op放大器电路图设计
运算放大器讲解

运算放大器OP讲解何希见青岛博晶微电子科技有限公司档案号:运算放大器OP讲解1.理想opFigure1a.虚地(v+=v-)、虚短(i+=i-=0)b.差模输入Vid、共模输入Vic。
Vid=V1-V2; Vic=(V1+V2)/2; V1=Vic+Vid/2, V2=Vic-Vid/2;c.输入电阻、输出电阻、输出电容、负载电阻。
输出电阻决定OP的放大倍器和输出极点位置。
d.Sp中定义理想OP的模型.subckt op O P NE1 O 0 P N 100000 MAX=5V MIN=0VRIN P N 10MEG.ends2.op的分类a.按级类分可分为一级或二级或三级,最后一级是输出级。
如果输出级能push和pull电流,则称之为class B op。
如果输出级仅有source或sink电流称之为class A op。
而每一级可分为V-V放大、I-V放大、V-I放大、I-I放大,这4种分类如下图所示:Figure2Figure3b.按输出端分可分为:单端输出和双端差分输出。
c.Av 输出幅度Speed 功耗noise这4种结构线路图如下所示:(1) 套筒式共源共栅运放(2) 折叠式共源共栅运放(3)二级运放(4) 增益提高运放Figure4现简单分析这4种运放:(1)套筒式共源共栅运放(a). Av=gm1.Rout, Rout=Routp||Routn=(gm5*rds5*rds6) || (gm3*rds3*rds1).(b). 它有4个极点,这4个极点从0Hz开始的顺序是:P1=-1/(Rout*CL)为主极点,P2=-gm8/Cgate8,P3=-gm5/Csoure5,P4=-gm3/Csoure3。
在补偿频率相位时只要CL足够大,就会让p2变为GB。
这样相位补偿PM=45度(c). 输出电压range为:V on1+V on3+Vp<Vout<VDD-(V on5+V on6),Vp为m1,m2的source当IDC恒流时的最小电压。
op放大电路设计

op放大电路设计
OP放大电路是电子学中重要的一种电路设计,它可以放大低电平信号、起到信号转换和滤波的功能,广泛应用于诸多电子设备。
此外,它也可以很好地表现出低频模拟信号的反应性能,亦可使用于开关电源等高频电路中。
OP放大电路的设计应重点考虑的因素有:输入阻抗、流过放大电路的信号的放大系数和滤波一起考虑、低频特性及抖动特性;以及在设计时应注意的基本原则和控制参数。
首先,OP放大电路的设计应从输入阻抗入手:输入阻抗要尽可能低,保证被放大信号的电压水平;放大倍数主要由输入阻抗与负载电阻之间的比值决定,负载电阻太高,输入电流也会较大,因此放大倍数也相应地减小。
其次,OP放大电路的放大系数和滤波也应考虑:放大系数指的是放大电路能够放大输入信号的倍数,而滤波要考虑其频率、增益、均衡以及动态范围等;最后,OP放大电路的低频特性及抖动特性也应考虑:低频特性涉及到放大器的增益带宽比、死区响应、抗衰减和门控电路;抖动特性则主要由放大器的抗抖动能力决定。
此外,在设计OP放大电路时也有一些基本原则及控制参数诸如电源电压、负载、信噪比、通道数量等,这些基本原则及控制参数也必须予以重视:电源电压要保证足够的功率输出;负载要尽可能让电路的放大系数尽可能高;信噪比要尽可能高;通道数量要满足设计需求。
OP放大电路设计具有一定的复杂性,但通过正确地掌握基本原
理,以及重视相关特性及参数,就能够设计出可靠性、效率高、稳定性良好的OP放大电路。
常用运算放大器电路 (全集)

常用运算放大器电路(全集)下面是[常用运算放大器电路(全集)]的电路图常用OP电路类型如下:1. Inverter Amp. 反相位放大电路:放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。
R3 = R4 提供1 / 2 电源偏压C3 为电源去耦合滤波C1, C2 输入及输出端隔直流此时输出端信号相位与输入端相反2. Non-inverter Amp. 同相位放大电路:放大倍数为Av=R2 / R1R3 = R4提供1 / 2电源偏压C1, C2, C3 为隔直流此时输出端信号相位与输入端相同3. Voltage follower 缓冲放大电路:O/P输出端电位与I/P输入端电位相同单双电源皆可工作4. Comparator比较器电路:I/P 电压高于Ref时O/P输出端为Logic低电位I/P 电压低于Ref时O/P输出端为Logic高电位R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M)单双电源皆可工作5. Square-wave oscillator 方块波震荡电路:R2 = R3 = R4 = 100 KR1 = 100 K, C1 = 0.01 uFFreq = 1 /(2π* R1 * C1)6. Pulse generator脉波产生器电路:R2 = R3 = R4 = 100 KR1 = 30 K, C1 = 0.01 uF, R5 = 150 KO/P输出端On Cycle = 1 /(2π* R5 * C1)O/P输出端Off Cycle =1 /(2π* R1 * C1)7. Active low-pass filter 主动低通滤波器电路:R1 = R2 = 16 KR3 = R4 = 100 KC1 = C2 = 0.01 uF放大倍数Av = R4 / (R3+R4)Freq = 1 KHz8. Active band-pass filter 主动带通滤波器电路:R7 = R8 = 100 K, C3 = 10 uFR1 = R2 = 390 K, C1 = C2 = 0.01 uFR3 = 620, R4 = 620KFreq = 1 KHz, Q=259. High-pass filter 高通滤波器电路:C1 = 2*C2 = 0.02 uF, C2 = 0.01 uFR1 = R2 = 110 K6 dB Low-cut Freq = 100 Hz10. Adj. Q-notch filter 频宽可调型滤波器电路:R1 = R2 = 2 * R3C1 = C2 = C3 / 2Freq = 1 /(2π* R1 * C1)VR1调整负回授量, 越大则Q值越低。
运算放大器原理图

运算放大器原理图运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子元件,它在电子电路中起着非常重要的作用。
本文将介绍运算放大器的原理图及其工作原理。
首先,让我们来了解一下运算放大器的基本结构。
运算放大器通常由一个差分输入级、一个级联放大器和一个输出级组成。
差分输入级通常由两个输入端和一个差分放大器组成,级联放大器由多个级联的放大器组成,输出级则是一个输出放大器。
运算放大器的电路图如下所示:(插入运算放大器原理图)。
在实际应用中,运算放大器通常用来放大电压信号、求和、差分运算、积分、微分等。
运算放大器具有高输入阻抗、低输出阻抗、大增益、宽带宽等特点,可以实现很多复杂的电路功能。
运算放大器的工作原理是基于反馈原理的。
在运算放大器的反馈电路中,通过外部连接的电阻、电容等元件,将部分输出信号反馈到输入端,从而实现对输出信号的控制。
通过控制反馈电路的参数,可以实现对运算放大器的增益、频率特性等进行调节。
另外,运算放大器还有一些常见的特性,比如输入偏置电流、输入偏置电压、共模抑制比、噪声等。
这些特性对于运算放大器的实际应用有着重要的影响,需要在设计电路时进行充分考虑。
在实际应用中,运算放大器广泛应用于模拟电路、数字电路、信号处理、自动控制等领域。
比如,运算放大器可以用来设计滤波器、比较器、振荡器、放大器等电路,也可以用来实现信号的调理、放大、滤波、整形等功能。
总的来说,运算放大器是一种非常重要的电子元件,它在电子电路中有着广泛的应用。
通过对运算放大器的原理图及其工作原理的了解,可以更好地应用运算放大器设计各种电路,实现各种功能。
希望本文对读者有所帮助,谢谢阅读!。
运放最大值电路

运放最大值电路1.引言1.1 概述运放(Operational Amplifier,简称Op Amp)是电子电路中常见的一种高增益放大器,具有宽带、高增益和低输入阻抗等优点。
它由一个差分放大器和一个输出级组成,可以用于信号放大、滤波、求反、积分、微分等各种运算和功能。
运放最大值电路是一种常用的电路设计,用于获取信号波形中的最大值或幅值。
在许多应用中,我们需要监测信号的峰值,以便进行相应的控制或分析。
例如,在音频设备中,我们需要确定音频信号的最大音量,以便调整音量控制电路。
设计一个运放最大值电路的关键是选择合适的电阻和电容值,以及运放的配置。
一般情况下,我们会使用一个带有负反馈的比较器电路来实现最大值检测。
这种电路通过比较输入信号和参考电压(通常是一个固定电压)来产生输出信号,实现对输入信号最大值的检测。
运放最大值电路的设计要点包括:确定参考电压的大小、选择合适的运放工作模式、确定输入和输出电阻的值、选择合适的电源电压和工作温度等。
这些要点在实际应用中往往需要根据具体的设计要求和电路特性进行调整和优化。
综上所述,运放最大值电路是一种用于获取信号波形最大值的常用电路设计。
通过合理选择电阻、电容和运放配置,可以实现对输入信号最大值的检测和分析,为实际应用提供了便利和可能性。
在未来的研究中,我们可以进一步探索运放最大值电路的应用领域和提高设计性能的方法。
1.2文章结构文章结构部分的内容可以包括以下内容:文章结构部分旨在介绍本篇文章的整体架构和各个部分的内容安排,以帮助读者更好地理解文章的结构和主题。
本文分为引言、正文和结论三个部分。
引言部分介绍了文章的背景和意义,对运放最大值电路的重要性进行了概述,并明确了本文的目的。
引言部分的内容将引起读者对本文主题的兴趣,为后续内容的阐述奠定基础。
正文部分是本文的主体部分,分为两个小节。
2.1节将详细介绍运放的基本原理,包括其定义、结构和工作原理,以便读者对运放的基本概念有一个全面的了解。
OP运放

自从30年前美国FSC公司生产出世界第一只运算放大器(下文简称运放或OP)µA702以来,运放在模拟电子世界有着极其广泛的运用,对信号进行放大、比较、调制、解调、有源滤波和多种模拟运算等等。
世界上各大生产家的新产品品种与日俱增,按其应用可分为六大系列。
一、OP的主要参数了解、认识、掌握OP“家族”成员,恰当选用它们,无疑对电子产品开发、电子设备的技术改造,电子电路的工程设计,电子产品的维护保养都是大有助益的。
弄清OP的电气特性,并能正确测试诸多参数是准确选择OP、正确使用OP的前提。
下面扼要介绍OP的重要电气参数的概念和测试电路(图1)。
图1中的电气特性是以NJMOP07样品在电源电压±15V,环境温度25ºC时测得的。
(1)输人失调(或偏移)电压VIO是指:无信号时±输入端间的电压;(2)输入失调(或偏移)电流IIO是OP输出为0V时正负输入端流入(或流出)的电流之差(亦即偏流之差);(3)输入偏流IB:是±输入端子流入(或流出)的电流;(4)开路输出电阻Ro:是OP输出电路晶体管等效集电极电阻;(5)输入差模电阻RID:是表示输人端子内的等效电阻,通常是对交流而言;(6)输入共模电阻RIC:是对电压跟随使用时(共模输入)输入端的等效电阻;(7)同相输人电压VICM:是不损坏OP工作机能的同相输人电压的最大值,正负两个方向定义;(8)共模信号抑制比CMRR:在两差动输入端加人同相信号,产生的输出信号与输入信号之比。
这个比值说明电路不平衡的状况;(9)电源电压抑制比PSRR:表示电源电压在单位电压变化时输入失调电压的变化量;(10)电压增增益VV:OP在开环时直流电压的放大倍数;(11)最大输出电压VOM:在不饱和的状态范围内与输人成比例变化的最大输出电压;(12)转换速度SR:是指输出电压波形跟随输入电压变化程度—即输出电压上升的速度(通常用脉冲前沿响应来描述);(13)fT:开环增益等于1时的信号频率;(14)消耗电流ICC:流过OP电源端的电流;(15)输入换算噪声电流INI:规定1/f噪声在0.1~10Hz 频率范围的峰-峰值;(16)输入换算噪声电压Vn:是用一定频率的噪声电压密度表示的。
运算放大器

运算放大器(英语:Operational Amplifier,简称OP、OPA、OPAMP、运放)是一种直流耦合,差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,减法等模擬运算电路中,因而得名。
通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。
原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。
但是这并不代表运算放大器不能连接成正反馈(positive feedback)组态,相反地,在很多需要产生震荡信号的系统中,正反馈组态的运算放大器是很常见的组成元件。
运算放大器有许多的规格参数,例如:低频增益、单位增益频率(unity-gain frequency)、相位边限(phase margin)、功耗、输出摆幅、共模抑制比(common-mode rejection ratio)、电源抑制比(PSRR,power-supply rejection ratio)、共模输入范围(input common mode range)、电压摆动率(slew rate)、输入偏移电压(input offset voltage,又译:失调电压)、还有噪声等。
目前运算放大器广泛应用于家电,工业以及科学仪器领域。
一般用途的集成电路运算放大器售价不到一美元,而现在运算放大器的设计已经非常可靠,输出端可以直接短路到系统的接地端(ground)而不至于被短路电流(short-circuit current)破坏。
目录[隐藏]∙ 1 运算放大器的历史∙ 2 运算放大器的基础o 2.1 电路符号o 2.2 理想运算放大器的操作原理▪ 2.2.1 开回路组态▪ 2.2.2 负反馈组态▪ 2.2.2.1 反相闭回路放大器▪ 2.2.2.2 非反相闭回路放大器▪ 2.2.3 正反馈组态∙ 3 实际运算放大器的局限o 3.1 直流的非理想问题▪ 3.1.1 有限的开回路增益▪ 3.1.2 有限的输入阻抗▪ 3.1.3 大于零的输出阻抗▪ 3.1.4 大于零的输入偏压电流▪ 3.1.5 大于零的共模增益o 3.2 交流的非理想问题o 3.3 非线性的问题o 3.4 功率损耗的考量∙ 4 在电路设计中的应用∙ 5 直流特性∙ 6 交流特性∙7 运算放大器的应用∙8 741运算放大器的内部结构o8.1 电流镜与偏压电路o8.2 差分输入级o8.3 增益级o8.4 输出级∙9 CMOS运算放大器的内部结构∙10 其他应用∙11 参见∙12 参考资料与附注∙13 外部链接[编辑]运算放大器的历史第一个使用真空管设计的放大器大约在1930年前后完成,这个放大器可以执行加与减的工作。
电荷放大电路

75
在大功率 MOS~区司器中 E 使用需窑 11'1负载强的 OP DlZ大器
143
Is
j 吁:
FET
( a) 平面绝缘型放射线传感器
图 8.
19
放射线传感器的构成[(株)
CRaytech) J
极电流为 C9V-L
SV) 6. 8kn=o. 7mAo
这时,由于 FET 的跨导 gm 约为 lOmS( 毫四 CI丁子 J) ,
应用于能量分析。
电荷放大器增益取决于反馈电容 Cf ,大约为 1pF 左右的小电
容,所以必须使用温度补偿型的陶瓷电容。 CH 型 (60ppm!"C) 或
CG 型 (30ppm!"C) 也可以使用。
图 8.17(b) 给出了用。p 放大器制作的电荷放大器。为了使
OP 放大器不饱和(没有乱,就不能成为积分电路,输出就变为饱
和) ,直流电平稳定,使用反馈电阻 R f 是必要的。还有,乱和 Cf
取决于低频截止频率 fCH:
输出
(a) 基本电路
(b) 使用 OP放大器的实用电路
回 8.17
基本的电荷放大电路
142
第 8章
OP 放大器胆大电自由应用技 E
川H
二一一→十一
2π.
1 Cr •
Rt
(8.+ )
例如,根据式 (8.
即输入噪声电压也增大 2000 倍。所以,
使用低噪声的 FEL
C l6
Cl'
C 1X
C 1,
图 8. 18
检测放射线的积分电路
FET 的栅极电流(相当于 OP 放大器的输入偏置电流)越小,
反馈电阻 Rr 值就设得越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。
由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。
OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。
特点:
超低偏移:150μV最大。
低输入偏置电流:1.8nA。
低失调电压漂移:0.5μV/℃。
超稳定,时间:2μV/month最大
高电源电压范围:±3V至±22V
图1OP07外型图片
图2OP07管脚图
OP07芯片功能说明:
1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚6为输出,7接电源+
图3OP07内部电路图
ABSOLUTEMAXIMUMRATINGS最大额定值
Sym Parameter参数Value数Unit单
bol
符
号
值位
VCC SupplyVoltage电源电压±22V
Vid DifferentialInputVoltage差分输入电压±30V
Vi InputVoltage输入电压±22V Top
er OperatingTemperature工作温度
-40to+1
05
℃
Tst
g StorageTemperature贮藏温度
-65to+1
50
℃
电气特性
虚拟通道连接=±15V,Tamb=25℃(除非另有说明)
Sym
bol
符号Parameter参数及测试条件最小
典
型
最
大
Uni
t单
位
Vio
InputOffsetVoltage输入失调电压
0℃≤Tamb≤+70℃-
60
1
5
2
5
μV
0 LongTermInputOffsetVoltageStability-
(note1)长期输入偏置电压的稳定性-
0.
4
2
μV
/Mo
DVi o InputOffsetVoltageDrift输入失调电压
漂移
-
0.
5
1
.
8
μV
/℃
Iio
InputOffsetCurrent输入失调电流
0℃≤Tamb≤+70℃-
0.
8
6
8
nA
DIi o InputOffsetCurrentDrift输入失调电流
漂移
-15
5
pA/
℃
Iib
InputBiasCurrent输入偏置电流
0℃≤Tamb≤+70℃-
1.
8
7
9
nA
DIi b InputBiasCurrentDrift输入偏置电流漂
移
-15
5
pA/
℃
Ro OpenLoopOutputResistance开环输出电阻-60-ΩRid
DifferentialInputResistance差分输入
电阻
-33-MΩ
Ric
CommonModeInputResistance共模输入电
阻-
12
-GΩ
Vic InputCommonModeVoltageRange输入共模±13±-V
m电压范围0℃≤Tamb≤+70℃±1313
.5
CMR
CommonModeRejectionRatio(Vi=Vicmmin)
共模抑制比0℃≤Tamb≤+70℃100 9
7
12
0-dB
SVR SupplyVoltageRejectionRatio电源电压
抑制比
(VCC=±3to±18V)0℃≤Tamb≤+70℃
90 86
10
4-dB
Avd LargeSignalV
oltageGain
大信号电压增
益
VCC=±15,RL=2KΩ,VO=±
10V,
120
40
-
V/m
V
0℃≤Tamb≤+105℃100-
VCC=±3V,RL=500W,VO=±
0.5V
100
40
-
Vop p OutputVoltag
eSwing输出
电压摆幅
RL=10KΩ±12
±
13
-V
RL=2kΩ
±11
.5
±
12
.8
RL=1KΩ
±
12
0℃≤Tamb≤+70℃RL=2K
Ω
±11-
SR SlewRate转换率(RL=2KΩ,CL=100pF)-
0.
17-
V/
μS
GBP
GainBandwidthProduct带宽增益
(RL=2KΩ,CL=100pF,f=100kHz)-
0.
5
-MHz
Icc
SupplyCurrent-(noload)电源电流(无负
载)0℃≤Tamb≤+70℃VCC=±3V -
2.
70
.6
7
5
6
1
.
3
mA
en EquivalentIn
putNoiseVolt
age等效输入
噪声电压
f=10Hz-11
2
nV
√H
z
f=100Hz-
10
.5
1
3
.
5
f=1kHz-10
1
1
.
5
in EquivalentIn
putNoiseCurr
ent等效输入
噪声电流
f=10Hz-
0.
3
.
9PA
√H
z
f=100Hz-
0.
2
.
3
f=1kHz-0.0
1.
2
图4输入失调电压调零电路
应用电路图:
图5典型的偏置电压试验电路
图6老化电路
图7典型的低频噪声放大电路
图8高速综合放大器
图9选择偏移零电路
图10调整精度放大器
图11高稳定性的热电偶放大器
图12精密绝对值电路。