船舶动力装置课程设计轴系计算说明书
船舶动力装置课程设计

船舶动力装置课程设计一、课程目标知识目标:1. 让学生掌握船舶动力装置的基本概念、分类及其工作原理;2. 使学生了解船舶动力装置的组成部分,包括主机、辅机、传动装置等;3. 帮助学生理解船舶动力装置的性能指标及其对船舶性能的影响。
技能目标:1. 培养学生运用所学知识分析船舶动力装置的优缺点,并能够提出改进措施;2. 培养学生具备船舶动力装置操作、维护及故障排除的基本能力;3. 提高学生的团队协作和沟通能力,能够就船舶动力装置相关技术问题进行讨论和交流。
情感态度价值观目标:1. 激发学生对船舶动力装置的兴趣,培养其探索精神和创新意识;2. 培养学生热爱航海事业,树立正确的职业观念;3. 培养学生关注能源、环保等问题,提高其社会责任感和使命感。
分析课程性质、学生特点和教学要求:本课程为船舶工程专业核心课程,具有较强的理论性和实践性。
学生为高中毕业生,具备一定的物理和数学基础,但对船舶动力装置的了解较少。
教学要求注重理论联系实际,强调实践操作能力的培养。
根据以上分析,将课程目标分解为以下具体学习成果:1. 学生能够准确描述船舶动力装置的基本概念、分类和工作原理;2. 学生能够列出船舶动力装置的主要组成部分,并解释其作用;3. 学生能够分析船舶动力装置的性能指标,并评价其对船舶性能的影响;4. 学生能够针对特定船舶动力装置,提出改进措施,并进行操作、维护和故障排除;5. 学生能够积极参与团队讨论,就船舶动力装置相关技术问题进行有效沟通;6. 学生能够关注船舶动力装置的能源、环保问题,并提出自己的见解。
二、教学内容根据课程目标,教学内容分为以下五个部分:1. 船舶动力装置概述- 教材章节:第一章 船舶动力装置概述- 内容:动力装置的概念、分类、发展历程及其在船舶中的作用。
2. 船舶动力装置的组成部分- 教材章节:第二章 船舶动力装置的组成部分- 内容:主机、辅机、传动装置、推进装置、控制系统等组成部分的结构、原理及功能。
(完整版)船舶动力装置轴系设计计算

轴系强度计算在推进装置中,从主机(机组)的输出法兰到推进器之间以传动轴为主的整套设备称为轴系。
轴系的基本任务是:连接主机(机组)与螺旋桨,将主机发出的功率传递给螺旋桨,同时又将螺旋桨所产生的推力通过推力轴承传给船体,以实现推进船舶的使命。
当机舱位置确定,主机布置好后,即可考虑轴系设计和布置。
4.1轴系的布置4.1.1 传动轴的组成和基本轴径传动轴一般由螺旋桨轴(尾轴)、中间轴和推力轴,以及将它们相连接的联轴器所组成。
本船因其推力轴承已放置在减速齿轮箱中,所以不设推力轴。
而且本船螺旋桨轴不分段制造,最后本船传动轴组成设计成1根中间轴和1根螺旋桨轴。
轴的基本直径d(mm)应不小于按下式计算的值(考虑到标准化的要求,各轴轴径一般取不小于计算值的整数)d=(4.1)100=100=191.88C mmC=1.0——中间轴的直轴部分,d=mm,取200mm作为设计尺寸。
191.88C=1.27——对于油润滑的且具有认可型油封装置的,或装有连续轴套(或轴承之间包有适当保护层)的具有键的螺旋桨轴d=⨯=243.69mm,设计时取250mm。
191.88 1.27C=1.05——尾尖舱隔舱壁前的尾轴或螺旋桨轴的直径可按圆锥减小,但在联轴器法兰处的最小直径应不小于C=1.05计算所得的值。
d=⨯=201.47mm,即螺旋桨轴在联轴器法兰处的最小191.88 1.05直径应不小于201.47mm。
4.1.2 轴系布置的要求传动轴位于水线以下,工作条件比较恶劣,在其运转时,还将受到螺旋桨所产生的阻力矩和推力的作用,使传动轴产生扭转应力和压缩应力;轴系本身重量使其产生的弯曲应力;轴系的安装误差、船体变形、轴系振动以及螺旋桨的水动力等所产生的附加应力等。
上述诸力和力矩,往往还是周期变化的,在某些时候表现更为突出,例如船舶在紧急停车、颠繁倒车或转弯,或是在大风大浪中受到剧烈纵摇或横摇时,使传动轴所受负荷更大,有时甚至使它产生发热或损坏。
船舶动力装置设计

螺旋桨无键连接安装工艺研究船舶在运行中,轴系起着传递主机功率和螺旋桨推力的作用,因此对轴系的设计有许多特殊的要求。
其中,对螺旋桨与螺旋桨轴之间的连接,主要有以下要求:1、工作可靠和较长的使用寿命;2、制造、安装方便;3、密封良好,以免海水对螺旋桨轴的腐蚀。
基于以上三点,传统的螺旋桨与轴之间的有键连接形式已经难以满足要求,特别是对于大型船舶的轴系。
有键连接不仅加工工艺复杂,而且拆装十分困难。
尤其键槽很容易被海水腐蚀,从而影响使用寿命。
螺旋桨无键连接(keyless propeller)是不借助于键,而是借助于用过盈或黏接方法将螺旋桨装配在螺旋桨轴配合锥面上的安装方式。
它依靠螺旋桨与螺旋桨轴的锥体结合面间足够大的过盈配合而产生的摩擦力来传递扭矩。
与传统有键螺旋桨相比较,无键连接有以下明显优点:1、制造工艺简单。
2、扭矩传递过程应力分布均匀,安装过程数据化、图表化。
3、配合紧密,使用寿命长,安装拆卸过程方便可逆。
现在,国内外远洋船舶一般采用液压无键连接的方式。
这种连接形式,主要是通过液压压力,使螺旋桨锥孔在材料弹性形变范围内,内径扩大,同时利用液压螺母的轴向压力将螺旋桨定量推入,使桨与轴的配合锥面紧紧贴合,当轴向推入到位径向液压压力释放后,螺旋桨与轴形成过盈配合,桨与轴便可靠地连接在一起。
液压无键连接具有以下优点:1、安装工艺简便,施工快捷;2、拆卸时,不会造成损坏,有利于再次使用;3、压入量可控,安装质量高;4、结构简单,机械加工方便,精度便于控制;5、避免了因开槽对螺旋桨轴产生的强度影响。
螺旋桨无键连接安装工艺主要分为以下几个步骤:1、压入准备将螺旋桨,螺旋桨接触表面,油槽及油孔清洁吹洗干净,并涂上一层液压油;将密封装置及“O”形垫圈先套进螺旋桨轴;将螺旋桨轴吊上并套在螺旋桨轴上,要求桨嗀与轴锥部的实际接触面积应不小于理论接触面积的70%,且大端接触情况较小端硬,并使位置标记对齐;旋上液压螺母;将液压油注入手动液压泵组的油箱内,至油面计上部;将一只千分表支架置于隔舱壁前的螺旋桨轴上,千分表触头与尾轴端面接触,以此来监视在压装螺旋桨的过程中,螺旋桨是否移动;另两只千分表支架分别置于螺旋桨轴锥体大端附近,与轴中心线对称安装,千分表触头与螺旋桨端面接触,以此测量螺旋桨的压入距离。
轴系

• 轴线及轴段长度的确定
轴线是一根线段, 它的长度与位置决定于两个 轴线是一根线段 , 端点。前端点为主机(或推进机组) 端点。前端点为主机(或推进机组)的输出法兰 中心,后端点为螺旋桨的桨毂中心。 中心,后端点为螺旋桨的桨毂中心。 在轴线总长度确定之后, 在轴线总长度确定之后,统筹考虑船体尾部线型 和结构、隔舱壁位置、各轴承负荷情况、 和结构、隔舱壁位置、各轴承负荷情况、工厂的 加工能力以及轴系在机舱内的装拆要求等因素, 加工能力以及轴系在机舱内的装拆要求等因素, 决定螺旋桨轴、 决定螺旋桨轴、中间轴等传动轴的配置及各轴段 长度。 长度。
• 二、轴线最好布置成与船体基线平行 当推进机组位置较高, 而船舶吃水较浅时, 当推进机组位置较高 , 而船舶吃水较浅时 , 为 了保证螺旋桨的浸没深度, 了保证螺旋桨的浸没深度,不得不使轴线向尾部 倾斜一定角度。 倾斜一定角度。轴线与基线的夹角称为倾角。有 些双轴系和多轴系的船舶, 些双轴系和多轴系的船舶,为了保证螺旋桨叶的 边缘离船壳外板有一定的间隙, 边缘离船壳外板有一定的间隙,或出于机桨布置 的需要, 的需要,允许轴线在水平投影面上不与纵舯剖面 平行,向外或向内倾斜,形成夹角,称为偏角。 平行,向外或向内倾斜,形成夹角,称为偏角。 当轴线出现倾角和偏角时, 当轴线出现倾角和偏角时 , 将使螺旋桨的推力 受到损失,因此必须对倾角和偏角加以控制。 受到损失,因此必须对倾角和偏角加以控制。 一般将倾角控制在0 之内, 一般将倾角控制在 0° ~ 5° 之内 , 高速快艇轴 线的倾角可放大到12 12° 16° 线的倾角可放大到 12° ~ 16° ; 偏角则控制在 0°~3°之内。 之内。
• 三、主机应尽量靠近机舱后舱壁布置,以缩短轴 线长度。 • 四、应考虑主机左、右、前、底与上部空间是否 满足船舶规范,另外还需要考虑拆装与维修要求 以及吊缸的高度是否足够等因素。比如高度方向, 一般应使主机的油底壳不碰到船的双层底或肋骨, 并使它们之间留有向隙,还应留出油底壳放油所 需的操作高度。
船舶说明书

1.总则1.1 本船轮机部分技术设计按23800DWT货船设计任务书要求,并满足法国船级社(BV)《钢质船舶入级规范》有关要求以及其他有关国际航行船舶的政府规定。
1.2 本船推进装置型式为单机单桨,主机为低速二冲程柴油机经中间轴和尾轴直接传动螺旋桨。
1.3 本船主要装载煤炭等大宗杂货。
1.4本船各机械设备及管系附件均按中国工业标准(如GB、CB、JB、YB等)制造,但进口设备附带的附件及管系等按制造厂标准。
1.5各机械设备的备品供应按船级社规范和船东要求配置。
1.主要设备的配置2.1 主机 1台型号:MAN-B&W 7S35MC型式:二冲程,单作用涡轮增压,直流扫气,十字头式,可直接换向船用柴油机缸数:6缸径/行程:350/1400mm最大持续功率(MCR):5180kW转速:173r/min燃油消耗率:178g/kW·h+5%起动方式:压缩空气(最大压力2.94MPa)2.2主柴油发电机组 3组机组型号:CCFJ465J2.2.1 柴油机型号:MAN-B&W 5L16/24型式:直列,四冲程,直接喷射增压中冷船用柴油机缸数:5缸径/行程:160/240mm额定转速:1200r/min燃油消耗率: 189g/kW·h起动方式:压缩空气冷却方式:水冷2.2.2 发电机型号:1FC6 454-6型式:船用三相交流同步发电机额定功率:465kW额定转速:1200r/min电压:450V频率:60Hz2.3 应急柴油发电机组 1组机组型号:CCFJ120Y-W6额定功率:120kW电压:450V频率:60Hz2.4 燃油/废气组合锅炉型号:LZY0.8/140-0.7蒸汽压力:0.7Mpa蒸发量:燃油部分:~800kg/h废气部分:~650 kg/h注:2台锅炉给水泵由锅炉厂配套供应3 轴系3.1本船主机为刚性固定,采用环氧树脂垫块进行安装。
轴系中心线平行于基线,距基线高2600mm。
船舶动力装置课程设计说明书

《船舶动力装置原理与设计》说明书设计题目:民用船舶推进轴系设计设计者:陈瑞爽班级:轮机1302班华中科技大学船舶与海洋工程学院2015年7月一.设计目的主机与传动设备、轴系和推进器以及附属系统,构成船舶推进装置。
因此,推进装置是动力装置的主体,其技术性能直接代表动力装置的特点。
推进装置的设计包括轴系布置、结构设计、强度校核以及传动附件的设计与选型等,而尾轴管装置的作用是支承尾轴及螺旋浆轴,不使舷外水漏人船内,也不能使尾轴管中的润滑油外泄,因此,尾轴管在推进系统设计中意义重大。
本设计是根据指导老师给出的条件,对船舶动力装置进行设计,既是对课程更深入的理解,也是对自身专业能力的锻炼。
二,设计详述2.1:布置设计本船为单机单桨。
主机经减速齿轮箱减速后将扭矩通过中间短轴传给螺旋桨轴和螺旋桨。
本计算是按《钢质海船入级规范》(2006年)(简称《海规》)进行。
因此,我们将轴系布置在船舶纵中剖面上,其中,轴的总长为9000mm,轴系布置草图及相关尺寸,见图1。
图12.2:轴系计算(一):已知条件:1.主机:型号:8PC2-6型式:四冲程,直列,不可逆转,涡轮增压,空冷船用柴油机缸数:8缸径/行程:400/460mm最大功率(MCR):4400kW×520rpm持续服务功率:3960kW×520rpm燃油消耗率:186g/kW·h+5%滑油消耗率:1.4g/kW·h起动方式:压缩空气3~1.2MPa生产厂:陕西柴油机厂2.齿轮箱:型号300,减速比3:1。
3.轴:材料35#钢,抗拉强度530MPa,屈服强度315MPa。
4.键:材料45#钢,抗拉强度600MPa,屈服强度355MPa。
5.螺栓:材料35#钢,抗拉强度530MPa,屈服强度315MPa(二):轴直径的确定根据已知条件和“海规”,我们可以计算出轴的相关数据,计算列表见表3.1:表3.1轴直径计算考虑到航行余量,轴径应在计算的基础上增大10%。
船舶动力装置设计课程设计指导书

船舶动力装置课程设计指导书周家章编大连水产学院机械工程学院2006年9月一、目的《船舶动力装置课程设计》是热动专业学生开设的专业必修课。
轴系强度的设计计算等,应是从事船舶动力装置专业人员的基本技能。
本课程的目的就是要让热动专业的学生在较短的时间内熟练掌握这些基本的设计计算,并与计算机编程结合起来,编制出正确的船舶轴系相关尺寸设计程序,为将来走入社会、参加生产实际与科研活动打下基础。
二、题目与内容1.轴的基本直径计算(1)轴的基本直径d 就不小于下式计算值:3160560⎪⎪⎭⎫ ⎝⎛+⋅⋅=b een PC F d σ mm (1)式中: d ——轴的基本直径(mm );F ——推进装置型式系数;F =95,适用于涡轮推进装置、具有滑动型联轴节的柴油机推进装置和电力推进装置,F =100,适用于所有其它型式的柴油机推进装置。
P e ——轴传递的额定功率,(kW ); n e ——轴的额定转速,(r/min );σb ——轴材料的抗强度,对于中间轴,若>800 N/mm 2时取800 N/mm 2,对于螺旋桨轴和尾管轴,若>600 N/mm 2时取600 N/mm 2;C ——设计特性系数,见表1。
(2)中空轴直径修正如果空心轴的实际孔径d 0大于0.4d 时,需按下式进行修正:340)(11ac d d dd -= mm (2) 式中d c ――修正后轴的直径,mm ;d 0――轴的实际孔径,mm ;d ――按照(1)式计算的轴直径,mm ; d a ――轴的实际外径,mm 。
2.冰区加强船舶的冰区加强附加入级符号分为若干级别,CCS 划分如下: Ice Class B1* 最严重冰况 Ice Class B1 严重冰况 Ice Class B2 中等冰况 Ice Class B3 轻度冰况 Ice Class B 除大块固定冰以外的漂流浮冰的冰况以上除Ice Class B 冰级外,其余各冰级均需对轴系尺寸有所修正。
船舶动力装置原理与设计_第1章

Tips:汽轮机推进装置主要采用的是汽轮机+减速齿轮箱+定距桨的形式;少数采 用汽轮机电力传动形式。
2019年3月30日星期六
17
燃气轮机推进动力装置
• • • • • 优点: a. 重量尺寸小; b. 操纵方便,备车迅速; c. 自巡航到全速工况加速迅速; d. 具有多机组并车的可靠性; • 缺点: • a. 必须配备不同燃料及相应的 管路及贮存设备; • b. 主减速器的小齿轮数目多, 结构复杂; • c. 在减速器周围布置有难度。
• e. 管理与检修费较低。
• 潜艇蓄电池也是一种电力推进装置
2019年3月30日星期六
26
目前舰艇电力推进装置的发展动向
• 以交流(交流发电机和交流电动机)电力推进装置取代 直流(直流发电机和直流电动机)电力推进和交直流 (交流整流发电机和直流电动机)电力推进装置
– 交流电力推进装置具有极限功率大,效率高和可靠性好的优点, 根据推进电机的类型,可分为异步电动机和同步电动机交流推 进装置;而根据电流交换器的结构形式不同分为晶闸管变频交 流电力推进装置、电力晶体管和可关断晶闸管交流电力推进装 置. – 是以超导电机(超导发电机和超导电动机)为功率元件的电力 推进装置,与普通电力推进相比,具有重量轻、体积小、效率 高、噪声低的特点。由于超导材料必须工作在相应的临界温度 以下,要有一套复杂的液氮设备,所以在一定程度上制约了它 的广泛应用。近年来,随着低温技术的迅速发展,特别是低温 技术的小型化,为超导电力推进在舰艇上的应用提供了良好的 条件。。
2019年3月30日星期六
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华中科技大学船舶与海洋工程学院
轮机工程专业
民用船舶动力装置
课程设计
轴系计算说明书
一、轴系计算
(一)、概述
本船为内河船,设单机单桨。
主机经减速齿轮箱减速后将扭矩通过中间短轴传给螺旋桨轴和螺旋桨。
考虑到长江水质较差,泥沙较多,若采用水润滑,则污物可能进入艉轴装置造成堵塞,故润滑方式采用油润滑。
本计算按《CCS钢质内河船舶建造规范》(2009年)(简称《钢内规》)进行。
(二)、已知条件
(三)、轴直径的确定
根据《钢内规》8.2.2进行计算,计算列表4.1如下:
表4.1轴直径计算
根据计算结果,取螺旋桨轴直径为 350 mm,中间轴直径为 280 mm。
二、强度校核
1.尾轴强度验算
轴设计过程中艉轴承、密封装置、联轴节的选型如下:
a.艉轴轴承选自东台市有铭船舶配件厂,规格如下:
b.油润滑艉轴密封装置选自东台市有铭船舶配件厂,规格如下:
c.联轴节采用船厂自制。
尾轴危险段面的确定根据图4-1计算如下:
图4-1尾轴管结构简图
(1)相关尺寸确定
已知L
=880mm,L b=440mm,R=350mm
a
螺旋桨轴尾部锥长l
=(1.6~3.3)R=2.2*R=780mm,
z
对于白合金轴承,支撑点到后端面的距离u=0.5L=0.5*880=440mm。
而后密封装置的长度为215mm,再加上适当间距约为60mm,则:
螺旋桨轴尾部锥面中心至后轴承中心距离a为:
a=780/2+440+215+60=1105mm
螺旋桨轴尾部锥面后端面至后轴承中心距离b为:
b=1105+780/2=1495mm
由布置总图得后轴承的后端面距前轴承中心约为4739mm,则:
前后轴承支撑点距离l为:
l=4739-440=4299mm
因为后轴承后端面距齿轮箱有约7130mm,考虑到齿轮箱的周和联轴节等,法兰端面到前轴承支撑点距离为:
d=7130-4299-440-769=2391mm
因为联轴节长845mm ,则法兰重心到前轴承支撑点距离为: c=2391-845=1546mm
(2)双支承轴承负荷计算: a .后轴承压力
= 15873.21 N
式中:g —9.81N/kg 1—前后轴承支撑点距离,4.299m
a---螺旋桨中心至后轴承中心距离,1.105m b —桨毂后端面到后轴承支撑点距离,1.495m c —法兰重心到前轴承支撑点距离,1.546m
d —法兰端面到前轴承支撑点距离,2.391m G 0—法兰重量,1180kg
Q B —螺旋桨及附件重量,4079.51kg
q c —轴本身重量产生的均布负荷 ,q c
=0.00622c d =0.0062×3502=759.5kg/m
b .前轴承总压力
⎥⎦⎤⎢⎣⎡--+++=l a Q l 2b q l c)(l G l 2d l q g B 2c 02
c
)(B R = 4596.65 N 式中:g —9.81N/kg 1—前后轴承支撑点距离,4.299m
a---螺旋桨中心至后轴承中心距离,1.105m b —桨毂后端面到后轴承支撑点距离,1.495m c —法兰重心到前轴承支撑点距离,1.546m
d —法兰端面到前轴承支撑点距离,2.391m G 0—法兰重量,1180kg
Q B —螺旋桨及附件重量,4079.51kg
q c —轴本身重量产生的均布负荷 ,q c
=0.00622c d =0.0062×3502=759.5kg/m
1.截面E —E 的弯矩
/2a 2L q g 2L R 2L a g Q M 2
A c
A A A
B E
E ⎪⎭⎫
⎝⎛+⋅⋅-⋅+⎪⎭⎫ ⎝
⎛
+⋅-=- = —63745.48N ·m
式中:g —9.81N/kg
Q B —螺旋桨及附件重量,4079.51kg a —螺旋桨中心至后轴承中心距离,1.105m R A —后轴承支反力,15873.21 N L A —后轴承长度,0.88m q c —轴本身重量产生的均布负荷
q c
=0.00622
c d =0.0062×3502=759.5kg/m
其中d c 为尾轴直径,350mm 2.截面K -K 的弯矩
c
2
B A B K
K 2gq )Q -(R a g Q M g ⋅+
⋅⋅-=-= —5093.61N ·m
式中:g —9.81N/kg
Q B —螺旋桨及附件重量,4079.51kg a —螺旋桨中心至后轴承中心距离,1.105m R A —后轴承支反力,15873.21 N q c —轴本身重量产生的均布负荷
q c
=0.00622
c d =0.0062×3502=759.5kg/m
其中d c 为尾轴直径,350mm
K K E E M M -->,取E E M -=—63745.48N ·m 作为计算弯曲力矩。
尾轴强度计
算如下表4.2:
计算结果所求安全系数大于许用安全系数S c>[S C]。
故尾轴强度复合要求。
2.尾轴承负荷计算(双支承轴承)
计算如下表4.4:
表4.4尾轴承负荷计算
计算结果所求轴承单位面积所受压力均小于高分子轴承单位面积许用压力,本船采用用高分子轴承,故安全。
至此轴系校核全部完成。
三、 主推进装置及轴系布置图
当主机和螺旋桨选型定好后,就要确定其在机舱中的位置;并对轴系中轴承位置和间距进行确定。
然后结合船体布置图,画出布置草图。
由于本船轴系长不超过9米,不存在中间轴承,因此不需要考虑中间轴承位置安排不当。
该船采用的是单机单桨,对于主机的布置应布置于船舶纵中剖面。
详细布置图见附录一。
四、 尾轴管装置的结构形式
尾轴管装置的任务是用来支承尾轴或螺旋桨轴,并使其能可靠的通出船外,不使舷外水大量漏入船内,同时,亦不使滑油外泄。
为了承担上述任务,尾轴管装置一般由尾管、尾轴承、密封装置以及润滑与冷却系统等部分组成。
本船利用油来润滑与冷却,前后都用白合金轴承来支承尾轴。
为防止滑油外泄和水的渗入,尾管前后采用骨架式密封装置。
尾管采用了无缝钢管,与齿轮箱连接的是可拆式法兰。
由于尾轴管装置位于水下,船舶使用可靠及寿命长短与它的密封装置很大关系。
尾轴密封装置就其布置的位置而言,可以分为首部密封与尾部密封。
尾轴管装置布置总图
(1)尾轴基本直径的确定
要画出尾轴管总图,必须先计算出尾轴基本直径。
按《内河钢船建造规范》(2009)计算:
3
m e e 2)160
R 560(n N 100K d += 式中:e N 柴油机组额定功率为4400kW e n 螺旋桨转速为 174.15
m R 轴材料的抗拉强度,35号钢取m R =530N/2
m m k 按规范取1.26
计算出直径为344.87 mm
考虑到内河有可能继续航行,轴径应在计算的基础上增大10%。
故最终取350 mm (2)各部分尺寸的确定
根据定下的艉轴直径查找相关的配件产品手册,选择合适的前后轴承。
对于本船轴径的要求是前小后大,因为考虑到以后的维修方便,便于拆卸,容易更换磨损元件,这也是非常必要的。
考虑到适当的间隙,故选择基本轴径355mm,长为440mm的艉管白合金前轴承,及基本轴径360mm,长为880mm的艉管白合金后轴承。
在前轴承上安有前轴承支撑,与一块复板相连接,增加可靠性,以免负荷分布不均匀。
尾管厚度在10-15mm范围内选定13mm,采用无缝钢管。
对于螺母尺寸的确定可根据轴的直径大小选取,取M16的能满足要求。
(3)尾轴管装置总图
当上述步骤完成后尾轴管装置总图可以有计算机绘出,详图见附录二。
另附可拆联轴器零件图一张,详图见附录三。
五、船舶动力装置课程设计参考资料
1、长江船舶设计院.内河船舶设计手册(动装分册).人民交通出版社,1992.
2、中国船级社.CCS钢质内河船入级与建造规范.人民交通出版社.2009.
3、中国船舶工业总公司.船舶实用设计手册(轮机分册).国防工业出版社.1999.
4、中国船舶工业总公司.船舶实用设计手册(总体分册).国防工业出版社.1999.
5、武汉交通科技大学.商圣义.民用船舶动力装置(修订版).人民交通出版社.
6、东台市有铭船舶配件有限公司.船舶轴系舵系成套产品.。