取两个数x和y,对应的平面区域是一个边长为2的正方形。

满足x^2 + y^2 ≤ 2的区域是一个半径为√2的圆在正方形内的部分。

所求概率为圆的面积与正方形面积之比,即π*(√2)^2 / (2*2) = π/2。

题目:在边长为1的正方形内随机取一个点,则该点到正方形中心的距离小于1/2的概率为( )。

A. 1/4B. 1/2C. 3/4D. √2/2解析:在边长为1的正方形内,到中心距离小于1/2的区域是一个边长为1/2的正方形。

因此,所求概率为小正方形的面积与大正方形面积之比,即(1/2)^2 = 1/4。

题目:在三维坐标系中,随机取一个点P(x, y, z),其中x, y, z ∈ [0, 1],则点P到原点O的距离小于等于√2/2的概率为( )。

A. π/6B. π/4C. π/3D. π/2解析:在三维坐标系中,到原点距离小于等于√2/2的点构成一个半径为√2/2的球在[0, 1]^3内的部分。

所求概率为球的体积与[0, 1]^3的体积之比,即(π*(√2/2)^3) / 1^3 = π/6。

考点42 几何概型(长度、角度)-庖丁解题-学年高一数学人教版(必修3)

考点42 几何概型(长度、角度)-庖丁解题-学年高一数学人教版(必修3)

1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件总数)有无限多个.(2)每个基本事件出现的可能性相等.3.几何概型的概率公式.【例】在面积为S的ABC△的边AB上任取一点P,则PBC△的面积大于4S的概率是()A.14B.12C.34D.23【易错易混】因为题目中涉及面积问题,表面看是面积,因为是同底的三角形,问题的本质是长度比问题.要点阐述典型例题1.下列概率模型中,是几何概型的有()①明天北京市区降水的概率;②从区间[]1010-,内任取出一个数,求取到绝对值不大于1的数的概率;③从区间[]1010-,内任取出一个整数,求取到大于1而小于2的数的概率;④向一个边长为4 cm的正方形ABCD内投一点P,求点P到正方形中心的距离不超过1 cm的概率.A.1个B.2个C.3个D.4个【答案】B2.在区间(15,25]内的所有实数中随机取一个实数a,则这个实数满足17<a<20的概率是() A.13B.12C.310D.510【答案】C【解析】a∈(15,25],∴P(17<a<20)=20-1725-15=310.【规律总结】在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D,这时区域D可能是一条线段或几条线段或曲线段,然后找到事件A发生对应的区域d,在找d的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A的概率.3.在长为12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于32 cm2的概率为()A.16B.13C.23D.45小试牛刀【答案】C4.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为 . 【答案】23【解析】如图,圆周上使AM 的长度等于1的点M 有两个,设为1M ,2M ,则过A 的圆弧12M AM 长为2,点B 落在优弧12M AM 上就能使劣弧AB 的长度小于1,所以劣弧AB 的长度小于1的概率为23. 5.如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA ,则射线OA 落在∠yOT内的概率为________.【答案】16【解析】根据题图,因为射线OA 在坐标系内是等可能分布的,所以OA 落在∠yOT 内的概率为60360=16.【易错易混】当涉及射线的转动、扇形中有关落点区域问题时,应以角的大小作为区域度量来计算概率,且不可用线段的长度代替,这是两种不同的度量手段.6.在圆心角为90°的扇形AOB 中,以圆心O 为起点作射线OC ,求使得∠AOC 和∠BOC 都不小于30°的概率. 【解析】如图所示,把圆弧AB 三等分,则∠AOF =∠BOE =30°,记A 为“在扇形AOB 内作一射线OC ,使∠AOC 和∠BOC 都不小于30°”,要使∠AOC 和∠BOC 都不小于30°,则OC 就落在∠EOF 内,∴P (A )=30°90°=13.1.在区间[0,1]上随机取一个数x ,则事件“log 0.5(4x -3)≥0”发生的概率为( )A .34B .23C .13D .14【答案】D【解析】由log 0.5(4x -3)≥0,得0<4x -3≤1,解得34<x ≤1,所以所求概率P =1-341-0=14.2.在区间[11]-,上随机地取一个数x ,2x 的值介于12到1之间的概率为( )A .14B .13C .12D .23【答案】C3.在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.【答案】34【解析】由直线y =kx 与圆(x -5)2+y 2=9相交,得 |5k |k 2+1<3,即16k2<9,解得-34<k <34. 由几何概型的概率计算公式可知P =34-⎝⎛⎭⎫-342=34.4.将一根长10 cm 的铁丝用剪刀剪成两段,然后再将每一段剪成等长的两段,并用这四段铁丝围成一个矩形,求围成的矩形面积大于62cm 的概率. 【解析】如图,AB 为长10 cm 的铁丝,剪断点为点M ,设AM x =cm (010)x <<,则矩形面积为1022x x-.考题速递投针试验1777年,法国科学家布丰做了一个投针试验,他在一张大纸上画了一些平行线,相邻两条平行线间的距离都相等,再把长度等于相邻两平行线间距离一半的针投到纸上,并记录投针的总次数及针落到纸上后与平行线中的某一条相交的次数,共计投针2212次,其中与平行线相交的有704次,发现它们的商2212 ,与π非常接近.这个试验被认为是本节所学几何概型的第一个试验.那么,投针试验为什么能算出π的近似值呢?数学文化。

人教版数学高一-人教A必修三 3.3六种常见的“几何概型.

六种常见的“几何概型” 一般地,就基本事件的空间的几何度量(长度、面积、体积等)而言,我们可以把几何概型分为:区间长度型、线段长度型、角度型、周长(弧长)型,面积型和体积型,举例说明如下: 一、区间长度型 例1.设m 在[0,5]上随机地取值,求方程02142=+++m mx x 有实数根的概率. 分析:由于m 在[0,5]上随机地取值,样本点是连续无限的,所以属于几何概型的问题,只要求出使方程02142=+++m mx x 有两数根的m 的取值范围则问题便 可迎刃而解.解:方程有实数根10)214(42-≤⇒≥+-=∆⇒m m m 或m ≥2. ∵m ∈[0,5],方程02142=+++m mx x 有实数根时m 的取值范围为[2,5]. ∴方程02142=+++m mx x 有实根的概率为53]5,0[]5,2[==的长度区间的长度区间P . 点评: 本题把方程与几何概型巧妙地结合起来,背景新颖且韵味无穷.二、线段长度型例2.有一根长4m 的木料,现随机地把它截成两截,求截得的两段长度都不小于1.2 m 的概率.解:如图所示,设线段AB 的长为4 m ,在线段AB 内取点C 和D ,使AC=BD=1.2 m ,则CD=4-1.2-1.2=1.6(m).要使“把一根长4m 的木料随机地锯成两截,得到两段长度都小于1.2 m ”,则分点(锯点)必须在线段CD 上(包括端点C 、D 在内),所以所求的概率为5246.1==P . 三、角度型例3.如图所示,在直角坐标系中,射线OA 落在800角的终边上,任意作射线OB,求射线OB 落在∠xOA 外的概率.分析:由于以O 为起点作射线OB 是随机的,而射线OB 落在直角坐标平面上任何位置上是等可能的,所以射线OB 落在∠xOA 外只与∠xOA 的大小有关.解:设事件A={射线OB 落在∠xOA 外},事件B={射线OB 落在∠xOA 内},显然,事件A 与事件B 是对立事件.∵∠xOA=800, 9236080)(00==B P ,∴97921)(1)(=-=-=B P A P .点评:在本题中事件的“测度”是角度.本题根据射线OB 落在直角平面上任何位置是等可能的,这时与试验有关的问题,即可利用几何概型来解决.四、周长(弧长)型例4.设有一个均匀的陀螺,在其圆周的一半上均匀地刻上区间[0,1]上的诸数字,另一半上均匀地刻上区间[1,3]的诸数字(所有的数字均按大小排列,且0与3重合).旋转陀螺,求它停下时,其圆周上触及桌面的刻度位于[0.5,1.5]上的概率.解:圆周上触及桌面的刻度位于[0.5,1]上的概率为P 1,圆周上触及桌面的刻度位于[1,1.5]上的概率为P 2.∵位于区间[0.5,1]的长度只占半个圆周的21,∴[0.5,1]的长度占了整个圆周的41,∴411=P ,同理,在另一个半圆周上,由于该半圆上均匀地刻上区间[1,3]的诸数字,而在该区间上的子区间[1,l.5]只占该半圆的41,所以,它的长度占了整个圆周的81. ∴812=P ,故圆周上触及桌面的刻度位于[0.5,1.5]上的概率为83814121=+=+=P P P . 点评:解决问题的关键是构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 五、面积型 例5.在区间[-2,2]上任意取两数a,b,求二次方程x 2-ax+b=0有实数根的概率.解:若原方程有实数根,则△=(-a)2-4×1×b 2≥0,即(a-2b)·(a+2b)≥0.则有⎩⎨⎧≥+≥-,02,02b a b a ,或⎩⎨⎧≤+≤-.02,02b a b a ,又a,b ∈[-2,2],即-2≤a ≤2, -2≤b ≤2,所以基本事件的空间为{ (a, b)|-2≤a ≤2, -2≤b ≤2},反映在直角坐标系上,就是上图所示的正方形ABCD 区域.而事件A={二次方程x 2-ax+b 2=0有实根}={(a, b)|a-2b ≤0,且a+2b ≤0}∪{(a,b)|a-2b ≥0, 且 a+2b ≥0},反映在直角坐标系上,就是图中阴影部分的区域.故所求事件的概率为4144)1221(4=⨯⨯⨯⨯=P . 点评:本题根据二次方程x 2-ax+b=0有实数根的条件,列出不等式,画出图象利用公式求解。

2017_18学年高中数学第三章概率3.3.1几何概型学案含解析

3.3.1 几何概型[提出问题]每逢节假日,各大型商场竞相出招,吸引顾客,其中某商场设立了一个可以自由转动的转盘,规定顾客消费100元以上,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准①,②或③区域,顾客就可以分别获得100元、50元、20元的购物券(转盘被等分成20个扇形),一位顾客消费了120元.问题1:这位顾客获得100元购物券的概率与什么因素有关?提示:与标注①的小扇形个数多少(面积大小)有关.问题2:在该实例试验中,试验结果有多少个?其发生的概率相等吗?提示:试验结果有无穷多个,但每个试验结果发生的概率相等.问题3:如何计算该顾客获得100元购物券的概率?提示:用标注①的扇形面积除以圆的面积.[导入新知]1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.3.几何概型概率公式在几何概型中,事件A的概率的计算公式为:P(A)=构成事件A的区域长度面积或体积.试验的全部结果所构成的区域长度面积或体积[化解疑难]理解几何概型应关注三点(1)几何概型中,每个基本事件在一个区域内均匀分布,所以随机事件概率的大小与随机事件所在区域的形状、位置无关,只与区域的大小有关;(2)如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但不是不可能事件;(3)如果一个随机事件所在的区域是全部区域扣除一个单点,则它出现的概率为1,但不是必然事件.与长度有关的几何概型 [例1] (1)在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________.(2)某汽车站每隔15 min 有一辆汽车到达,乘客到达车站的时刻是任意的,求一位乘客到达车站后等车时间超过10 min 的概率.[解析] (1)∵区间[-1,2]的长度为3,由|x |≤1得x ∈[-1,1],而区间[-1,1]的长度为2,x 取每个值为随机的,∴在[-1,2]上取一个数x ,|x |≤1的概率P =23.(2)设上一辆车于时刻T 1到达,而下一辆车于时刻T 2到达,则线段T 1T 2的长度为15,设T 是线段T 1T 2上的点,且T 1T =5,T 2T =10,如图所示.记“等车时间超过10 min”为事件A ,则当乘客到达车站的时刻t 落在线段T 1T 上(不含端点)时,事件A 发生.∴P (A )=T 1T 的长度T 1T 2的长度=515=13,即该乘客等车时间超过10 min 的概率是13.[答案] (1)23[类题通法]1.几何概型概率问题的一般步骤(1)选择适当的观察角度(一定要注意观察角度的等可能性); (2)把基本事件转化为与之对应的区域D ; (3)把所求随机事件A 转化为与之对应的区域I ; (4)利用概率公式计算.2.与长度有关的几何概型问题的计算公式如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为:P (A )=构成事件A 的区域长度试验的全部结果所构成的区域长度.[活学活用]1.(重庆高考)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.解析:设方程x 2+2px +3p -2=0的两个负根分别为x 1,x 2,∴⎩⎪⎨⎪⎧Δ=4p 2-43p -2≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝ ⎛⎭⎪⎫1-23+5-25=23. 答案:232.一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒.当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯亮; (2)黄灯亮; (3)不是红灯亮.解:在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型. (1)P =红灯亮的时间全部时间=3030+40+5=25.(2)P =黄灯亮的时间全部时间=575=115.(3)P =不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间全部时间=4575=35,或P =1-P (红灯亮)=1-25=35.与面积有关的几何概型[例2] (1)他应当选择的游戏盘为( )(2)四边形ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4C.π8D .1-π8[解析] (1)根据几何概型的面积比,选项A 中的游戏盘中奖概率为38,选项B 中游戏盘的中奖概率为13,选项C 中游戏盘的中奖概率为2r 2-πr 22r 2=4-π4,选项D 中游戏盘的中奖概率为r 2πr 2=1π,故A 游戏盘的中奖概率最大.(2)如图所示,长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2÷2=π4,取到的点到O 的距离大于1的概率为1-π4.[答案] (1)A (2)B [类题通法]1.与面积有关的几何概型的概率公式如果试验的结果所构成的区域的几何度量可用面积表示,则其概率的计算公式为:P (A )=构成事件A 的区域面积试验的全部结果所构成的区域面积.2.解与面积相关的几何概型问题的三个关键点 (1)根据题意确认是否是与面积有关的几何概型问题;(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积; (3)套用公式,从而求得随机事件的概率. [活学活用]1.(福建高考改编)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上. 若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于________.解析:因为f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0,B 点坐标为(1,0),所以C 点坐标为(1,2),D 点坐标为(-2,2),A 点坐标为(-2,0),故矩形ABCD 的面积为2×3=6,阴影部分的面积为12×3×1=32,故P =326=14.答案:142.在平面直角坐标系xOy 中,设M 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向M 中随机投一点,则所投的点落入E 中的概率是________.解析:如图,区域M 表示边长为4的正方形ABCD 的内部(含边界),区域E 表示单位圆及其内部,因此P =π×124×4=π16.答案:π16与角度有关的几何概率[例3] CM ,与线段AB 交于点M .求AM <AC 的概率.[解] 如图,在AB 上取AC ′=AC ,连接CC ′, 则∠ACC ′=180°-45°2=67.5°.设D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M ,AM <AC ,则所有可能结果的区域角度为90°,事件D的区域角度为67.5°,∴P (D )=67.5°90°=34.[类题通法]与角度有关的几何概型概率的求法(1)如果试验的所有结果构成的区域的几何度量可用角度表示,则其概率的计算公式为P (A )=构成事件A 的区域角度试验的全部结果构成的区域角度.(2)解决此类问题的关键是事件A 在区域角度内是均匀的,进而判定事件的发生是等可能的.[活学活用]在平面直角坐标系中,射线OT 为60°角的终边,在任意角集合中任取一个角,则该角终边落在∠xOT 内的概率是( )A.16 B .23 C.13D .160解析:选A 如图,∵在任意角集合中任取一个角,则该角终边落在∠xOT 内对应的角度为60度,而整个角集合对应的角度为圆周角,∴该角终边落在∠xOT 内的概率P =60°360°=16.与体积有关的几何概型 [例4] (1)在一球内有一棱长为1的内接正方体,一点在球内运动,则此点落在正方体内部的概率为( )A.6π B .32π C.3πD .233π(2)已知正方体ABCD ­A 1B 1C 1D 1内有一个内切球O ,则在正方体ABCD ­A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是________.[解析] (1)由题意可得正方体的体积为V 1=1.又球的直径是正方体的对角线,故球的半径R =32.球的体积V 2=43πR 3=32π.这是一个几何概型,则此点落在正方体内的概率为P =V 1V 2=132π=233π. (2)设正方体的棱长为2.正方体ABCD ­A 1B 1C 1D 1的内切球O 的半径是其棱长的一半,其体积为V 1=43π×13=4π3.则点M 在球O 内的概率是4π323=π6.[答案] (1)D (2)π6[类题通法]与体积有关的几何概型概率的求法如果试验的结果所构成的区域的几何度量可用体积表示,则其概率的计算公式为P (A )=构成事件A 的区域体积试验的全部结果所构成的区域体积.[活学活用]有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,求点P 到点O 的距离大于1的概率.解:圆柱的体积V 圆柱=π×12×2=2π是试验的全部结果构成的区域体积. 以O 为球心,1为半径且在圆柱内部的半球的体积V半球=12×4π3×13=2π3,则构成事件A “点P 到点O 的距离大于1”的区域体积为2π-2π3=4π3, 由几何概型的概率公式得P (A )=4π32π=23.3.几何概型中的交汇性问题[典例] 设关于x 的一元二次方程x 2+2ax +b 2=0,若a 是从区间[0,3]上任取的一个数,b 是从区间[0,2]上任取的一个数,求上述方程有实根的概率.[解题指导] 设事件A 为“方程x 2+2ax +b 2=0”有实根. 则Δ=4a 2-4b 2≥0,即a 2≥b 2. 又∵a ≥0,b ≥0. ∴a ≥b .试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2},而构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },即如图所示的阴影部分.所以P (A )=3×2-12×223×2=23.[多维探究]几何概型与其他知识的交汇问题,以其新颖性、综合性而渐成为命题者的一个重要着眼点,本题是以方程的根为依托考查了与面积有关的几何概型的求法,另外,几何概型还常与集合、解析几何等问题相交汇命题,出现在试卷中.[角度一] 几何概型与集合的交汇问题 已知集合M ={}x ,y |x +y ≤8,x ≥0,y ≥0,N ={}x ,y|x -3y ≥0,x ≤6,y ≥0,若向区域M 随机投一点,则点P 落入区域N 的概率为( )A.13B.12C.38D.316解析:选D 根据题设中集合的意义,在平面直角坐标系中分别画出区域M和N,可分别计算区域M和N的面积,进而求解.将集合M和N所表示的区域在直角坐标系中画出,如图,则区域M的面积S=12×8×8=32,区域N的面积S′=12×6×2=6,所以点P落入区域N的概率为P=632=316.[角度二] 几何概型与解析几何的交汇问题已知圆C:x2+y2=12,直线l:4x+3y=25.(1)求圆C的圆心到直线l的距离;(2)求圆C上任意一点A到直线l的距离小于2的概率.解:(1)由点到直线l的距离公式可得d=2542+32=5.(2)由(1)可知圆心到直线l的距离为5,要使圆上点到直线的距离小于2,设与圆相交且与直线l平行的直线为l1,其方程为4x+3y=15.则符合题意的点应在l1:4x+3y=15与圆相交所得劣弧上,由半径为23,圆心到直线l1的距离为3可知劣弧所对圆心角为π3.故所求概率为P=π32π=16.[随堂即时演练]1.下列概率模型中,几何概型的个数为( )①从区间[-10,10]内任取出一个数,求取到1的概率;②从区间[-10,10]内任取出一个数,求取到绝对值不大于1的数的概率; ③从区间[-10,10]内任取出一个整数,求取到大于1而小于2的数的概率; ④向一个边长为4 cm 的正方形ABCD 内投一点P ,求点P 离中心不超过1 cm 的概率. A .1 B .2 C .3D .4解析:选B ①不是几何概型,虽然区间[-10,10]有无限多个点,但取到“1”只是一个数字,不能构成区域长度;②是几何概型,因为区间[-10,10]和[-1,1]上有无限多个数可取(满足无限性),且在这两个区间内每个数被取到的机会是相等的(满足等可能性);③不是几何概型,因为区间[-10,10]上的整数只有21个(是有限的),不满足无限性特征;④是几何概型,因为在边长为4 cm 的正方形和半径为1 cm 的圆内均有无数多个点,且这两个区域内的任何一个点都有相等可能被投到,故满足无限性和等可能性.2.如图所示,在一个边长为a ,b (a >b >0)的矩形内画一个梯形,梯形上、下底长分别为a 3与a2,高为b .向该矩形内随机地投一点,则所投的点落在梯形内部的概率为( )A.112 B .14 C.512D .712解析:选C S 矩形=ab ,S 梯形=12⎝ ⎛⎭⎪⎫13a +12a b =512ab .故所投的点在梯形内部的概率为P =S 梯形S 矩形=512abab =512.3.方程x 2+x +n =0(n ∈(0,1))有实根的概率为________. 解析:由于方程x 2+x +n =0(n ∈(0,1))有实根, ∴Δ≥0,即1-4n ≥0,∴n ≤14,又n ∈(0,1),∴有实根的概率为P =141-0=14.答案:144.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为________.解析:大肠杆菌在400毫升自来水中的位置是任意的,且结果有无限个,属于几何概型.设取出2毫升水样中有大肠杆菌为事件A ,则事件A 构成的区域体积是2毫升,全部试验结果构成的区域体积是400毫升,则P (A )=2400=0.005.答案:0.0055.已知一只蚂蚁在边长为4的正三角形内爬行,求此蚂蚁到三角形三个顶点的距离均超过1的概率.解:设正三角形ABC 的边长为4,其面积为4 3.分别以A ,B ,C 为圆心,1为半径在△ABC 中作扇形,除去三个扇形剩下的部分即表示蚂蚁距三角形三个顶点的距离均超过1的区域,其面积为43-3×12×π3×12=43-π2,故所求概率P =43-π243=1-324π.[课时达标检测]一、选择题1.在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边长作正方形,这个正方形的面积介于36 cm 2与81 cm 2之间的概率为( )A.3681 B .1236 C.1281D .14答案:D2.(全国甲卷)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.710B.58C.38D.310解析:选B 如图,若该行人在时间段AB 的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB 长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.3.已知函数f (x )=x 2-x -2,x ∈[-5,5],那么满足f (x 0)≤0,x 0∈[-5,5]的x 0取值的概率为( )A.310B .35 C.15 D .110答案:A4.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,即称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A.827B.127C.2627D.1527答案:B5.如图,A是圆O上固定的一点,在圆上其他位置任取一点A′,连接AA′,它的长度小于或等于半径的概率为( )A.12B.32C.13D.14答案:C二、填空题6.设D是半径为R的圆周上的一定点,在圆周上随机取一点C,连接CD得一弦,若A表示“所得弦的长大于圆内接等边三角形的边长”,则P(A)=________.解析:如图所示,△DPQ为圆内接正三角形,当C点位于劣弧PQ上时,弦DC>PD,∴P(A)=13.答案:137.在棱长为a的正方体ABCD­A1B1C1D1内任取一点P,则点P到点A的距离小于等于a的概率为________.解析:点P到点A的距离小于等于a可以看作是随机的,点P到点A的距离小于等于a 可视作构成事件的区域,棱长为a的正方体ABCD­A1B1C1D1可视作试验的所有结果构成的区域,可用“体积比”公式计算概率:P=18×43πa3a3=16π.答案:16π8.已知正方形ABCD的边长为2,H是边DA的中点.在正方形ABCD内部随机取一点P,则满足|PH|<2的概率为________.解析:如图,设E,F分别为边AB,CD的中点,则满足|PH|<2的点P在△AEH,扇形HEF及△DFH内,由几何概型的概率计算公式知,所求概率为14π22+12×1×1×22×2=π8+14.答案:π8+14三、解答题9.已知点M(x,y)满足|x|≤1,|y|≤1.求点M落在圆(x-1)2+(y-1)2=1的内部的概率.解:如图所示,区域Ω为图中的正方形,正方形的面积为4,且阴影部分是四分之一圆,其面积为14π,则点M落在圆(x-1)2+(y -1)2=1的内部的概率为14π4=π16.10.小朋友做投毽子游戏,首先在地上画出如图所示的框图,其中AG=HR=DR=12GH,CP =DP=AE=2CQ.其游戏规则是:将毽子投入阴影部分为胜,否则为输.求某小朋友投毽子获胜的概率.解:观察图形可看出阴影部分面积占总面积的一半,投入阴影部分的概率只与阴影部分的面积和总面积有关,故所求事件(记为事件A )的概率为P (A )=12.11.如图,已知AB 是半圆O 的直径,AB =8,M ,N ,P 是将半圆圆周四等分的三个分点.(1)从A ,B ,M ,N ,P 这5个点中任取3个点,求这3个点组成直角三角形的概率; (2)在半圆内任取一点S ,求△SAB 的面积大于82的概率.解:(1)从A ,B ,M ,N ,P 这5个点中任取3个点,一共可以组成10个三角形:△ABM ,△ABN ,△ABP ,△AMN ,△AMP ,△ANP ,△BMN ,△BMP ,△BNP ,△MNP ,其中是直角三角形的只有△ABM ,△ABN ,△ABP 3个,所以组成直角三角形的概率为310.(2)连接MP ,取线段MP 的中点D , 则OD ⊥MP ,易求得OD =22,当S 点在线段MP 上时,S △ABS =12×22×8=82,所以只有当S 点落在阴影部分时,△SAB 的面积才能大于82,而S 阴影=S 扇形MOP -S △OMP =12×π2×42-12×42=4π-8, 所以由几何概型的概率公式得△SAB 的面积大于82的概率为4π-88π=π-22π.。

专题四 几何概型及综合

专题四 几何概型及综合【典型例题】(一)、与长度有关的几何概型例1、(1)在长为12cm 的线段AB 方上任取一点M ,并以线段AM为边作正方形,求这个正方形的面积介于36cm 2 与81cm 2之间的概率.(2)在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,求任意画的弦的长度不小于R 的概率。

(1) 如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少?2、已知地铁列车每10 min 一班,在车站停1 min ,则乘客到达站台立即乘上车的概率是( ) A.110 B.19 C.111 D.183、已知集合A {x |-1<x <5},B ={x |x -23-x>0},在集合A 中任取一个元素x ,则事件“x ∈A ∩B ”的概率是________.解析:由题意得A ={x |-1<x <5},B ={x |2<x <3},由几何概型知:在集合A 中任取一个元素x ,则x ∈A ∩B 的概率为P =16.答案:164、 小赵从某车站乘车外出考察,已知该站发往各站的客车均每小时一班,求小赵等车时间不多于10分钟的概率.(二)、与面积有关的几何概型例2、(1)ABCD 为长方形,1,2==BC AB ,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A .4π B.14π- C.8π D.18π-(2)、在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为 。

解析:如图:区域D 表示边长为4的正方形ABCD 的内部(含边界),而区域E 表示单位圆及其内部,因此214416P ππ⨯==⨯。

高一数学几何概型试题答案及解析

高一数学几何概型试题答案及解析1.在区间上随机取一个数,的值介于0到之间的概率为()A.B.C.D.【答案】A【解析】由,可得或,即或,则的值介于到之间的概率为:.故选A.【考点】几何概型的问题.2.甲乙两人各自在300米长的直线形跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是多少().A.B.C.D.【答案】B【解析】由随机事件特点可知,甲乙两人可以在跑道上任何位置,且互不影响.同时考虑到两人距离不超过50米,将跑到建立数轴,且设甲乙两人的坐标为.则,满足几何概型.,,故B【考点】几何概型.3.向如图中所示正方形内随机地投掷飞镖,飞镖落在阴影部分的概率为 ().A.B.C.D.【答案】C【解析】观察这个图可知:阴影部分是一个小三角形,在直线AB的方程为6x-3y-4=0中,令x=1得A(1,),令y=-1得B(,-1).∴三角形ABC的面积为S=AC×BC=×(1+)(1-)=,则飞镖落在阴影部分(三角形ABC的内部)的概率是:P=.故选C.【考点】几何概型.4.在棱长为3的正方体内任取一个点,则这个点到各面的距离大于1的概率为()A.B.C.D.【答案】C【解析】以这个正方体的中心为中心且边长为1的正方体内.这个小正方体的体积为1,大正方体的体积为27,故概率为p=.【考点】几何概型.5.如图,在△AOB中,已知∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,则△AOC为钝角三角形的概率为()A.0.6B.0.4C.0.2D.0.1【答案】B【解析】点C的活动范围在线段OB上,所以D的测度为5,△ACO为钝角三角形包含∠OAC,∠OCA为钝角,△AOC为钝角三角形时,∠ACO为钝角,或∠OAB是钝角.当∠ACO=90°时,如下图由勾股定理可求 OC=1;∠OAB=90°时,由直角三角形中的边角关系可得OC=4,BC=1,综上,所以d的测度为2,故△AOC为钝角三角形的概率等于=0.4,故选B.【考点】几何概型.6.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为1.5 cm的圆,中间有边长为0.5 cm的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为.【答案】【解析】如图,.【考点】几何概型.7.如右图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学例题:与长度有关的几何概型问题
例1.取1根长为3 m 的绳子,拉直后在任意位置剪断,那么剪得的两段长都不小于1 m 的概率有多大?
【思路点拨】从每一个位置剪断绳子,都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,基本事件有有限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与剪断位置所处的绳子的长度有关,符合几何概型的条件。

【答案】13
【解析】如图所示,AB=3 m ,AC=BD=1 m ,设事件M={剪得的两段绳长都不小于l m},则事件M 发生时,剪断位置应位于线段CD 上.∴1()3P M ,即剪得的两段长都不小于1 m 的概率为13.
【总结升华】我们将这个基本事件理解为从某个特定的几何区域上随机地取一点,该区域中的每一点被取得的机会都一样,一个随机事件的发生可理解为恰好取到上述区域内某个指定区域中的点,这样的概率模型就可以用几何概型来求解.
举一反三:
【变式1】一个实验是这样做的,将一条5米长的绳子随机地切断成两条,事件T 表示所切两段绳子都不短于1米的事件,考虑事件T 发生的概率. 【答案】35
【解析】若把距离绳AB 首尾两端1米的点记作M 、N ,则显然事
件T 所对应的基本事件所对应的点在线段MN 上.用线段MN 的长除以线段AB 的长表示事件T 的概率. 所以5
3)( T P .
【变式2】在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4
S 的概率为( ).
A .14
B .1
2
C .34
D .23 【答案】C。

相关文档
最新文档