循环气压缩机防喘振控制(内容充实)
CO2循环压缩机的防喘振控制方案

0 引 言
模式 的切换 。图 1为防喘振 控制典 型流程 。
C 压 缩 机 是 环 氧 乙 烷 装 置 中 常 见 的 设 备 , O 用 于 乙 烯 和 氧 气 反 应 后 的 C 。的 运 输 , 于 采 用 O 由 离 心 式 压 缩 机 , 以不 可 避 免 地 要 涉 及 压 缩 机 的 防 所
图 1 离 心 式 压 缩 机 典 型 防喘 振 控 制 方 案
流量控制 ( C 、 F ) 电流控制 (c 、 户直 接信 号控 制 I )用
( )喘振检测 报警 (D HC 、 S A) 以及 喘 振 联 锁 停 车 ( ) TS 等方 面的复杂控 制进行 阐述 。 1 离心式压 缩机 的典型 防喘振 设计方案 在 国家标 准规范 中, 对离 心式压 缩机 的防喘 振
关 键 词 :离心式压缩机 ; 防喘振控制; 压力限制 ; 差压流量 ; 联锁停 车
中图 分 类 号 : P 1, P 1 T 21T 31
文 献 标 志码 : B
文章 编 号 : 07 72(000 — 02 0 10— 3421)4 03— 4
The A n is r e Co t o c e e o he CO2 Re y l m p e s r t— u g n r lS h m f t c c e Co rso
Pe g H abi n i n
( iaH u n i o ta tn & En . C . Ch n a qu C n r cig g o ,Be g, 0 2 i n 1 0 8,Chn ) j i 0 ia Ab ta t I t e sr c : n h EO/ pa t C g s n h b fe tn i rn fr e b t e EG ln , O2 a i t e u fr a k s a ser d y h CO2c ce a t yl g s
压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施
压缩机防喘振系统是用于防止压缩机在工作过程中出现喘振现象的一种控制系统。
喘振是指压缩机在运行过程中由于压力倒挂和气阀开闭不当等原因,使得压缩机出现杂音、振动加剧,甚至引起设备损坏的现象。
1. 振动增大:喘振会使得压缩机的振动加剧,导致设备整体的振动增大,从而造成设备寿命降低、设备故障增多等问题。
2. 噪音增大:喘振会使得压缩机发出较大的噪音,影响工作环境和工人的身心健康。
3. 能耗增加:喘振会使得压缩机的工作效率下降,从而导致能耗增加,造成能源的浪费。
4. 设备损坏:喘振会使得压缩机的工作过程不稳定,从而可能导致设备的损坏,增加维修和更换的成本。
1. 定期检修:定期检修压缩机,对机械设备、气阀等进行维护和修理,确保其正常工作。
2. 合理选型:在选用压缩机时,需要根据实际工况和设备需要,选择合适的型号和规格,减少喘振的可能性。
3. 安装调试:在安装压缩机时,需要严格按照厂家的要求进行安装和调试,确保设备的稳定运行。
4. 加装减振装置:在压缩机的进出口处加装减振装置,减少设备振动对周围环境和设备的影响。
5. 增加控制系统:增加喘振控制系统,可以监测和控制压缩机的工作状态,及时采取措施避免喘振的发生。
6. 做好运行维护:在压缩机工作过程中,要做好运行控制和维护,及时清洁设备和更换损坏的部件,确保设备的正常工作。
7. 培训工作人员:对使用压缩机的工作人员进行培训,提高其对喘振现象的识别和处理能力,减少人为操作引起的喘振问题。
通过采取上述防范措施,可以有效降低压缩机防喘振系统出现问题的可能性,提高设备的安全性和稳定性,延长设备的使用寿命,减少生产成本。
压缩机防喘振的3种控制方法

压缩机防喘振的3种控制方法
压缩机喘振是一种有害的现象,因为喘振可能导致压缩机损坏或减少其寿命。
因此,为了防止压缩机喘振,可以采取以下三种控制方法:
1. 变频控制方法
变频控制方法是通过改变压缩机的转速来防止喘振。
具体来说,当输入流量低于一定值时,压缩机将自动降低转速,从而防止喘振。
这种方法的好处是不会产生噪音和振动,而且可以在喘振之前避免发生。
但是,这种方法的缺点是成本较高,需要购买变频设备。
2. 放气控制方法
放气控制方法是通过对不合格气体进行放气来防止喘振。
具体来说,当气体浓度低于一定值时,压缩机将自动放气,从而防止喘振。
这种方法的好处是成本较低,但缺点是会产生一定的噪音和振动,而且需要人工干预。
3. 自动控制方法
自动控制方法是通过对压缩机的转速和气体浓度进行监测和自动调整来防止喘振。
具体来说,当输入流量低于一定值时,压缩机将自动降低转速,从而防止喘振。
当气体浓度低于一定值时,压缩机将自动放气,从而防止喘振。
这种方法的好处是既不会产生噪音和振动,又可以在喘振之前避免发生,而且成本相对较低。
综上所述,变频控制方法、放气控制方法和自动控制方法是防止压缩机喘振的三种有效方法。
根据具体情况选择合适的方法可以有效地避免喘振的发生,保证压缩机的正常运转。
压缩机防喘证控制说明

1. 概述为使涡轮压缩机稳定运行在一定区域内,会有一个最小流量的限制。
当测定体积流量低于此最小流量时,进气叶轮的进气流量方向会反复变动,这种现象称作“喘振”。
此时,对机械元件(如进气导叶片)的冲击压力会非常大,元件极易损坏,因此,要避免喘振的发生。
为使压缩机稳定运行-甚至在测定流量不断减少的情况下-压缩机需要配备一个旁通/排放阀。
旁通/排放阀用来弥补实际流量与最小流量的差值,由喘振控制器控制。
稳定运行状态与不稳定运行状态的分界线被称作喘振线。
喘振的发生取决于各种因素如温度、压力等。
在喘振线与喘振控制线之间必须有一个安全距离来确保稳定控制。
2. 喘振控制器FIC喘振控制器为安全控制器,只有在极端情况下才激活。
它的作用就在于防止压缩机喘振。
喘振控制器的过程值PV为压缩机的测定体积流量(m³/h ),依据下式数值,计算得到:Tflow 流量计安装处的温度Pflow 流量计安装处的压力dPflow 流量计两端的差压const:常数计算公式如下:喘振控制器的设定值SP是一个固定值(旁通/排放线=喘振线+安全距离),由调试工程师在调试时设定。
喘振控制器可以有选择地工作在一个动态设定值附近,且该动态设定值依据压缩机当前工作点小幅变动。
当排气流量增加时,动态设定值直接沿当前工作点变化-保证与工作点保持一个固定的距离;当排气流量减少时,动态设定值被延时,直到达到最小设定值(喘振线-安全距离,上图虚线位置)。
喘振控制器将SP(设定值)与PV(过程值)进行比较,它们之间的差值为:XD=SP-PV。
控制器一直试图取得“0”差值(即过程值等于设定值,达到控制效果)。
负差值(SP<V)时,控制器将减少输出(旁通/排放阀将关小);正差值(SP>V)时,控制器将增加输出(旁通/排放阀将开大);喘振控制器的输出值将作为MAX(大数值)选择器的输入 (与更大值进行进一步比较)。
旁通阀的安全位置为打开(4mA对应100%打开;20mA 对应关闭)。
压缩机防喘振控制方案

压缩机防喘振的两种方法[分享]压缩机防喘振的两种方法一、离心式压缩机喘振的原因喘振是离心式压缩机的固有特性。
产生喘振的原因首先得从对象特性上找。
从图1中可见压缩机的压缩比P2/P1与流量Q的曲线上都有一个P2/P1值的最高点。
在此点右面的曲线上工作,压缩机是稳定的。
在曲线左面低流量范围内,由于气体的可压缩性,产生了一个不稳定状态。
当流量逐渐减小到喘振线时,一旦压缩比下降,使流量进一步减小,由于输出管线中气体压力高于压缩机出口压力,被压缩了的气体很快倒流入压缩机,待管线中压力下降后,气体流动方向又反过来,周而复始便产生喘振。
喘振时压缩机机体发生振动并波及到相邻的管网,喘振强烈时,能使压缩机严重破坏。
二、防喘振自控系统的可行性分析为使压缩机安全有效和经济运行,在低负荷下操作时,其气量应始终保持在喘振区右边并留有一定的安全裕量,一般控制线位于超过喘振极限流量的5%—10%之处。
只要保证压缩机吸人流量大于临界吸入量Qp,系统就会工作在稳定区,不会发生喘振。
即在生产降负荷时,须将部分出口气体,经出口旁路阀返回到入口或将部分出口气放空,保证系统工作在稳定区。
三、防喘振自控系统的几种实现方法目前常采用两类防喘振方法,即固定极限流量(或称最小流量)法与可变极限流量法1.固定极限流量法固定极限流量的防喘振控制系统,就是使压缩机的流量始终保持大于某一定值流量,如图1中的Qp,从而避免进入喘振区运行。
此法优点是控制系统简单,使用仪表较少。
缺点是当压缩机转速降低,处在低负荷运行时,防喘振控制系统投用过早,回流量较大,能耗较大。
2.可变极限流量法在压缩机负荷有可能通过调速来改变的场合,因为不同转速工况下,极限喘振流量是一个变数,它随转速的下降而变小,所以最合理的防喘振控制方法,应是留有适当的安全裕量,使防喘振调节器沿着喘振极限流量曲线右侧的一条安全控制线工作,这便是可变极限流量法。
常用控制方案有两种:一是采用测量压缩机转速,经函数发生器作为流量调节器给定值(图2)。
压缩机防喘振资料整理

据我公司与陕鼓技术协议,压缩机流量调节方式为回流调节+变频调速,收集相关资料整理如下:回流调节+变频调速在离心压缩机喘振控制中的应用1 喘振1.1 喘振现象当压缩机在运转过程中,流量减小到一定程度时,就会在压缩机流道中出现严重的旋转脱离,流动严重恶化,使压缩机出口压力突然严重下降。
由于压缩机总是和管网系统联合工作的,这时管网中的压力并不马上减低,这时管网中的气体压力就反大于压缩机出口处的压力,因而管网中的气体就倒流向压缩机,一直到管网中的压力下降至低于压缩机出口压力为止,这时倒流停止,压缩机又开始向管网供气,压缩机的流量又增大,压缩机又恢复正常工作。
但是当管网中的压力也恢复到原来的压力时,压缩机的流量又减小,系统中气体又产生倒流,如此周而复始,就在整个系统中产生了周期性的气流振荡现象,这种现象称为“喘振”。
上图中n为压缩机的转速,在每种转速下都有一个p2/p1值最高的点(驼峰点),将不同转速下的各个驼峰点连接起来就可以得到一条所谓的喘振边界线(上图中实线所示)。
边界线左侧部分为不稳定的喘振区,边界右侧部分则是安全运行区。
在喘振区,压缩比p2/p1随着Q的增大而增大,即出口压力p2增大,到大于管道阻力时,就会使压缩机排出量增大,并恢复到稳定的值QA。
假如流量继续下降到小于驼峰值QB,这时压缩比不仅不会增大,反而下降,即p2下降,就会出现恶性循环:压缩机排出量会继续减小,而出口压力p2会继续下降,当p2下降到低于管网压力时,瞬间将会出现气体的倒流;随着倒流的产生,管网压力下降,当管网压力下降到与压缩机出口压力相等时倒流停止;然而压缩机仍在运转,于是压缩机又将倒流回来的气体重新压回去;此后又引起p2/p1下降,被压出的气体又倒流回来。
这种现象将重复产生,这就是所谓的喘振。
1.2 产生喘振的先决条件从喘振现象可知,影响喘振的因素有:(1) 流量;(2) 转速;(3) 管网特性。
(1)流量是导致喘振的先决条件,因为当压缩机越过最小流量值时,就会在流道中产生严重的旋转脱流和脱流区急剧扩大的情况,进而发展到喘振状态。
ccc压缩机防喘振控制技术

CCC压缩机防喘振控制技术(Antisurge Control)1. 喘振现象喘振是涡轮压缩机特有的现象从图中可以看出压缩机运行点由D沿性能曲线上升流量减小压力升高由A点开始到B点压缩机出现负流量即出现倒流B-C C-D这样伴随喘振而来的是压缩机振动剧烈上升如果不能有效控制会给压缩机造成严重的损伤一般来讲在1-2秒内就以发生2. 喘振控制2.1 喘振线的确定通常压缩机都会有一系列的性能曲线图由于压缩机入口条件的不同压力其喘振曲线是分散的多条曲线CCC根据压缩机的设计理论可以将多变的入口条件的喘振曲线转化成与入口条件无关的曲线而一般来讲压缩机制造厂商提供的性能曲线是计算值特别是旧机组的性能会发生变化或者没有性能曲线传统的测试方法需要由经验丰富的测试工程师来进行测试这样做带来了巨大的风险确往往会动作滞后或过早打开CCC的喘振算法和控制算法能够在自动状态下测量喘振曲线这一功能是CCC的专利技术而且是世界独一无二的2.2 喘振控制算法在传统的防喘振控制算法中用运行点的流量与喘振点的流量比较放空阀这样做会造成大量的回流能量和造成工艺的扰动甚至中断2,1)(op r s q hr f S = 2,1)(SLL r q hr f =喘振线上的点1)(2,1==op r s q hr f S 因而Ss <1的区域为安全区域从而实现控制各种控制线及其相互之间的关系(1) Surge Limit Line, SLL压缩机在不同的工况下有不同的性能曲线所有这些点构成了一条喘振极限线SLLCCC 防喘振控制算法在喘振极限线SLL 右边设置了一个可变的安全裕量bÔö¼ÓѹËõ»úµÄÁ÷Á¿Èç¹û²Ù×÷µã³¬¹ýÕâ¸ö¼«ÏÞRTL 位于SCL 与SLL 之间如果操作点超过这个极限安全保险响应将增加喘振控制线的裕度(总b 值)SOL 线在喘振极限线的左边(5) Tight Shut-off Line, TSL TSL 定义最小的SCL 的偏差二者之间的距离为d 12.3.2 CCC防喘振控制算法的控制功能(1) PID控制响应对于缓慢的小的扰动CCC防喘振控制算法的PI控制算法防止压缩机操作点回到SCL左侧的非安全控制区而是用于加大CCC防喘振控制算法的安全裕量但并没有实质的喘振危险时只有在操作点处于或者接近防喘振控制线SCL时这样一来又能防止喘振的发生当比例积分响应和特殊微分响应不能使压缩机操作点保持在SCL线的右边则RTL响应就会以快速重复的阶跃响应迅速打开防喘振阀(3) 根据SOL线的安全保险响应如果因意外情况过程变化使压缩机的操作点越过SLL 线和SOL线而发生喘振使喘振控制线右移在一个喘振周期内将喘振止住那么防喘振控制算法的TSL响应将输出0或者100%的信号CCC防喘振控制算法根据喘振发生的特点当操作点越过不同的控制线产生不同的控制响应这种控制响应既能防止喘振也不需要浪费能量则喘振控制算法自动加大一个安全裕量b4ÕâÒ»¶¯×÷×î¶à¿ÉÒÔ¼Ó´ó5次b4,并且可以手动或自动复位当计算喘振接近度S S公式中所用的输入信号出现故障时(7) 手动控制手动控制可以让操作员手动控制防喘振阀的开度一种是完全的手动另一种方式是在手动操作中(8) 解耦控制对于有性能控制的机组当压缩机进入喘振调节时如性能控制变量为入口压力时两个控制回路是互相反作用的使机组更加接近喘振CCC的性能控制算法和喘振控制算法会将各自的输出加权到对方的控制响应中去迅速稳定系统CCC的控制算法能够在机组达到最小控制转速后或当出口单向阀打开时将机组并入到工艺系统中去将机组切出系统(11) CCC喘振控制算法功能框图3. 采用CCC防喘振控制算法的益处采用先进的防喘振控制算法而不必打开回流阀内置的回路解耦算法允许性能控制算法和防喘振控制算法之间更快地协调并消除防喘振控制动作可能产生的间断效应CCC防喘振控制算法消除了因喘振或者过载引起的不必要停车消除损害性的喘振(5) 压缩机运行更可靠FallBack¿ØÖÆËã·¨Äܹ»ÔÚ±äËÍÆ÷·¢Éú¹ÊÕÏʱ(6) 操作简化(7)更低的工程成本用户不必进行软件设计和软件组态(8) 降低压缩机初始投资。
工艺空气压缩机的喘振及预防范文(二篇)

工艺空气压缩机的喘振及预防范文工艺空气压缩机是一种广泛使用的工业设备,常用于提供压缩空气给各类工厂和生产线使用。
然而,工艺空气压缩机在使用过程中可能出现喘振现象,给设备运行和生产效率带来极大影响。
为了有效预防和解决喘振问题,以下将介绍一些预防措施和应对策略。
首先,要了解喘振产生的原因和机制。
工艺空气压缩机的喘振主要是由于压缩机内部气流失稳引起的。
当压缩机运行时,气流通过机内多个部件时的速度和压力变化会导致气流失稳,产生喘振现象。
所以,为了预防喘振,首先要保证压缩机内部的气流稳定。
其次,要进行良好的设计和安装。
设计上要考虑到空气压缩机的稳定工作条件,包括适当的排气设备、冷却系统和降噪装置。
安装时要注意合理设置空气进出口和管道连接,确保气流通畅,减少阻力和振动的产生。
另外,定期维护和保养也是预防喘振的重要措施。
定期检查和清洁空气压缩机的内部部件,保证其正常运行。
特别是注意清理滤芯和冷却系统,防止积尘和堵塞影响空气流通和散热效果。
此外,合理控制空气压缩机的工作参数和运行状态也是重要的预防喘振的手段。
根据实际需要调整压缩机的出口压力和转速,保持在合适的范围内。
避免过载和长时间高速运行,以免产生过大的振动和压力变化。
总之,预防工艺空气压缩机喘振的关键是保证气流的稳定和通畅。
通过良好的设计安装、定期维护和合理控制运行参数,可以有效预防喘振的发生。
这不仅可以提高压缩机的工作效率,还可以延长其使用寿命,减少故障和维修成本。
最后,在操作空气压缩机时,也要注意操作规范和安全。
必须按照使用说明书和工艺要求进行操作,不可随意更改工作参数或超负荷使用。
同时,在操作过程中及时观察和处理异常情况,如异响、振动等,以防止喘振发生。
通过以上预防措施,可以有效避免工艺空气压缩机的喘振问题,保证其正常运行和稳定性能。
这对于各类工厂和生产线的正常生产和运营有着重要的意义。
因此,在使用工艺空气压缩机的过程中,我们应该充分重视喘振问题的预防,并采取相关措施,以确保设备的安全和稳定运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
循环气压缩机防喘振控制摘要:本文系统介绍TRICON系统在循环气压缩机机组防喘振控制的应用及控制原理。
重点介绍防喘振系统的功能模块的构建,同时简述机组运行故障时的检修方法与分析思路。
关键词定义:喘振机理喘振线防喘振控制安全裕量盘旋设定点1、前言:大型离心式压缩机组由于其高效,经济,在现代企业中应用广泛,成为工艺连续运行的“心脏”。
但是由于其造价相对于往复式压缩机而言要高很多,控制系统复杂,而且占用的空间大等缺点,对于工艺成熟的企业一般不设置备用机组。
喘振是离心式压缩机固有的特性,每一台离心式压缩机都有它一定的喘振区,因此只能采取相应的防喘振调节方案以防止喘振的发生。
本文以天利高新技术公司醇酮厂的循环气压缩机C41101(SVK1-H型)为例,详细介绍TRICON三重化控制系统如何构建机组防喘振系统,并简述防喘振仪表常见故障的处理方法。
2、离心式压缩机喘振机理:离心式压缩机的特性曲线与喘振离心式压缩机的特性曲线是指压缩机的出口压力与入口压力之比(或称压缩比)与进口体积流量之间的关系曲线P2/P1~Q的关系,其压缩比是指绝对压力之比,特性曲线如图所示:图2.1 离心式压缩机喘振曲线由图2.1可见,其特性曲线随着转速不同而上下移动,组成一组特性曲线,而且每一条特性曲线都有一个最高点。
如果把各条曲线最高点联接起来得到一条表征喘振的极限曲线,如图中虚线。
所以,图中还有阴影部分称为喘振(或飞动)区;在虚线的右侧为正常工作区。
实线与虚线之间是临界区,压缩机可以运行,但太靠近喘振区,应尽量避免长期工作。
图2.2固定转速机下的特性曲线图2.2是一条某一固定转速机下的特性曲线,喘振时工作点由A-B-C-D-A反复迅速的突变。
喘振是一种危险现象,发生喘振时,可发现在入口管线上的压力表指针大幅度摆动,流量指示仪表也发生大幅度的摆动.喘振现象会损坏压缩机的各部件,轴承和密封也将受到严重损害,严重时造成轴向窜动,甚至打碎叶轮,烧轴,使压缩机遭受破坏。
喘振是离心式压缩机固有的特性,每一台都有它一定的喘振区,因此只能采取相应的防喘振调节方案以防喘振的发生。
3、工艺流程简介:醇酮装置是利用环己烷(C6H12)在铁系催化剂的催化作用下与贫氧空气(氧含量:10%)中的氧组分发生氧化反应,生成环己醇(分子式:C6H11OOH)、环己酮(分子式:C6H10O)、还己基过氧化物(可分解为环己醇、环己酮),前两者合称醇酮。
另外,由于反应温度、氧气含量的不同,会产生甲酸、二元酸等付产品。
循环气压缩机组是用于反应尾气的重复利用,与来自新鲜空气压缩机C41102的新鲜空气配制贫氧空气(氧含量:10%)。
循环气机组部分的实时工艺流程如图3.1,流程说明如下:4.5MPa中压蒸汽自管网来,经过减温减压后至4.1MPa,用于驱动汽轮机(杭汽大陆产:B0.3-4.1/1.1型)C41101/2,蒸汽凝结水直接排入地沟。
汽轮机通过齿轮变速箱升速后驱动贫氧空气压缩机C41101/1,使之达到18831r/min。
经过醇酮反应器贫氧催化反应消耗掉贫氧空气中氧组分的尾气,通过洗涤工艺后主要成分为氮气(N2:95.52%),氧气(O2:3.44%)、微量CO、CO2、环己烷蒸汽等。
经过贫氧空气压缩机入口气液分离器分离出凝结液体后进入压缩机升压,经出口气液分离后进入气气混合器R41103,与来自新鲜空气压缩机的新鲜空气混合调配成氧含量为不大于10%的贫氧空气,送往醇酮反应器进行贫氧催化反应。
FICSA 2171图3.1 循环气压缩机简易工艺流程图4、循环气压缩机防喘振系统的构成:4.1、机组及控制系统概述:循环气压缩机C41101是天利高新技术公司52500T/h醇酮生产装置的核心设备。
循环气压缩机使用由沈阳鼓风机厂设计制造的单级悬臂高速型离心压缩机(SVK1-H),压缩机入口压力是高压型。
原动机采用杭汽大陆生产的B0.3-4.1/1.1蒸汽轮机。
压缩机SVK1-H技术参数如下:正常质量流量10441kg/h;轴功率:229kW;原动机功率:300kW;出口温度:81.6℃;入口温度:28℃;出口压力:2.1MPa;入口压力:1.6MPa;工作转速:18831r/min;一阶临界转速:8912r/min;二阶临界转速:40383r/min。
机组监控系统采用三重化控制系统(软件版本为:TriStation 1131.4.1)作现场控制系统,用监控软件(INTOUCH 9.5)作上位监控。
4.2、循环气压缩机防喘振控制系统功能设计:4.2.1、防喘振控制阀“快开慢关”。
要求防喘振控制阀能够平稳调节,在异常工况时能够快速打开4.2.2、由于不能全范围做喘振实验,理论计算不能绝对准确,制作的喘振线采用插补运算所得,所以需要设置一条防喘振控制线,使两线之间有一定的安全裕量。
4.2.3、喘振控制器设置为随动调节系统,其给定值通过盘旋给定控制器计算,实时跟踪操作裕量;对于偏差的调节采用PI调节功能;根据偏差大小的范围使用不同的PI控制参数,即要求PI控制有自适应能力。
4.2.4、发生“喘振”后,无论是否真实,为了防止机组再次达到喘振组态,设置累计安全裕量调整偏置;在确认为虚假喘振后,可以对喘振计数器,安全裕量调整偏置复位。
4.2.5、在喘振控制器调节作用之前的异常工况,设置喘振超驰控制、过程超驰控制通过选高控制,阻止机组进入喘振区;当以上控制产生效果前,设置独立的跳车控制保护机组。
4.2.6、根据操作需要设置3种操作方式:自动、半手动(安全运行)和全手动控制。
在机组停止状态时调试的需要设置实验方式。
4.3、控制方案说明:4.3.1、通常采用孔板、阿牛巴等测量元件测量差压的方式测量压缩机输出流量。
对于输出的气体体积流量,由于不同工况时温度压力不同,需要根据理想气体状态方程,进行温度压力补偿,计算出标准状态下的体积流量,以满足防喘振控制的需要。
4.3.2、根据机组喘振实验所得喘振点参数或根据机组生产厂方提供的喘振点(一般不大于5点)参数,采用插补运算的方法,制作“压比(y轴)—出口流量(x轴)”喘振线。
当实际操作的工作点(实际操作压比,实际操作流量)在喘振线的右边时,机组处于安全工作区;当实际操作的工作点因压比、流量或出口温度的变化导致向喘振线方向移动,接近喘振线时,机组处于临界喘振状态;继续朝喘振线的左边移动时,机组进入喘振区。
4.3.3、为了控制机组工作点在所以防喘振系统需要设置一条实际防喘振控制线(见图4.1),与喘振线之间留有安全控制裕量,包括以下两项:可以预置的裕量偏差常量、喘振点的比率值。
可以表达为下式: rSAFETY_OP=Constant Margin +Proportional Margin×rSULIN/100其中: rSULIN为喘振线上的各喘振点;计算由功能块SAFETY_MAR实现。
Control Line(SAFETY_OP)图4.1防喘振控制线理论图图4.2线间关系图4.3.4、机组在正常运行过程中,不宜大幅度调整喘振阀门的开度,而且防喘振控制线与喘振线之间可以调节的空间小,所以系统设计一条盘旋线(见图4.2),使之实时跟踪机组运行工作点,并使实际工作点围绕盘旋线小范围(Hover Setting)调节。
在本例中盘旋线与喘振控制线之间的裕量设置为1800Nm3/h。
盘旋给定功能由SP_HOVER功能块实现:当实际操作裕量大于盘旋点时,为实际操作裕量与盘旋点的差值;当实际操作裕量开始减小时,功能块的输出以预设的速率减小;当实际操作裕量不大于盘旋点时,以累计安全裕量做为功能块的输出。
其输出作为喘振控制器的给定值。
4.3.5、喘振控制器(PID_SRG)依据盘旋给定控制器输出的设定值与实际操作裕量的偏差进行PI控制运算,得到的结果经防喘振阀门控制源判断去调节防喘振阀的开度,从而改变工况,使实际工作点稳定在一个新的安全工况。
由于盘旋设定功能块(SP_HOVER)在实际操作裕量减小到时候,其输出以设定点速率减小,对于喘振控制器而言,其给定值是动态的。
4.3.6、喘振控制器(PID_SRG)的PI参数由适应性调节参数功能块(Adptv_Tn1)提供:当设定值与实际操作裕量的差值大于设定范围(PK_PT1),提供设定参数TUN1;当实际操作裕量与设定值的差值大于设定范围(PK_PT2),提供设定参数TUN2;当差值在正常范围内或者功能块被禁止时提供设定参数NORMAL。
自适应的PI控制参数有利于喘振控制器(PID_SRG)调整控制力度,使机组控制平稳。
4.3.7、喘振超驰控制器(SRG_OVRD)是一个纯比例的控制器,在压缩机工作点移动到喘振超驰控制线(喘振线与防喘振控制线之间,安全裕量的7%)开始动作,逐渐打开防喘振控制阀。
它是在喘振控制器(PID_SRG)产生控制效果之前,快速将压缩机实际工作点拉回安全区。
阀门控制方式选择功能块VALVE_SEL05的作用是实现喘振控制系统的3种操作方式,并在自动控制、半手动控制时选择4.3.8、跳车曲线功能块(DUMP SOLENOID_FUNCTION)的作用是当压缩机实际操作裕量小于累计安全裕量的一个设定倍数(kDUMP,设置为小数)时,产生一个跳车信号,使防喘振电磁阀失电,快速打开防喘振阀,防止机组进入喘振区。
跳车曲线功能(DUMP SOLENOID_FUNCTION)也是机组防喘振系统的最后保障。
4.4、防喘振控制过程简述(假设压比不变,见图4.3):当压缩机在实际的工况运行时,如图4.3中的A点,盘旋设定点Av,跟踪A点,喘振控制器输出为0%,此时防喘振阀已经全关。
当压缩机因为工艺原因,实际工况到达图4.3中的B′点时,盘旋设定点从Av点以设定速率向Bv′点靠近,同时喘振调节器输出信号增加,防喘振阀门逐渐开启,出口流量增加,将实际运行点拉向A点方向到B′点;直到Bv点移动到B点的左边,防喘振调节器的输出逐渐下降知道0%,此时防喘振阀已经全关。
此时压缩机达到一个新的运行点B点,盘旋设定点到达Bv点。
当压缩机工作在A点时,工艺原因导致工作点低于实际防喘振控制点,如图中Bv′点,如果不考虑系统反馈作用或者防喘振调节起作用前,盘旋设定点以设定速率递减到Bv′点,但不会低于Bv′点。
当压缩机工作在A点,如果实际工况到达了C点,则盘旋设定点及时跟踪到Cv点。
当压缩机工作在A点,工艺原因导致运行工作点穿越初始防喘振线,到达D点,喘振超驰开始以比例控制方式控制,保证工作点移动到喘振线时,防喘振阀全开。
当工作点移动到E点时,只要不是在全手动运行模式,DUMP跳车功能动作,直接驱动防喘振电磁阀,使防喘振阀门全开,保证机组不进入喘振区。