人教版九年级数学上册 22.3 实际问题与二次函数 暑假提高训练(含答案)

合集下载

人教版九年级数学上册22.3实际问题与二次函数同步练习(word版_含答案)(含知识点)

人教版九年级数学上册22.3实际问题与二次函数同步练习(word版_含答案)(含知识点)

《实际问题与二次函数》同步练习附答案课堂学习检测1.矩形窗户的周长是6m,写出窗户的面积y(m2)与窗户的宽x(m)之间的函数关系式,判断此函数是不是二次函数,如果是,请求出自变量x的取值范围,并画出函数的图象.2.如图,有一座抛物线型拱桥,已知桥下在正常水位AB时,水面宽8m,水位上升3m,就达到警戒水位CD,这时水面宽4m,若洪水到来时,水位以每小时0.2m的速度上升,求水过警戒水位后几小时淹到桥拱顶.3.如图,足球场上守门员在O处开出一高球,球从离地面1m的A处飞出(A 在y轴上),运动员乙在距O点6m的B处发现球在自己头的正上方达到最高点M,距地面约4m高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取734=,562=)综合、运用、诊断4.如图,有长为24m 的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a =10m).(1)如果所围成的花圃的面积为45m 2,试求宽AB 的长;(2)按题目的设计要求,能围成面积比45m 2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.5.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数m =162-3x .(1)写出商场卖这种商品每天的销售利润y (元)与每件的销售价x (元)间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最为合适?最大销售利润为多少?6.某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?7.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润为多少万元?拓展、探究、思考8.已知:在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a>0)的图象与x 轴交于A,B两点,点A在点B的左侧,与y轴交于点C,且OC=OB=3OA.(1)求这个二次函数的解析式;(2)设点D是点C关于此抛物线对称轴的对称点,直线AD,BC交于点P,试判断直线AD,BC是否垂直,并证明你的结论;(3)在(2)的条件下,若点M,N分别是射线PC,PD上的点,问:是否存在这样的点M,N,使得以点P,M,N为顶点的三角形与△ACP全等?若存在请求出点M,N的坐标;若不存在,请说明理由.参考答案1.y =-x 2+3x (0<x <3)图略.2.5小时.3.(1).11212++-=x x y (2)17米. 4.(1)设花圃的宽AB =x 米,知BC 应为(24-3x )米,故面积y 与x 的关系式为 y =x (24-3x )=-3x 2+24x .当y =45时,-3x 2+24x =45,解出x 1=3,x 2=5.当x 2=3时,BC =24-3×3>10,不合题意,舍去;当x 2=5时,BC =24-3×5=9,符合题意.故AB 长为5米.(2)能围成面积比45m 2更大的矩形花圃.由(1)知,y =-3x 2+24x =-3(x -4)2+48.103240≤-<x ,.8314<≤∴x 由抛物线y =-3(x -4)2+48知,在对称轴x <4的左侧,y 随x 的增大而增大,当x >4时,y 随x 的增大而减小.∴当314=x 时,y =-3(x -4)2+48有最大值,且最大值为),m (3246)4314(34822=--此时,,m 314=AB BC =10m ,即围成长为10米,宽为314米的矩形ABCD 花圃时,其最大面积为.m 32462 5.(1)y =-3x 2+252x -4860;(2)当x =42时,最大利润为432元.6.解:(1)由题意得y =(80+x )(384-4x )=-4x 2+64x +30720.(2)∵y =-4x 2+64x +30720=-4(x -8)2+30976,∴当x =8时,y 有最大值,为30976.即增加8台机器,可以使每天的生产总量最大,最大生产总量为30976件.7.解:(1)设s 与t 的函数关系式为x =at 2+bt +c ,图象上三点坐标分别为(1,-1.5),(2,-2),(5,2.5).分别代入,得⎪⎩⎪⎨⎧=++-=++-=++∴.5.2525,224,5.1c b a c b a c b a 解得⎪⎪⎩⎪⎪⎨⎧=-==.0,2,21c b a .2212t t s -=∴ (2)把s =30代入,2212t t s -= 解得t 1=10,t 2=-6(舍去).即截止到10月末,公司累积利润可达到30万元.(3)把t =7代入,2212t t s -= 得7月末的累积利润为s 7=10.5(万元).把t =8代入,2212t t s -= 得8月末的累积利润为s 8=16(万元).∴s 8-s 7=16-10.5=5.5(万元).即第8个月公司获利润5.5万元.8.(1)y =x 2-2x -3; (2)AD ⊥BC ;(3)存在,M 1(1,-2),N 1(4,-3).或M 2(0,-3),N 2(3,-4).以下不需要可以删除人教版初中数学知识点总结必备必记目 录七年级数学(上)知识点 (1)第一章 有理数 (1)第二章 整式的加减 (3)第三章 一元一次方程 (4)第四章 图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。

人教版九年级上册数学实际问题与二次函数同步训练(含答案)

人教版九年级上册数学实际问题与二次函数同步训练(含答案)

人教版九年级上册数学22.3实际问题与二次函数同步训练一、单选题1.飞机着陆后滑行的距离s (单位:米)关于滑行时间t (单位:秒)的函数表达式为2s at bt =+,当滑行时间为10秒时,滑行距离为450米;当滑行时间为20秒时,滑行距离为600米,则飞机的最大滑行距离为( )A .600米B .800米C .1000米D .1200米 2.据省统计局公布的数据,合肥市2021年一月GDP 总值约为6百亿元人民币,若合肥市三月GDP 总值为y 百亿元人民币,平均每个月GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .y =6(1+2x )B .y =6(1﹣x )2C .y =6(1+x )2D .y =6+6(1+x )+6(1+x )2 3.某超市将进价为40元件的商品按50元/件出售时,每月可售出500件.经试销发现,该商品售价每上涨1元,其月销量就减少10件.超市为了每月获利8000元,则每件应涨价多少元?若设每件应涨价x 元,则依据题意可列方程为( )A .(5040)(500)8000-+-=x xB .(40)(50010)8000+-=x xC .(5040)(50010)8000-+-=x xD .(50)(50010)8000--=x x 4.在平面直角坐标系中,O 为坐标原点.二次函数致2y x bx c =++的图象与x 轴只有一个交点,且经过点()2,A m c -,()2,B m c +,则AOB 的面积为( ) A .8 B .12 C .16 D .4 5.已知关于x 的方程20x bx c ++=的两个根分别是-1和3,若抛物线22y x bx c =+-与y 轴交于点A ,过A 作AB y ⊥轴,交抛物线于另一交点B ,则AB 的长为( ) A .2 B .3 C .1 D .1.5 6.平面直角坐标系中,点A 的坐标为()0,1,点B 的坐标为()2,1,连接AB ,当抛物线2y x c =+与线段AB 有公共点时,c 的取值范围为( )A .3c <-B .31c -≤≤C .1c >D .01c ≤≤ 7.如图,在长为20m 、宽为14m 的矩形花圃里建有等宽的十字形小径,若小径的宽不超过1m ,则花圃中的阴影部分的面积有( )A .最小值247B .最小值266C .最大值247D .最大值266 8.如图,正方形ABCD 中,AB =4cm ,动点E 从点A 出发,沿折线AB BC -运动到点C 停止,过点E 作EF AE ⊥交CD 于点F ,设点E 的运动路程为x cm ,DF =y cm ,则y 与x 对应关系的图象大致是( )A .B .C .D .二、填空题9.如图,某拱桥桥洞的形状是抛物线,若取水平方向为x 轴,拱桥的拱点O 为原点建立直角坐标系,它可以近似地用函数218y x =-表示(单位:m ).已知目前桥下水面宽4m ,若水位下降1.5m ,则水面宽为______m .10.如图是一个横断面为抛物线形状的拱桥,此时水面宽AB 为3米,拱桥最高点C 离水面的距离CO 也为3米,则当水位上升1米后,水面的宽度为____米.11.如图所示,用长为21米的篱笆,一面利用墙(墙的最大可用长度a 为10米),围成中间隔有一道篱笆的长方形花圃,为便于进出,开了3道宽为1米的门.设花圃的宽AB 为x 米,面积为S 平方米,则S 与x 的之间的函数表达式为 __;自变量x 的取值范围为 __.12.亮亮推铅球,铅球行进高度y (m )与水平距离x (m )之间的关系为()215312y x =--+,则小明推铅球的成绩是______m . 13.随着经济的发展和人们生活水平的提高,越来越多的人选择乘飞机出行.某种型号的飞机着陆后滑行的距离s (单位:m )与滑行的时间(单位:s )的函数关系式为260 1.5s t t =-,那么飞机着陆后滑行_____s 停下.14.如图,物体从点A 抛出,物体的高度y (m )与飞行时间t (s )近似满足函数关系式y =−15(t −3)2+5.(1)OA =______m .(2)在飞行过程中,若物体在某一个高度时总对应两个不同的时间,则t 的取值范围是________.15.跳台滑雪是2022年北京冬奥会比赛项目之一.一名参赛运动员起跳后,他的飞行路线可以看作是抛物线21240453y x x =-++的一部分(如图所示),则这名运动员起跳后的最大飞行高度是______m .16.某企业研发出了一种新产品准备销售,已知研发、生产这种产品的成本为30元/件,据调查年销售量y (万件)关于售价x (元/件)的函数解析式为:()()21404060806070x x y x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩,则当该产品的售价x 为________.(元/件)时,企业销售该产品获得的年利润最大.三、解答题17.甲、乙两家水果店经销同一种水果,采取不同的降价措施增加销售额,提高利润.(1)甲水果店原售价每千克20元,连续两次降价后每千克12.8元,每次降价的百分率相同.求每次降价的百分率;(2)乙水果店原来每千克盈利6元,每天可售出60千克.经市场调查发现,若每千克降价0.5元,日销售量将增加10千克.在进货价不变的情况下,乙水果店决定采取适当的降价措施增加销售盈利.乙水果店降价多少元时,每天销售这种水果获利最多?最多可获利多少元?18.朝天城区某水果店王阿姨到水果批发市场打算购进一种水果销售,经过讨价还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;①请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?19.精准扶贫工作已经进入攻坚阶段,贫苦户李大叔在政府的帮助下,建起塑料大棚,种植优质草莓,今年二月份正式上市销售.在30天的试销中,每天的销售量与销售天数x满足一次函数关系,部分数据如下表:设第x天的售价为y元/千克,y关于x的函数关系满足如下图像:已知种植销售草莓的成本为5元/千克,每天的利润是w元.(利润=销售收入﹣成本)(1)将表格中的最后一列补充完整;(2)求y关于x的函数关系式;(3)求销售草莓的第几天时,当天的利润最大?最大利润是多少元?20.如图,预防新冠肺炎疫情期间,某校在校门口用塑料膜围成一个临时隔离区,隔离区分成两个区域,中间用塑料膜隔开.学校利用围墙作为一边,用总长为48m的塑料膜围成了如图所示的两块矩形区域;已知围墙的可用长度不超过21m,设AB的长为x m,矩形区域ABCD的面积y m2.(1)求y与x之间的函数解析式,并求出自变量x的取值范围;(2)当矩形ABCD的面积为84m2时,求AB的长度;(3)当AB的长度是多少时,矩形区域ABCD的面积y取得最大值,最大值是多少?答案第1页,共1页 参考答案:1.A2.C3.C4.A5.A6.B7.A8.A9.81011. 2324S x x =-+1463≤<x 12.1113.2014.1650≤t ≤6且t ≠3 15.4516.5017.(1)20%(2)乙水果店每千克该种水果降价1.5元时,销售盈利最多,每天可获利405元 18.(1)实际购进这种水果每千克20元(2)①11440y x y =-+;①销售单价定为30元时利润最大,最大利润为1100元 19.(1)见解析(2)y =119(020)29(2030)x x x ⎧-+<≤⎪⎨⎪<≤⎩ (3)销售草莓的第30天时,当天的利润最大,最大利润是272元 20.(1)y =﹣3x 2+48x ,9≤x <16(2)14米(3)AB 的长度是9m 时,矩形区域ABCD 的面积y 取得最大值,最大值是189m 2。

人教版九年级数学上册22.3实际问题与二次函数同步练习题含答案

 人教版九年级数学上册22.3实际问题与二次函数同步练习题含答案

人教版九年级数学上册22.3实际问题与二次函数同步练习题一.选择题(共10小题)1.二次函数y=﹣x2﹣8x+c的最大值为0,则c的值等于()A.4B.﹣4C.﹣16D.162.二次函数y=ax2+bx+a(a≠0)的最大值是零,则代数式|a|+化简结果为()A.a B.1C.﹣a D.03.已知一个三角形的面积S与底边x的关系是S=x2﹣2x+6,要使S有最小值,则x的值为()A.1B.2C.﹣1D.54.已知:抛物线y=x2﹣6x+c的最小值为1,那么c的值是()A.10B.9C.8D.75.在半径为4的圆中,挖去一个边长为xcm的正方形,剩下部分面积为ycm2,则关于y与x之间函数关系式为()A.y=πx2﹣4x B.y=16π﹣x2C.y=16﹣x2D.y=x2﹣4x6.已知正方形ABCD,设AB=x,则正方形的面积y与x之间的函数关系式为()A.y=4x B.y=x2C.x=D.7.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x元,所获利润为y元,可得函数关系式为()A.y=﹣10x2+110x+10B.y=﹣10x2+100xC.y=﹣10x2+100x+110D.y=﹣10x2+90x+1008.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为()A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.59.用长为12m的铝合金型材做一个形状如图所示的矩形窗框,则做成的窗框的最大透光面积为()A.4m2B.6m2C.12m2D.16m210.直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()A.B.C.D.二.填空题(共7小题)11.若二次函数y=kx2+k2﹣3有最大值1,则k的值是.12.二次函数y=2x2﹣2x+6的最小值是.13.一根长为40cm的铁丝,把它弯成一个矩形框,设矩形的长为xcm,矩形的面积为y(cm2),试写出y与x的函数关系式:.(注意标注自变量x的取值范围)14.正方形的边长是x,面积是A,请写出A与x的关系式:.它与y=x2的图象有什么不同?.15.你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似地看为抛物线,如图,正在甩绳的甲、乙两名学生拿绳的手间距离为4m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高1.5m,则学生丁的身高为m(建立的平面直角坐标系如图所示).16.周长为13cm的矩形铁板上剪去一个等边三角形(这个等边三角形的一边是矩形的宽),则矩形宽为cm,长为cm时,剩下的面积最大,这个最大面积是.17.已知二次函数y=x2﹣2(m﹣1)x+m2﹣2m﹣3的图象与函数y=﹣x2+6x的图象交于y 轴一点,则m=.三.解答题(共8小题)18.y=﹣2x2+4x+1,且2≤x≤4,求y的最大值,如有最小值,再求出最小值.19.如图,将两张长为8,宽为2的矩形纸条交叉放置.(1)求证:重叠部分的图形是菱形;(2)求重叠部分图形的周长的最大值和最小值.(要求画图、推理、计算)20.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径r之间的函数关系式,这个函数是二次函数吗?请写出半径r的取值范围.21.如图,某涵洞的截面是抛物线的一部分,现水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,求涵洞所在抛物线的解析式.22.学开车的人不仅需要熟悉交通规则、掌握驾驶要领,还要掌握为使车子停止前进而刹车后汽车继续滑行的距离.资料显示,当路况良好、路面于燥时,刹车后汽车滑行的距离与车速之间的对应关系如表所示:(1)绘制汽车滑行的距离s(单位:m)相对于车速v(单位:km/h)的图象.(2)证明汽车滑行的距离s(单位:m)及车速v(单位:km/h)之间有如下的关系:s=v(3)利用以上信息估计上表所未填出的车速及所对应的汽车滑行的距离.(4)在路况不良时,表中的滑行距离须分别修正为45,72,105,144及189m,在这种情况下,(2)中的函数关系应如何调整?23.如图,一位运动员推铅球,铅球运行高度y m与水平距离x m之间的函数关系式是y=﹣x2+x+.问:此运动员能把铅球推出多远?24.如图,一元二次方程x2+2x﹣3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x 轴的两个交点C,B的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为,G 点坐标为;(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.25.如图,抛物线y=﹣x2+4x﹣3与坐标轴交与A、B、C三点,点M在线段BC上,将线段OM绕O点逆时针旋转90゜,点M的对应点N恰好落在第一象限的抛物线上,求N 点的坐标.人教版九年级数学上册22.3实际问题与二次函数同步练习题参考答案一.选择题(共10小题)1.二次函数y=﹣x2﹣8x+c的最大值为0,则c的值等于()A.4B.﹣4C.﹣16D.16【解答】解:y=﹣x2﹣8x+c=﹣(x﹣4)2+16+c,∵最大值为0,∴16+c=0,解得c=﹣16.故选:C.2.二次函数y=ax2+bx+a(a≠0)的最大值是零,则代数式|a|+化简结果为()A.a B.1C.﹣a D.0【解答】解:因为函数的最大值是0,所以=0,则|a|+=|a|=﹣a.故选:C.3.已知一个三角形的面积S与底边x的关系是S=x2﹣2x+6,要使S有最小值,则x的值为()A.1B.2C.﹣1D.5【解答】解:∵S=x2﹣2x+6=(x﹣1)2+5,∴当x=1时,S有最小值5.故选:A.4.已知:抛物线y=x2﹣6x+c的最小值为1,那么c的值是()A.10B.9C.8D.7【解答】解:因为二次函数y=x2﹣6x+c的最小值为1,所以==1,解得c=10.故选:A.5.在半径为4的圆中,挖去一个边长为xcm的正方形,剩下部分面积为ycm2,则关于y与x之间函数关系式为()A.y=πx2﹣4x B.y=16π﹣x2C.y=16﹣x2D.y=x2﹣4x【解答】解:圆面积是16π,正方形面积是x2,则函数关系式是:y=16π﹣x2.故选:B.6.已知正方形ABCD,设AB=x,则正方形的面积y与x之间的函数关系式为()A.y=4x B.y=x2C.x=D.【解答】解:由正方形面积公式得:y=x2.故选:B.7.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x元,所获利润为y元,可得函数关系式为()A.y=﹣10x2+110x+10B.y=﹣10x2+100xC.y=﹣10x2+100x+110D.y=﹣10x2+90x+100【解答】解:由题意,得y=(10+x﹣9)(100﹣10x),y=﹣10x2+90x+100.故选:D.8.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为()A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.5【解答】解:新增加的投资额x万元,则增加产值万元.这函数关系式是:y=2.5x+15.故选:C.9.用长为12m的铝合金型材做一个形状如图所示的矩形窗框,则做成的窗框的最大透光面积为()A.4m2B.6m2C.12m2D.16m2【解答】解:设窗框的长为x,∴宽为,∴y=x,即y=﹣x2+4x,∵<0∴y有最大值,即:y最大===6m2.故选:B.10.直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()A.B.C.D.【解答】解:设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a ﹣x).根据三角形面积公式则有:y=ax﹣x2,以上是二次函数的表达式,图象是一条抛物线,故选B.二.填空题(共7小题)11.若二次函数y=kx2+k2﹣3有最大值1,则k的值是﹣2.【解答】解:∵二次函数y=kx2+k2﹣3有最大值1,∴k<0,k2﹣3=1,解得,k=﹣2,故答案为:﹣2.12.二次函数y=2x2﹣2x+6的最小值是.【解答】解:y=2x2﹣2x+6=2(x2﹣x)+6=2(x﹣)2+,可见,二次函数的最小值为.故答案为.13.一根长为40cm的铁丝,把它弯成一个矩形框,设矩形的长为xcm,矩形的面积为y(cm2),试写出y与x的函数关系式:y=﹣x2+20x(10≤x<20).(注意标注自变量x的取值范围)【解答】解:矩形的另一边长是:(20﹣x)cm;则面积y=x(20﹣x)=﹣x2+20x,根据线段为正值可得到:x>0,20﹣x>0,20﹣x≤x,解得10≤x<20.故答案为:y=﹣x2+20x(10≤x<20).14.正方形的边长是x,面积是A,请写出A与x的关系式:A=x2.它与y=x2的图象有什么不同?它与y=x2的图象完全一样.【解答】解:∵正方形的边长是x,面积是A,∴A与x的关系式为:A=x2,∴它与y=x2的图象完全一样.故答案为:A=x2,它与y=x2的图象完全一样.15.你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似地看为抛物线,如图,正在甩绳的甲、乙两名学生拿绳的手间距离为4m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高1.5m,则学生丁的身高为m(建立的平面直角坐标系如图所示).【解答】解:设所求的函数的解析式为y=ax2+bx+c,由已知,函数的图象过(﹣1,1),(0,1.5),(3,1)三点,易求其解析式为y=﹣x2+x+,∵丁头顶的横坐标为1.5,∴代入其解析式可求得其纵坐标为m.16.周长为13cm的矩形铁板上剪去一个等边三角形(这个等边三角形的一边是矩形的宽),则矩形宽为cm,长为cm时,剩下的面积最大,这个最大面积是(4﹣).【解答】解:设矩形的宽为x,长为(﹣x),则剪去三角形后剩下的面积为(﹣x)x﹣x•x,经整理,得:y=x2+x,当x==4﹣时,y取得最大值,y最大=(4﹣),此时长为(+).17.已知二次函数y=x2﹣2(m﹣1)x+m2﹣2m﹣3的图象与函数y=﹣x2+6x的图象交于y 轴一点,则m=﹣1或3.【解答】解:依题意,在y=﹣x2+6x中,x=0时,y=0;在y=x2﹣2(m﹣1)x+m2﹣2m﹣3中,x=0时,y=m2﹣2m﹣3=0;即m2﹣2m﹣3=0,解得m=﹣1或3.三.解答题(共8小题)18.y=﹣2x2+4x+1,且2≤x≤4,求y的最大值,如有最小值,再求出最小值.【解答】解:当x=2时,y=1,当x=2时,y=﹣15,又∵y=﹣2x2+4x+1=﹣2(x﹣1)2+3.∴x=1时,y最大值=3,综上所述若2≤x≤4时,y=﹣2x2+4x+1的最大值是1、最小值是﹣15.19.如图,将两张长为8,宽为2的矩形纸条交叉放置.(1)求证:重叠部分的图形是菱形;(2)求重叠部分图形的周长的最大值和最小值.(要求画图、推理、计算)【解答】(1)证明:过点A作AE⊥BC于E,AF⊥CD于F,∵两条纸条宽度相同(对边平行),∴AB∥CD,AD∥BC,AE=AF,∴四边形ABCD是平行四边形,∵S▱ABCD=BC•AE=CD•AF,又∵AE=AF,∴BC=CD,∴四边形ABCD是菱形;(2)解:当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,由勾股定理:x2=(8﹣x)2+22,得:4x=17,即菱形的最大周长为17cm.当两张纸条如图所示放置时,即是正方形时取得最小值为:2×4=8.20.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径r之间的函数关系式,这个函数是二次函数吗?请写出半径r的取值范围.【解答】解:∵用一根长为40cm的铁丝围成一个半径为r的扇形,∴扇形的弧长为:(40﹣2r)cm,∴扇形的面积y与它的半径r之间的函数关系式为:y=r(40﹣2r)=﹣r2+20r,此函数是二次函数,<r<20.21.如图,某涵洞的截面是抛物线的一部分,现水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,求涵洞所在抛物线的解析式.【解答】解:根据题意得:A (﹣0.8,﹣2.4),设涵洞所在抛物线解析式为y =ax 2,把x =﹣0.8,y =﹣2.4代入得:a =﹣, 则涵洞所在抛物线解析式为y =﹣x 2.22.学开车的人不仅需要熟悉交通规则、掌握驾驶要领,还要掌握为使车子停止前进而刹车后汽车继续滑行的距离.资料显示,当路况良好、路面于燥时,刹车后汽车滑行的距离与车速之间的对应关系如表所示:(1)绘制汽车滑行的距离s (单位:m )相对于车速v (单位:km /h )的图象.(2)证明汽车滑行的距离s (单位:m )及车速v (单位:km /h )之间有如下的关系: s =v (3)利用以上信息估计上表所未填出的车速及所对应的汽车滑行的距离.(4)在路况不良时,表中的滑行距离须分别修正为 45,72,105,144及189m ,在这种情况下,(2)中的函数关系应如何调整?【解答】解:(1)如图,(2)设函数解析式为y =av 2+bv +c ,代入(48,22.5),(64,36),(80,52.5)得,,解得,函数解析式为s=v,因此汽车滑行的距离s(单位:m)及车速v(单位:km/h)之间有如下的关系:s=v;(3)如表:(4)在路况不良时,表中的滑行距离须分别修正后的数据恰好是对应原数据的2倍,因此将(2)中的每一项对乘以2即可,所得关系式为s=v+.23.如图,一位运动员推铅球,铅球运行高度y m与水平距离x m之间的函数关系式是y=﹣x2+x+.问:此运动员能把铅球推出多远?【解答】解:令y=﹣x2+x+=0,整理得:x2﹣8x﹣20=0,(x﹣10)(x+2)=0,解得x1=10,x2=﹣2(舍去),答:该运动员此次掷铅球的成绩是10m.24.如图,一元二次方程x2+2x﹣3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x 轴的两个交点C,B的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为(﹣1,﹣2),G点坐标为(﹣1,2);(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.【解答】解:(1)解方程x2+2x﹣3=0得x1=﹣3,x2=1.∴抛物线与x轴的两个交点坐标为:C(﹣3,0),B(1,0),设抛物线的解析式为y=a(x+3)(x﹣1).∵A(3,6)在抛物线上,∴6=a(3+3)•(3﹣1),∴a=,∴抛物线解析式为y=x2+x﹣.(2)由y=x2+x﹣=(x+1)2﹣2,∴抛物线顶点P的坐标为(﹣1,﹣2),对称轴方程为x=﹣1.设直线AC的解析式为y=kx+b,∵A(3,6),C(﹣3,0)在该直线上,∴,∴直线AC的解析式为:y=x+3.将x=﹣1代入y=x+3得y=2,∴G点坐标为(﹣1,2).(3)作A关于x轴的对称点A′(3,﹣6),连接A′G,A′G与x轴交于点M即为所求的点.设直线A′G的解析式为y=kx+b.∴,∴直线A′G的解析式为y=﹣2x,令x=0,则y=0.∴M点坐标为(0,0).25.如图,抛物线y=﹣x2+4x﹣3与坐标轴交与A、B、C三点,点M在线段BC上,将线段OM绕O点逆时针旋转90゜,点M的对应点N恰好落在第一象限的抛物线上,求N 点的坐标.【解答】解:∵y=﹣x2+4x﹣3=﹣(x﹣3)(x﹣1),∴抛物线和x轴交于A(1,0),B(3,0)两点,当x=0时,y=﹣3,∴抛物线与y轴交于C(0,﹣3),对称轴为x==2,顶点纵坐标y=﹣4+4×2﹣3=1,顶点坐标D(2,1),∴OC=OB,∴△OBC是等腰直角三角形,∴∠OCB=∠OBC=45°,连结MN,BN.则OM=ON,∵∠COB=∠MOA=90°,∴∠COB﹣∠MOB=∠MON﹣∠MOB,∴∠COM=∠BON,在△OCM与△OBN中,,∴△OCM≌△OBN(SAS),∴∠OCB=∠OBN=45°,∴∠NBC=90°,由B(3,0),C(0,﹣3)可得直线BC解析式为:y=x﹣3,设直线BN的解析式为y=﹣x+m,由B(3,0),可得﹣3+m=0,解得m=3,则直线BN的解析式为y=﹣x+3,联立抛物线和直线解析式可得,解得或(不合题意,舍去)∴N坐标为:N(2,1).。

人教新版九年级数学上册22-3实际问题与二次函数 同步练习【含答案】

人教新版九年级数学上册22-3实际问题与二次函数 同步练习【含答案】

22.3实际问题与二次函数一、单选题1.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为( ) A .y =(x ﹣40)(500﹣10x )B .y =(x ﹣40)(10x ﹣500)C .y =(x ﹣40)[500﹣10(x ﹣50)]D .y =(x ﹣40)[500﹣10(50﹣x )] 2.出售某种文具盒,若每个可获利x 元,一天可售出(6-x)个.当一天出售该种文具盒的总利润y 最大时,x 的值为( )A .1B .2C .3D .4 3.如图是抛物线形拱桥,当拱顶高离水面2m 时,水面宽4m ,水面下降2.5m ,水面宽度增加( )A .1 mB .2 mC .3 mD .6 m 4.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA ,O 恰为水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA 的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y (m )与水平距离x (m )之间的关系式是2y x 2x 3=-++,则下列结论:(1)柱子OA 的高度为3m ;(2)喷出的水流距柱子1m 处达到最大高度;(3)喷出的水流距水平面的最大高度是4m ;(4)水池的半径至少要3m 才能使喷出的水流不至于落在池外.其中正确的有( )A .1个B .2个C .3个D .4 5.如图,隧道的截面是抛物线,可以用y= 21416x -+表示,该隧道内设双行道,限高为3m,那么每条行道宽是()A.不大于4m B.恰好4m C.不小于4m D.大于4m,小于8m6.周长8m的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是()m2A.45B.83C.4D.567.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43 (0≤x≤30).y值越大,表示接受能力越强.如果学生的接受能力逐步增强,则x的取值范围是()A.0≤x≤13B.13≤x≤26C.0≤x≤26D.13≤x≤30 8.如图1,△ABC是直角三角形,△A=90°,AB=8cm,AC=6cm点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是()A.8cm2B.16cm2C.24cm2D.32cm29.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆.当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是()A.140元B.150元C.160元D.180元10.如图所示,已知ABC 中,8BC BC =,上的高4h D =,为BC 上一点,//EF BC ,交AB 于点E ,交AC 于点(F EF 不过A 、)B ,设E 到BC 的距离为x ,则DEF 的面积y 关于x 的函数的图象大致为( ).A .B .C .D .二、填空题11.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m ,那么木船的高不得超过 ______m.12.如图,有一个横截面边缘为抛物线的隧道入口,隧道入口处的底面宽度为8m ,两侧距底面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个隧道入口的最大高度为_________m .13.数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x(x≥100)元,则月销量是___________件,销售该运动服的月利润为___________元(用含x的式子表示).14.某商场以30元/件的进价购进一批商品,按50元/件出售,平均每天可以售出100件.经市场调查,单价每降低5元,则平均每天的销售量可增加20件.若该商品想要平均每天获利1400元,则每件应降价多少元?设每件应降价x元,可列方程为_________.15.某体育公园的圆形喷水池的水柱如图△所示,如果曲线APB表示落点B离点O最远的一条水流(如图△),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式为y=-x2+4x+94,那么圆形水池的半径至少为_______米时,才能使喷出的水流不落在水池外.三、解答题16.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.17.一条隧道的截面如图所示,它的上半部分是一个半圆,下半部分是一个矩形,矩形的一边长为2.5m.(1)求隧道截面的面积S()2m关于半圆半径r()m的函数解析式;(2)当半圆半径为2m时,求截面的面积.(π取3.14,结果精确到0.1)18.在足球比赛中,当守门员远离球门时,进攻队员常常会使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30m的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14m时,足球达到最大高度323m.若以球门底部为坐标原点建立平面直角坐标系,球门PQ的高度为2.44m.(1)通过计算,说明球是否会进球门.(2)如果守门员站在距离球门2m远处,而守门员跳起后最多能摸到2.75m高处,他能否在空中截住这次吊射?19.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃(由两个小矩形花圃组成).设花圃的一边AB为x m,面积为S m2.(1)求S与x之间的函数表达式(写出自变量的取值范围).(2)如果要围成面积为45m2的花圃,那么AB的长是多少米?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.答案1.C2.C3.B4.D5.A6.B7.A8.B9.C10.C11.1.212.64713.2400x + 2252024000x x -+-14.(5030)1002014005x x ⎛⎫--+⨯= ⎪⎝⎭15.9216.正确. 22003x y =或236200y x =-+ 17.(1)21π52S r r =+;(2)当2r 时,2π1016.3S =+≈()2m . 18.(1)球不会进球门;(2)守门员不能在空中截住这次吊射. 19.(1)S =-3x 2+24x(143≤x<8);(2)AB 的长为5m ;(3)能围成面积比45m 2更大的花圃,最大面积为1403m 2,,此时AB =143m ,BC =10m .。

人教版九年级上册数学实际问题与二次函数同步训练(含答案)

人教版九年级上册数学实际问题与二次函数同步训练(含答案)

人教版九年级上册数学22.3 实际问题与二次函数同步训练一、单选题1.已知某二次函数,当x <1时,y 随x 的增大而减小;当x >1时,y 随x 的增大而增大,则该二次函数的解析式可以是() A .y 2= 2(x 1)+B .y 2= 2(x 1)-C .=-y 2 2(x 1)+D .=-y 2 2(x 1)-2.在羽毛球比赛中,某次羽毛球的运动路线可以看作是抛物线214y x bx c =-++的一部分,其中出球点B 离地面O 点的距离是1m ,球落地点A 到O 点的距离是4m ,那么这条抛物线的解析式是( ) A .213144y x x =-++B .213144y x x =-+-C .213144y x x =--+D .213144y x x =---3.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是( )A .12米B .13米C .14米D .15米4.把一根长4a 的铁丝分成两段,每一段弯曲成一个正方形,面积和最小是( )A .2aB .2aC .22aD .24a5.某商品的利润y (元)与售价x (元)之间的函数关系式为y =﹣x 2+8x +9,且售价x 的范围是1≤x ≤3,则最大利润是( ) A .16元B .21元C .24元D .25元6.如图,一个涵洞的截面边缘是抛物线形.现测得当水面宽 1.6m AB =时,涵洞顶点与水面的距离是2m .这时,离开水面1.5m 处,涵洞的宽DE 为( )A B C .0.4 D .0.87.从底面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式是:h =30t ﹣5t 2,这个函数图象如图所示,则小球从第3s 到第5s 的运动路径长为( )A .15mB .20mC .25mD .30m8.小敏在某次投篮中,篮球的运动路线是抛物线215y x =-+3.5的一部分(如图),若命中篮圈中心,则他与篮底的水平距离l 是( )A .3.5mB .3.8mC .4mD .4.5m二、填空题9.矩形的周长为12cm ,设其一边长为xcm ,面积为2cm y ,则y 与x 的函数关系式及自变量x 的取值范围是_________.10.飞机着陆后滑行的距离s (单位:米)与滑行的时间t (单位:秒)之间的函数关系式是21.560s t t =-+,飞机着陆后滑行_____秒才能停下来.11.飞机着陆后滑行的距离s (单位:米)与滑行的时间t (单位:秒)之间的函数关系式是s =96t ﹣1.2t 2,那么飞机着陆后_____秒停下.12.有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m ,跨度为40m .现将它的图形放在坐标系里(如图所示).若在离跨度中心M 点10m 处垂直竖立一铁柱支撑拱顶,这铁柱长______米.13.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是: 21251233y x x =-++,则该运动员此次掷铅球的成绩是________ m .14.某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x 元(x 为整数),每个月的销售利润为y 元,那么y 与x 的函数关系式是____________.15.“十一”黄金周,某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m (件)与每件的销售价x (元),满足关系:m =140-x .写出商场卖这种商品每天的销售利润 y 与每件的售价x 之间的函数关系式是_________.16.按照防疫要求,学生在进校时必须排队接受体温检测,某校统计了学生早晨到校情况,发现从7:00开始,在校门口的学生人数y 随时间x (单位:分钟)的变化情况的图象是如图所示的某抛物线的一部分,则校门口排队等待体温检测的学生最多时有 ______人.三、解答题17.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件:(2)当每件商品降价多少元时,该商店每天销售利润最大?18.某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售价格为25元/件时,每天的销售量为250件,如调整价格,每上涨1元,每天的销售量就减少10件.(1)请写出商场销售这种文具,每天所得的销售利润w(元)与销售价格/x(元件)之间的函数关系式;(2)销售价格为多少元时,该文具的销售利润最大?(3)商场的营销部结合上述情况,提出了A,B两种营销方案.方案A:该文具的销售价格高于进价且不超过30元/件;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请通过计算说明哪种方案的最大利润更高.19.如图,在△ABC中,△ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为2cm/s,点Q的速度为1cm/s,点P移动到B点后停止,点Q也随之停止运动,设P、Q从点A、B同时出发,运动时间为ts,四边形APQC的面积是S(1)试写出S与t之间的函数关系式,并确定自变量的取值范围;(2)若S是21cm2时,确定t值;(3)t为何值时,S有最大(或最小)值,求出这个最值.20.某商厦灯具部投资销售一种进价为每件20元的护眼台灯,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并直接写出自变量x的取值范围.(2)如果想要每月获得的利润为2000元,那么每月的单价定为多少元?(3)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?参考答案:1.B 2.A 3.D 4.C 5.C 6.D 7.B 8.C9.y =−x 2+6x (0<x <6) 10.20 11.40 12.12 13.1014.()2101002000012y x x x =-++≤≤15.21704200y x x =-+- 16.164 17.(1)26(2)当每件商品降价15元时,该商店每天销售利润最大. 18.(1)w = -10x 2+700x -10000(2)销售价格为35元/件时,该文具每天的销售利润最大 (3)方案A 的最大利润更高,理由见解析 19.(1)S =t 2-4t +24(0≤t ≤4) (2)t =1或t =3(3)t =2时,S 有最小值2020.(1)w =-10x 2+700x -10000(20≤x ≤32)(2)如果张明想要每月获得的利润为2000元,张明每月的单价定为30元 (3)当销售单价定为32元时,每月可获得最大利润,最大利润是2160元。

人教版 九年级数学 22.3 实际问题与二次函数 培优训练(含答案)

人教版 九年级数学 22.3 实际问题与二次函数  培优训练(含答案)

人教版 九年级数学 22.3 实际问题与二次函数培优训练一、选择题(本大题共8道小题)1. 某企业生产季节性产品,当产品无利润时,企业自动停产,经过调研,它一年中每月获得的利润y (万元)和月份n 之间满足函数关系式y =-n 2+12n -11,则企业停产的月份为( ) A .1月和11月 B .1月、11月和12月C .1月D .1月至11月2. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A .50 mB .100 mC .160 mD .200 m3. 如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数解析式是y=-112x 2+23x +53,则该运动员此次掷铅球的成绩是( )A .6 mB .12 mC .8 mD .10 m4. (2020·山西)竖直上抛物体离地面的高度h (m )与运动时间t (s )之间的关系可以近似地用公式h =-5t 2+v 0t +h 0表示,其中h 0 (m)是物体抛出时离地面的高度,v 0(m/s )是物体抛出时的速度.某人将一个小球从距地面1.5m 的高处以20m/s 的速度竖直向上抛出,小球达到的离地面的最大高度为( ) A .23.5m B .22.5m C .21.5m D .20.5m5. 一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m,在如图(示意图)所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=-15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2 m6. 一种包装盒的设计方法如图所示,四边形ABCD是边长为80 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四点重合于图中的点O,得到一个底面为正方形的长方体包装盒.设BE=CF=x cm,要使包装盒的侧面积最大,则x应取()A.30 B.25 C.20 D.157. (2020·绵阳)三孔桥横截面的三个孔都呈抛物线,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米.若大孔水面宽度为20米,则单个小孔的水面宽度为()A.43B.2C.13D.7米8. (2020·长沙)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p 与加工煎炸的时间t (单位:分钟)近似满足函数关系式:c bt at p ++=2(0 a ,a ,b ,c 为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为 ·································································· ( ) A .3.50分钟B .4.05分钟C .3.75分钟D .4.25分钟二、填空题(本大题共8道小题)9. 如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF分开.已知篱笆的总长为900 m(篱笆的厚度忽略不计),当AB=________m 时,矩形ABCD 的面积最大.10. (2020·天门仙桃潜江)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为 元.11. 已知一个直角三角形两直角边长的和为30,则这个直角三角形的面积最大为________.12. 某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t (t · 为正整数....)的增大而增大,a 的取值范围应为________.13. 某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元/件)的关系满足y=-2x+400;(2)工商部门限制售价x满足70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是________.(把所有正确结论的序号都填上)14. 竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.15. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.16. 如图,小明的父亲在相距2 m的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高度都是2.5 m,绳子自然下垂呈抛物线状,身高1 m的小明距较近的那棵树0.5 m时,头部刚好接触到绳子,则绳子的最低点到地面的距离为________m.三、解答题(本大题共4道小题)17. 某服装店购进一批秋衣,价格为每件30元.物价部门规定其销售价格不得高于每件60元,不得低于每件30元.(1)请求出下列各小题中日销售量y(件)与销售单价x(元/件)之间的函数关系式(写出自变量的取值范围).①y是x的一次函数,且当x=60时,y=80;x=50时,y=100.②当销售单价为30元/件时,日销售量为140件,若售价每件每提高1元,日销售量就会减少2件.③y与x的部分对应值如下表:(2)①求该服装店销售这批秋衣日获利w(元)与销售单价x(元/件)之间的函数关系式;②当销售单价为多少时,该服装店日获利最大?最大日获利是多少元?③当x取何值时,服装店日获利不少于1200元?18. 把一个足球垂直于水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米),适用公式h=20t-5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t的值;(3)若存在实数t1和t2(t1≠t2),当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围.19. 2018·荆州为响应荆州市“创建全国文明城市”的号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18 m,另外三边由36 m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=x m,面积为y m2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160 m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).则丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.20. 如图,排球运动员站在O处练习发球,将球从点O正上方2米的点A处发出,把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足解析式y=a(x -6)2+h.已知球网与点O的水平距离为9米,高度为2.43米,球场的边界距点O的水平距离为18米.(1)当h=2.6时,求y与x之间的函数解析式;(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,则h的取值范围是多少?人教版九年级数学22.3 实际问题与二次函数培优训练-答案一、选择题(本大题共8道小题)1. 【答案】B[解析] 由题意知,利润y和月份n之间的函数关系式为y=-n2+12n-11,∴y=-(n-6)2+25,当n=1时,y=0;当n=11时,y=0;当n=12时,y<0.故停产的月份是1月、11月和12月.故选B.2. 【答案】C[解析] 以2 m长线段所在直线为x轴,以其垂直平分线为y轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.3. 【答案】D[解析] 把y=0代入y=-112x2+23x+53,得-112x2+23x+53=0,解得x1=10,x2=-2.又∵x>0,∴x=10.故选D.4. 【答案】C【解析】本题考查二次函数的实际应用.依题意,得h0=1.5m,v0=20m/s,∴高度h(m)与运动时间t(s)之间的关系可以近似地表示为h=-5t2+20t+1.5=-5(t-2)2+21.5,所以某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为21.5m,故选C.5. 【答案】A[解析] ∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数解析式为y=ax2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,∴3.05=a×1.52+3.5.解得a=-15.∴y=-15x2+3.5.可见选项A正确.由图示知,篮圈中心的坐标是(1.5,3.05),可见选项B错误.由图示知,此抛物线的顶点坐标是(0,3.5),可见选项C错误.将x=-2.5代入抛物线的解析式,得y=-15×(-2.5)2+3.5=2.25,∴这次跳投时,球出手处离地面2.25 m可见选项D错误.故选A.6. 【答案】C[解析] 如图,设BE=CF=x cm,则EF=(80-2x)cm.∵△EFM和△CFN都是等腰直角三角形,∴MF=22EF=(40 2-2x)cm,FN=2CF=2x cm,∴包装盒的侧面积=4MF·FN=4·2x(40 2-2x)=-8(x-20)2+3200,故当x=20时,包装盒的侧面积最大.7. 【答案】B【解析】如图所示,建立平面直角坐标系.设大孔对应的函数关系式为y =ax 2+c ,过B (5,c -1.5),F (7,0),则 1.525049c a c a c-=+⎧⎨=+⎩,解得0.062.94a c =-⎧⎨=⎩,∴大孔对应的函数关系式为y =-0.06x 2+2.94.当x =10时,y =-0.06×102+2.94=-3.06,∴H (0,-3.06).设右边小孔顶点坐标为D (10,1.44),则右边小孔对应的函数关系式为y =m (x -10)2+1.44,过点G (12,0),则0= m (12-10)2+1.44,解得m =-0.36,∴右边小孔对应的函数关系式为y =-0.36(x -10)2+1.44,当y =-3.06时,-3.06=-0.36(x -10)2+1.44,解得x =,∴大孔水面宽度为20米,时单个小孔的水面宽度为B 正确.8. 【答案】C【解析】本题考查了二次函数实际应用问题,根据题意,题中的“可食用率”p 应该是最大时为最佳时间,所以先把图中三个点代入c bt at p ++=2,可得到a ,b ,c 的三元一次方程组⎪⎩⎪⎨⎧c b a c b a c b a ++=++=++=5256.04169.0398.0,解得⎪⎩⎪⎨⎧9.15.12.0=-==-c b a ,所以p 应该最大时()75.32.025.12=-=-=-⨯a b t ,因此本题选C .二、填空题(本大题共8道小题)9. 【答案】150[解析] 设AB =x m ,则AB =EF =CD =x m ,所以AD =BC =12(900-3x)m.设矩形ABCD 的面积为y m 2,则y =x·12(900-3x)=-32x 2+450x(0<x <300).由于二次项系数小于0,所以y 有最大值,且当x =-b2a =-4502×(-32)=150时,函数y 取得最大值.故当AB =150 m 矩形ABCD 的面积最大.10. 【答案】70【解析】.设每顶头盔的售价为x 元, 由题意,得:w=(x-50)×[(200+ (80-x ) ×20],=(x-50)×(-20x+1800) =-20x 2+2800x-90000, x=-2800702220b a -=-=-⨯, ∴当销售单价定为70元时,每月可获得最大利润.因此本题答案为70.11. 【答案】225212. 【答案】0<a ≤5【解析】设未来30天每天获得的利润为y ,y =(110-40-t)(20+4t)-(20+4t)a 化简,得y =-4t 2+(260-4a)t +1400-20a ,每天缴纳电商平台推广费用后的利润随天数t(t 为整数)的增大而增大,则-(260-4a )2×(-4)≥30,解得a ≤5,又∵a >0,∴a 的取值范围是0<a ≤5.13. 【答案】①②③ [解析] 由题意知,当70≤x≤150时,y =-2x +400, ∵-2<0,∴y 随x 的增大而减小,∴当x =150时,y 取得最小值,最小值为100,故①正确; 当x =70时,y 取得最大值,最大值为260,故②正确; 设销售这种文化衫的月利润为W 元,则W =(x -60)(-2x +400)=-2(x -130)2+9800, ∵70≤x≤150,∴当x=70时,W取得最小值,最小值为-2(70-130)2+9800=2600,故③正确;当x=130时,W取得最大值,最大值为9800,故④错误.故答案为①②③.14. 【答案】1.6 秒【解析】本题主要考查了二次函数的对称性问题.由题意可知,各自抛出后1.1秒时到达相同最大离地高度,即到达二次函数图象的顶点处,故此二次函数图象的对称轴为t=1.1;由于两次抛小球的时间间隔为1秒,所以当第一个小球和第二个小球到达相同高度时,则这两个小球必分居对称轴左右两侧,由于高度相同,则在该时间节点上,两小球对应时间到对称轴距离相同. 故该距离为0.5秒,所以此时第一个小球抛出后t=1.1+0.5=1.6秒时与第二个小球的离地高度相同.15. 【答案】48[解析] 建立如图所示的平面直角坐标系,设AB与y轴交于点H.∵AB=36 m,∴AH=BH=18 m.由题可知:OH=7 m,CH=9 m,∴OC=9+7=16(m).设该抛物线的解析式为y=ax2+k.∵抛物线的顶点为C(0,16),∴抛物线的解析式为y=ax2+16.把(18,7)代入解析式,得7=18×18a+16,∴7=324a+16,∴a=-1 36,∴y=-136x2+16.当y=0时,0=-136x2+16,∴-136x2=-16,解得x=±24,∴E(24,0),D(-24,0),∴OE =OD =24 m ,∴DE =OD +OE =24+24=48(m).16. 【答案】0.5 [解析] 以抛物线的对称轴为纵轴,向上为正,以对称轴与地面的交点为坐标原点建立平面直角坐标系,则抛物线的解析式可设为y =ax 2+h.由于抛物线经过点(1,2.5)和(-0.5,1),于是求得a =2,h =0.5.三、解答题(本大题共4道小题)17. 【答案】解:(1)①设y 与x 之间的函数关系式为y =kx +b .∵当x =60时,y =80;当x =50时,y =100,∴⎩⎨⎧80=60k +b ,100=50k +b ,解这个方程组,得⎩⎨⎧k =-2,b =200,∴y =-2x +200(30≤x ≤60).②y =140-(x -30)×2=-2x +200(30≤x ≤60).③由表格所给的信息,可猜想y 是x 的一次函数,设y =mx +n .∵当x =35时,y =130;x =40时,y =120,∴⎩⎨⎧130=35m +n ,120=40m +n , 解这个方程组,得⎩⎨⎧m =-2,n =200, ∴y =-2x +200.当x =45时,y =-2×45+200=110;当x =50时,y =-2×50+200=100;当x =55时,y =-2×55+200=90,均符合题意.∴y =-2x +200(30≤x ≤60).(2)①w =(x -30)(-2x +200)-450=-2x 2+260x -6450(30≤x ≤60).②w =-2x 2+260x -6450=-2(x -65)2+2000.∵30≤x ≤60,∴当x=60时,w最大,最大值为1950.故当销售单价为60元/件时,该服装店日获利最大,最大日获利为1950元.③∵a=-2,且对称轴为直线x=65,∴当30≤x≤60时,w随x的增大而增大.由-2(x-65)2+2000=1200,解得x1=85(舍去),x2=45,∴当45≤x≤60时,服装店日获利不少于1200元.18. 【答案】解:(1)当t=3时,h=20t-5t2=20×3-5×9=15(米),∴此时足球距离地面的高度为15米.(2分)(2)∵h=10,∴20t-5t2=10,即t2-4t+2=0,解得t1=2+2,t2=2-2,∴经过2+2或2- 2 秒时,足球距离地面的高度为10米.(4分)(3)∵m≥0,由题意得t1和t2是方程20t-5t2=m的两个不相等的实数根,∴b2-4ac=(-20)2-20m>0,∴m<20,∴m的取值范围是0≤m<20.(8分)19. 【答案】解:(1)y=-2x2+36x(9≤x<18).(2)由题意得-2x2+36x=160,解得x1=10,x2=8(不符合题意,舍去).∴x的值为10.(3)∵y=-2x2+36x=-2(x-9)2+162,∴x=9时,y有最大值162.设购买乙种绿色植物a棵,购买丙种绿色植物b棵,由题意得14(400-a-b)+16a+28b=8600,∴a+7b=1500,∴b的最大值为214,即丙种植物最多可以购买214棵,此时a=2,需要种植的面积=0.4×(400-214-2)+1×2+0.4×214=161.2(m2)<162 m2,∴这批植物可以全部栽种到这块空地上.20. 【答案】解:(1)当h=2.6时,y=a(x-6)2+2.6.因为点A(0,2)在抛物线上,所以2=a(0-6)2+2.6,解得a=-1 60,所以y与x之间的函数解析式为y=-160(x-6)2+2.6.(2)球能越过球网且会出界.理由:当x=9时,y=-160(9-6)2+2.6=2.45>2.43,所以球能越过球网;当x=18时,y=-160(18-6)2+2.6=-2.4+2.6=0.2>0,所以球会出界.(3)把x=0,y=2代入y=a(x-6)2+h,得a=2-h 36,所以y=2-h36(x-6)2+h.当x=9时,y=2-h36(9-6)2+h=2+3h4>2.43.①当x=18时,y=2-h36(18-6)2+h=8-3h≤0.②由①②解得h≥8 3.。

人教版九年级上册数学 22.3 实际问题与二次函数 课后训练(含答案)

人教版九年级上册数学 22.3 实际问题与二次函数 课后训练(含答案)

人教版九年级数学22.3 实际问题与二次函数课后训练一、选择题1. 如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD的总长为12 m,则该梯形储料场ABCD的最大面积是()A.18 m2B.18 3 m2 C.24 3 m2 D.45 32m22. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 mC.160 m D.200 m3. 如图,利用一面墙,其他三边用80米长的篱笆围成一块矩形场地,墙长为30米,则围成矩形场地的最大面积为()A.800平方米B.750平方米C.600平方米D.2400平方米4. 如图,在△ABC中,∠C=90°,AB=10 cm,BC=8 cm,点P从点A沿AC 向点C以1 cm/s的速度运动,同时点Q从点C沿CB向点B以2 cm/s的速度运动(点Q运动到点B时,两点同时停止运动),在运动过程中,四边形P ABQ的面积的最小值为()A.19 cm2B.16 cm2C.15 cm2D.12 cm25. 如图,将一个小球从斜坡上的点O处抛出,小球的抛出路线可以用二次函数y=4x-12x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5 m时,小球距点O的水平距离为3 mB.小球距点O的水平距离超过4 m后呈下降趋势C.小球落地点距点O的水平距离为7 mD.小球距点O的水平距离为2.5 m和5.5 m时的高度相同6. 一种包装盒的设计方法如图所示,四边形ABCD是边长为80 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四点重合于图中的点O,得到一个底面为正方形的长方体包装盒.设BE=CF=x cm,要使包装盒的侧面积最大,则x应取()A.30 B.25 C.20 D.157. 用长为12 m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,垂足分别为A,B,∠C=∠D=∠E.设CD=DE=x m,五边形ABCDE的面积为S m2,则S的最大值为()A.12 3 B.12 C.24 3 D.没有最大值8. 一位篮球运动员在距离篮圈中心水平距离4 m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m时,达到最大高度3.5 m,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m,在如图(示意图)所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=-15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2 m二、填空题9. 某种商品每件的进价为20元,经调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,则可卖出(30-x)件.若要使销售利润最大,则每件的售价应为________元.10. 如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF 分开.已知篱笆的总长为900 m(篱笆的厚度忽略不计),当AB=________m时,矩形ABCD的面积最大.11. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.12. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.13. 某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元/件)的关系满足y=-2x+400;(2)工商部门限制售价x满足70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是________.(把所有正确结论的序号都填上)14. 飞机着落后滑行的距离s(单位:米)关于滑行时间t(单位:秒)的函数解析式是s=60t-32t2,则飞机着落后滑行的最长时间为________秒.15. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.三、解答题16. 超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元/件,每天销售量会减少1件.设销售单价增加x元/件,每天售出y 件.(1)请写出y与x之间的函数解析式(不用写x的取值范围);(2)当x为多少时,超市每天销售这种玩具可获得利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?17. 如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,点Q以2 cm/s 的速度向点D移动,当其中一点到达终点时,另一点也随之停止移动.(1)经过几秒,P,Q两点之间的距离是10 cm?(2)P,Q两点之间的距离何时最小?18. 如图,排球运动员站在O处练习发球,将球从点O正上方2米的点A处发出,把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足解析式y=a(x -6)2+h.已知球网与点O的水平距离为9米,高度为2.43米,球场的边界距点O的水平距离为18米.(1)当h=2.6时,求y与x之间的函数解析式;(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,则h的取值范围是多少?人教版 九年级数学 22.3 实际问题与二次函数课后训练-答案一、选择题1. 【答案】C [解析] 如图,过点C 作CE ⊥AB 于点E , 则四边形ADCE 为矩形,∠DCE =∠CEB =90°, 则∠BCE =∠BCD -∠DCE =30°. 设CD =AE =x m ,则BC =(12-x)m.在Rt △CBE 中,∵∠CEB =90°,∠BCE =30°, ∴BE =12BC =(6-12x)m , ∴AD =CE =BC 2-BE 2=(6 3-32x)m ,AB =AE +BE =x +6-12x =(12x +6)m ,∴梯形ABCD 的面积=12(CD +AB)·CE =12(x +12x +6)·(6 3-32x) =-3 38x 2+3 3x +18 3 =-3 38(x -4)2+24 3.∴当x =4时,S 最大=24 3.即CD 的长为4 m 时,梯形储料场ABCD 的面积最大为24 3 m 2.故选C.2. 【答案】C[解析] 以2 m 长线段所在直线为x 轴,以其垂直平分线为y 轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.3. 【答案】B[解析] 设矩形场地中平行于墙的边长为x 米,则垂直于墙的边长为80-x2米,围成矩形场地的面积为y 平方米,则y =x ·(80-x )2=-12x 2+40x =-12(x -40)2+800.∵a <0,∴x <40时,y 随x 的增大而增大,由于墙长为30米,∴0<x ≤30,∴当x =30时,y 取得最大值,为-12×(30-40)2+800=750.4. 【答案】C[解析] 在Rt △ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,∴AC =AB 2-BC 2=6 cm.设运动时间为t s(0<t≤4),则PC =(6-t)cm ,CQ =2t cm ,∴S 四边形PABQ =S △ABC -S △CPQ =12AC·BC -12PC·CQ =12×6×8-12(6-t)×2t =t 2-6t +24=(t -3)2+15,∴当t =3时,四边形PABQ 的面积取得最小值,最小值为15 cm 2. 故选C.5. 【答案】A[解析] 令y =7.5,得4x -12x 2=7.5.解得x 1=3,x 2=5.可见选项A错误.由y =4x -12x 2得y =-12(x -4)2+8,∴对称轴为直线x =4,当x >4时,y 随x 的增大而减小,选项B 正确.联立y =4x -12x 2与y =12x ,解得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =7,y =72.∴抛物线与直线的交点坐标为(0,0),⎝ ⎛⎭⎪⎫7,72,可见选项C 正确. 由对称性可知选项D 正确.综上所述,只有选项A 中的结论是错误的,故选A.6. 【答案】C[解析] 如图,设BE =CF =x cm ,则EF =(80-2x )cm.∵△EFM 和△CFN 都是等腰直角三角形,∴MF =22EF =(40 2-2x )cm ,FN =2CF =2x cm ,∴包装盒的侧面积=4MF ·FN =4·2x (40 2-2x )=-8(x -20)2+3200,故当x=20时,包装盒的侧面积最大.7. 【答案】A[解析] 连接EC,过点D作DF⊥EC,垂足为F.∵∠DCB=∠CDE=∠DEA,∠EAB=∠CBA=90°,∴∠DCB=∠CDE=∠DEA=120°.∵DE=CD,∴∠DEC=∠DCE=30°,∴∠CEA=∠ECB=90°,∴四边形EABC为矩形.∵DE=x m,∴AE=(6-x)m,DF=12x m,EC=3x m,∴S=12·3x·12x+(6-x)·3x=-3 34x2+6 3x(0<x<6),故当x=4时,S最大=123.8. 【答案】A[解析] ∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数解析式为y=ax2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,∴3.05=a×1.52+3.5.解得a=-15.∴y=-15x2+3.5.可见选项A正确.由图示知,篮圈中心的坐标是(1.5,3.05),可见选项B错误.由图示知,此抛物线的顶点坐标是(0,3.5),可见选项C错误.将x=-2.5代入抛物线的解析式,得y=-15×(-2.5)2+3.5=2.25,∴这次跳投时,球出手处离地面2.25 m可见选项D错误.故选A.二、填空题9. 【答案】25[解析] 设利润为w元,则w=(x-20)(30-x)=-(x-25)2+25. ∵20≤x≤30,∴当x =25时,二次函数有最大值25.10. 【答案】150[解析] 设AB =x m ,则AB =EF =CD =x m ,所以AD =BC =12(900-3x)m.设矩形ABCD 的面积为y m 2,则y =x·12(900-3x)=-32x 2+450x(0<x <300).由于二次项系数小于0,所以y 有最大值,且当x =-b2a =-4502×(-32)=150时,函数y 取得最大值.故当AB =150 m 矩形ABCD 的面积最大.11. 【答案】75[解析] 设与墙垂直的一边的长为x m ,则与墙平行的一边的长为27-(3x -1)+2=(30-3x)m.因此饲养室总占地面积S =x(30-3x)=-3x 2+30x ,∴当x =-302×(-3)=5时,S 最大,S最大值=-3×52+30×5=75.故能建成的饲养室总占地面积最大为75 m 2.12. 【答案】y =-19(x +6)2+413. 【答案】①②③[解析] 由题意知,当70≤x≤150时,y =-2x +400,∵-2<0,∴y 随x 的增大而减小,∴当x =150时,y 取得最小值,最小值为100,故①正确; 当x =70时,y 取得最大值,最大值为260,故②正确; 设销售这种文化衫的月利润为W 元,则W =(x -60)(-2x +400)=-2(x -130)2+9800, ∵70≤x≤150,∴当x =70时,W 取得最小值,最小值为-2(70-130)2+9800=2600,故③正确;当x =130时,W 取得最大值,最大值为9800,故④错误. 故答案为①②③.14. 【答案】20[解析] 滑行的最长时间实际上是求顶点的横坐标.∵s =60t -32t 2=-32(t -20)2+600,∴当t =20时,s 的最大值为600.15. 【答案】48[解析] 建立如图所示的平面直角坐标系,设AB 与y 轴交于点H.∵AB =36 m ,∴AH =BH =18 m. 由题可知:OH =7 m ,CH =9 m , ∴OC =9+7=16(m).设该抛物线的解析式为y =ax 2+k. ∵抛物线的顶点为C(0,16), ∴抛物线的解析式为y =ax 2+16.把(18,7)代入解析式,得7=18×18a +16, ∴7=324a +16, ∴a =-136, ∴y =-136x 2+16.当y =0时,0=-136x 2+16, ∴-136x 2=-16,解得x =±24, ∴E(24,0),D(-24,0), ∴OE =OD =24 m ,∴DE =OD +OE =24+24=48(m).三、解答题16. 【答案】解:(1)根据题意,得y =-12x +50. (2)根据题意,得(40+x)(-12x +50)=2250, 解得x 1=50,x 2=10.∵每件利润不能超过60元,∴x=50不合题意,舍去,∴x=10.答:当x为10时,超市每天销售这种玩具可获得利润2250元.(3)根据题意,得w=(40+x)(-12x+50)=-12x2+30x+2000=-12(x-30)2+2450.∵a=-12<0,∴当x<30时,w随x的增大而增大,∴当x=20时,w最大=2400.答:当x为20时w最大,最大值是2400.17. 【答案】解:(1)设经过x s,P,Q两点之间的距离是10 cm,则AP=3x,CQ=2x,过点Q作QM⊥AB于点M,则PM=|16-2x-3x|=|16-5x|.根据勾股定理,得PM2+QM2=PQ2,即(16-5x)2+62=102,解得x1=1.6,x2=4.8.答:经过1.6 s或4.8 s,P,Q两点之间的距离是10 cm. (2)∵PQ=(16-5x)2+62,∴当16-5x=0,即x=165时,PQ最小.故当点P,Q出发165s时,PQ最小.18. 【答案】解:(1)当h=2.6时,y=a(x-6)2+2.6.因为点A(0,2)在抛物线上,所以2=a(0-6)2+2.6,解得a=-1 60,所以y与x之间的函数解析式为y=-160(x-6)2+2.6.(2)球能越过球网且会出界.理由:当x=9时,y=-160(9-6)2+2.6=2.45>2.43,所以球能越过球网;当x=18时,y=-160(18-6)2+2.6=-2.4+2.6=0.2>0,所以球会出界.(3)把x=0,y=2代入y=a(x-6)2+h,得a=2-h 36,所以y=2-h36(x-6)2+h.当x=9时,y=2-h36(9-6)2+h=2+3h4>2.43.①当x=18时,y=2-h36(18-6)2+h=8-3h≤0.②由①②解得h≥8 3.。

人教版九年级数学上册《22.3实际问题与二次函数》同步练习题(附答案)

人教版九年级数学上册《22.3实际问题与二次函数》同步练习题(附答案)

人教版九年级数学上册《22.3实际问题与二次函数》同步练习题(附答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由15元降为9元,设平均每次降价的百分率是,则根据题意,下列方程正确的是()A. B. C. D.2.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示.若小球在发射后第2s与第6s时的高度相等,则下列时刻中小球的高度最高的是第()A.3s B.3.5s C.4s D.6.5s3.某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该景点关闭.经跟踪测算,该景点一年中的利润W(万元)与月份x之间满足二次函数W=﹣x2+16x﹣48,则该景点一年中处于关闭状态有()月.A.5 B.6 C.7 D.84.如图是抛物线型拱桥,当拱顶离水面时,水面宽 .若水面再下降,水面宽度为() .A.B.C.D.5.某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量(件)与销售单价(元)之间满足函数关系式,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A.90元,4500元 B.80元,4500元 C.90元,4000元 D.80元,4000元6.如图,一个移动喷灌架喷射出的水流可以近似地看成抛物线,喷水头的高度(即的长度)是1米.当喷射出的水流距离喷水头8米时,达到最大高度1.8米,水流喷射的最远水平距离是()A.16米B.18米C.20米D.24米7.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A. cm2 B. cm2 C. cm2 D. cm28.如图,为矩形的对角线,已知, CD=4 .点P沿折线以每秒1个单位长度的速度运动(运动到D点停止),过点P作于点E,则的面积y与点P运动的路程x间的函数图象大致是()A. B. C. D.二、填空题:(本题共5小题,每小题3分,共15分.)9.以的速度将小球沿与地面成度角的方向击出时,球的飞行路线是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位m)与飞行时间t(单位s)之间具有函数关系:,那么球从飞出到落地要用的时间是.10.如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是,则铅球推出的水平距离OA的长是m.11.一养鸡专业户计划用116m长的篱笆围成如图所示的三间长方形鸡舍,门MN宽2m,门PQ和RS的宽都是1m,围成的鸡舍面积最大是平方米.12.一位篮球运动员在距离篮圈中心水平距离处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为时,达到最大高度,然后准确落入篮筐内.已知篮圈中心距离地面高度为,在如图所示的平面直角坐标系中,则此抛物线的解析式为.13.从地面竖直向上抛出一小球,小球的高度h(单位:米)与小球运动时间t(单位:秒)的函数关系式是.小球抛出秒后开始下落.三、解答题:(本题共5题,共45分)14.如图,利用长米的一段围墙,用篱笆围一个长方形的场地,中间用篱笆分割出个小长方形,总共用去篱笆米,为了使这个长方形的的面积为平方米,求、边各为多少米.15.某大型超市购进一款热销的消毒洗衣液,由于原材料价格上涨,今年每瓶洗衣液的进价比去年每瓶洗衣液的进价上涨4元,今年用1440元购进这款洗衣液的数量与去年用1200元购进这款洗衣液的数量相同.当每瓶洗衣液的现售价为36元时,每周可卖出600瓶,为了能薄利多销.该超市决定降价销售,经市场调查发现,这种洗衣液的售价每降价1元,每周的销量可增加100瓶,规定这种消毒洗衣液每瓶的售价不低于进价.(1)求今年这款消毒洗衣液每瓶进价是多少元;(2)当这款消毒洗衣液每瓶的售价定为多少元时,这款洗衣液每周的销售利润最大?最大利润是多少元?16.如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=- x2+bx+c表示,且抛物线上的点C到墙面OB的水平距离为3 m,到地面0A的距离为 m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m,那么两排灯的水平距离最小是多少米?17.一大型商场经营某种品牌商品,该商品的进价为每件30元,根据市场调查发现,该商品每周的销售量y(1)求y与x的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于150元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于150元/件时,每销售一件商品便向某慈善机构捐赠m元,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请求出m的取值范围.18.如图,是学校灌溉草坪用到的喷水设备,喷水口离地面垂直高度为米,喷出的水流都可以抽象为平面直角坐标系中的一条抛物线.(1)灌溉设备喷出水流的最远射程可以到达草坪的最外侧边沿点,此时,喷水口喷出的水流垂直高度与水平距离的几组数据如下表.水平距离米竖直高度米结合数据,求此抛物线的表达式,并求出水流最大射程的长度.(2)为了全面灌溉,喷水口可以喷出不同射程的水流,喷水口喷出的另外一条水流形成的抛物线满足表达式,此水流最大射程米,求此水流距离地面的最大高度.参考答案:1.A 2.C 3.A 4.D 5.B 6.C 7.C 8.D9.4s10.1011.45012.13.114.解:设为米,则为米解得:和当时不合题意,舍去当时.答:米,米.15.(1)解:设今年这款消毒洗衣液每瓶进价是x元,则去年这款消毒洗衣液每瓶进价是元根据题意可得:解得:经检验:是方程的解元答:今年这款消毒洗衣液每瓶进价是24元.(2)解:设这款消毒洗衣液每瓶的售价定为m元时,这款洗衣液每周的销售利润w最大根据题意得出:整理得:根据二次函数的性质得出:当时,利润最大最大利润为:答:当这款消毒洗衣液每瓶的售价定为33元时,这款洗衣液每周的销售利润最大,最大利润是8100元.16.(1)解:根据题意得B(0,4),C(3, )把B(0,4),C(3, )代入y=- x2+bx+c得解得所以抛物线解析式为y=- x2+2x+4则y=- (x-6)2+10所以D(6,10)所以拱顶D到地面OA的距离为10m;(2)解:由题意得货运汽车最外侧与地面0A的交点为(2,0)或(10,0)当x=2或x=10时,y= >6所以这辆货车能安全通过(3)解:令y=8,则- (x-6)2+10=8解得x1=6+2 ,x2=6-2则x1-x2=4所以两排灯的水平距离最小是4 .17.(1)解:设y与x的函数关系式为:y=kx+b(k≠0)把x=40,y=10000和x=50,y=9500代入得解得,∴y=-50x+12000;(2)解:根据“在销售过程中要求销售单价不低于成本价,且不高于150元/件.若某一周该商品的销售量不少于6000件,”得解得,30≤x≤120设利润为w元,根据题意得w=(x-30)y=(x-30)(-50x+12000)=-50x2+13500x-360000=-50(x-135)2+551250∴对称轴为直线x=135∵-50<0∴当x<135时,w随x的增大而增大∵30≤x≤120,且x为正整数∴当x=120时,w取最大值为:-50×(120-135)2+551250=552000答:这一周该商场销售这种商品获得的最大利润为552000元,售价为120元;(3)解:根据题意得,w=(x-30-m)(-50x+12000)=-50x2+(13500+50m)x-360000-12000m∴对称轴为x=-=135+0.5m∵-50<0∴当x<135+0.5m时,w随x的增大而增大∵该商场这种商品售价不大于150元/件时,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.对称轴x=135+0.5m,m大于等于10,则对称轴大于等于140,由于x取整数实际上x是二次函数的离散整数点,x取30,40,...140时利润一直增大只需保证x=150时利润大于x=140时即可满足要求,所以对称轴要大于145就可以了故135+0.5m>145解得m>20∵10≤m≤60∴20<m≤60.18.(1)解:由表中数据可知,抛物线的顶点为设抛物线解析式为把代入解析式得:解得抛物线解析式为令,则解得或舍去水流最大射程的长度为米;(2)解:水流最大射程米把,代入解析式则解得,此水流距离地面的最大高度为米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版 2020-2021学年 九年级数学上册 22.3 实际问题与二次函数 暑假提高训练(含答案)一、选择题(本大题共8道小题)1. 某种服装的销售利润y (万元)与销售数量x (万件)之间满足函数解析式y =-2x 2+4x +5,则利润的( ) A .最大值为5万元 B .最大值为7万元 C .最小值为5万元D .最小值为7万元2. 某企业生产季节性产品,当产品无利润时,企业自动停产,经过调研,它一年中每月获得的利润y (万元)和月份n 之间满足函数关系式y =-n 2+12n -11,则企业停产的月份为( ) A .1月和11月 B .1月、11月和12月C .1月D .1月至11月3. 某商品进货单价为90元/个,按100元/个出售时,能售出500个,如果这种商品每个每涨价1元,那么其销售量就减少10个,为了获得最大利润,其单价应定为( ) A .130元/个 B .120元/个 C .110元/个D .100元/个4. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A .50 mB .100 mC .160 mD .200 m5. 如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数解析式是y =-112x 2+23x +53,则该运动员此次掷铅球的成绩是( )A .6 mB .12 mC .8 mD .10 m6. 中环桥是省城太原的一座跨汾河大桥(如图①),它由五个高度不同,跨径也不同的抛物线形钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图①所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线形钢拱的函数解析式为( )A .y =26675x 2 B .y =-26675x 2 C .y =131350x 2D .y =-131350x 27. 一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为 3.05 m ,在如图 (示意图)所示的平面直角坐标系中,下列说法正确的是( )A .此抛物线的解析式是y =-15x 2+3.5 B .篮圈中心的坐标是(4,3.05) C .此抛物线的顶点坐标是(3.5,0) D .篮球出手时离地面的高度是2 m8. 如图,将一个小球从斜坡上的点O处抛出,小球的抛出路线可以用二次函数y=4x-12x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5 m时,小球距点O的水平距离为3 mB.小球距点O的水平距离超过4 m后呈下降趋势C.小球落地点距点O的水平距离为7 mD.小球距点O的水平距离为2.5 m和5.5 m时的高度相同二、填空题(本大题共5道小题)9. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为________ m2.10. 某种商品每件的进价为20元,经调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,则可卖出(30-x)件.若要使销售利润最大,则每件的售价应为________元.11. 某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元/件)的关系满足y=-2x+400;(2)工商部门限制售价x满足70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;①这种文化衫的月销量最大为260件;①销售这种文化衫的月利润最小为2600元;①销售这种文化衫的月利润最大为9000元.其中正确的是________.(把所有正确结论的序号都填上)12. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.13. 竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.三、解答题(本大题共3道小题)14. 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分.如图,甲在O点正上方1 m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x-4)2+h.已知点O与球网的水平距离为5 m,球网的高度为1.55 m.(1)当a=-124时,①求h的值,①通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7 m,离地面的高度为12 5m的Q处时,乙扣球成功,求a的值.15. 一自动喷灌设备的喷流情况如图所示,设水管AB在高出地面1.5米的B处有一自动旋转的喷水头,一瞬间喷出的水流是抛物线状,喷头B与水流最高点C 的连线成45°角,水流最高点C比喷头高2米,求:(1)点C的坐标;(2)此抛物线的解析式;(3)水流落点D到点A的距离.16. 九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下,已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).每天销售量p(件)1981408020(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.人教版2020-2021学年九年级数学上册22.3 实际问题与二次函数暑假提高训练-答案一、选择题(本大题共8道小题)1. 【答案】B2. 【答案】B[解析] 由题意知,利润y和月份n之间的函数关系式为y=-n2+12n-11,∴y=-(n-6)2+25,当n=1时,y=0;当n=11时,y=0;当n=12时,y<0.故停产的月份是1月、11月和12月.故选B.3. 【答案】B[解析] 设利润为y元,涨价x元,则有y=(100+x-90)(500-10x)=-10(x-20)2+9000,故每个商品涨价20元,即单价为120元/个时,获得最大利润.4. 【答案】C[解析] 以2 m长线段所在直线为x轴,以其垂直平分线为y轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.5. 【答案】D[解析] 把y=0代入y=-112x2+23x+53,得-112x2+23x+53=0,解得x1=10,x2=-2.又∵x>0,∴x=10.故选D.6. 【答案】B[解析] 设二次函数的解析式为y=ax2.由题可知,点A的坐标为(-45,-78),代入解析式可得-78=a(-45)2,解得a=-26675,∴二次函数解析式为y=-26675x2.故选B.7. 【答案】A[解析] ∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数解析式为y =ax 2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,∴3.05=a×1.52+3.5.解得a =-15.∴y =-15x 2+3.5.可见选项A 正确.由图示知,篮圈中心的坐标是(1.5,3.05),可见选项B 错误. 由图示知,此抛物线的顶点坐标是(0,3.5),可见选项C 错误.将x =-2.5代入抛物线的解析式,得y =-15×(-2.5)2+3.5=2.25,∴这次跳投时,球出手处离地面2.25 m 可见选项D 错误. 故选A.8. 【答案】A[解析] 令y =7.5,得4x -12x 2=7.5.解得x 1=3,x 2=5.可见选项A错误.由y =4x -12x 2得y =-12(x -4)2+8,∴对称轴为直线x =4,当x >4时,y 随x 的增大而减小,选项B 正确.联立y =4x -12x 2与y =12x ,解得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =7,y =72.∴抛物线与直线的交点坐标为(0,0),⎝ ⎛⎭⎪⎫7,72,可见选项C 正确.由对称性可知选项D 正确.综上所述,只有选项A 中的结论是错误的,故选A.二、填空题(本大题共5道小题)9. 【答案】144 【解析】①围墙的总长为50 m ,设3间饲养室合计长x m ,则饲养室的宽=48-x 4 m ,∴总占地面积为y =x·48-x 4=-14x 2+12x(0<x <48),由y=-14x 2+12x =-14(x -24)2+144,∵x =24在0<x <48范围内,a =-14<0,∴在0<x≤24范围内,y 随x 的增大而增大,∴x =24时,y 取得最大值,y 最大=144 m 2.10. 【答案】25[解析] 设利润为w元,则w=(x-20)(30-x)=-(x-25)2+25.∵20≤x≤30,∴当x=25时,二次函数有最大值25.11. 【答案】①②③[解析] 由题意知,当70≤x≤150时,y=-2x+400,∵-2<0,∴y随x的增大而减小,∴当x=150时,y取得最小值,最小值为100,故①正确;当x=70时,y取得最大值,最大值为260,故②正确;设销售这种文化衫的月利润为W元,则W=(x-60)(-2x+400)=-2(x-130)2+9800,∵70≤x≤150,∴当x=70时,W取得最小值,最小值为-2(70-130)2+9800=2600,故③正确;当x=130时,W取得最大值,最大值为9800,故④错误.故答案为①②③.12. 【答案】y=-19(x+6)2+413. 【答案】1.6 秒【解析】本题主要考查了二次函数的对称性问题.由题意可知,各自抛出后1.1秒时到达相同最大离地高度,即到达二次函数图象的顶点处,故此二次函数图象的对称轴为t=1.1;由于两次抛小球的时间间隔为1秒,所以当第一个小球和第二个小球到达相同高度时,则这两个小球必分居对称轴左右两侧,由于高度相同,则在该时间节点上,两小球对应时间到对称轴距离相同. 故该距离为0.5秒,所以此时第一个小球抛出后t=1.1+0.5=1.6秒时与第二个小球的离地高度相同.三、解答题(本大题共3道小题)14. 【答案】【思维教练】(1)将点P坐标代入解析式求出h的值,当抛物线到达球网位置的时候,对比抛物线与球网的高度判断是否能过网;(2)球能过网说明抛物线过点(0,1)和点(7,125),代入抛物线解析式求解即可.解:(1)①把(0,1)代入y=-124(x-4)2+h,得h=53.(2分)①把x=5代入y=124(x-4)2+53,得y=-124(5-4)2+53=1.625.①1.625>1.55.①此球能过网;(4分)(2)把(0,1),(7,125)代入y=a(x-4)2+h,得⎩⎪⎨⎪⎧16a+h=1,9a+h=125,解得⎩⎪⎨⎪⎧a=-15,h=215.①a=-15.(8分)15. 【答案】解:(1)过点C作CE⊥y轴于点E,CF⊥x轴于点F,则∠CBE=45°,∴EC=EB=2米.∵AB=1.5米,∴CF=AE=AB+BE=1.5+2=3.5(米),∴C(2,3.5).(2)设抛物线的解析式为y=a(x-2)2+3.5.∵抛物线过点B(0,1.5),∴1.5=a(0-2)2+3.5,∴a=-1 2,∴y=-12(x-2)2+3.5=-12x2+2x+32.(3)∵抛物线与x轴相交时,y=0,∴0=-12x2+2x+32,即x2-4x-3=0,解得x1=2+7,x2=2-7(舍去),∴AD=2+7,即水流落点D到点A的距离为(2+7)米.16. 【答案】解:(1)当0≤x≤50时,设商品的售价y 与时间x 的函数关系式为y =kx +b(k 、b 为常数且k≠0),∵y =kx +b 经过点(0,40),(50,90), ∴⎩⎨⎧b =4050k +b =90, 解得⎩⎨⎧k =1b =40,∴y =x +40,∴y 与x 的函数关系式为:y =⎩⎨⎧x +40 (0≤x≤50,且x 为整数)90 (50<x≤90,且x 为整数),(2分) 由数据可知每天的销售量p 与时间x 成一次函数关系.设每天的销售量p 与时间x 的函数关系式为p =mx +n(m ,n 为常数,且m≠0), ∵p =mx +n 过点(60,80),(30,140), ∴⎩⎨⎧60m +n =8030m +n =140,解得⎩⎨⎧m =-2n =200, ∴p =-2x +200(0≤x≤90,且x 为整数),(3分) 当0≤x≤50时, w =(y -30)·p=(x +40-30)(-2x +200), =-2x 2+180x +2000, 当50<x≤90时,w =(90-30)×(-2x +200) =-120x +12000,综上所述,每天的销售利润w 与时间x 的函数关系式是: w =⎩⎨⎧-2x 2+180x +2000 (0≤x≤50,且x 为整数)-120x +12000 (50<x≤90,且x 为整数).(5分)(2)当0≤x≤50时,w =-2x 2+180x +2000 =-2(x -45)2+6050, ∵a =-2<0且0≤x≤50,∴x =45时,w 最大=6050(元),(6分) 当50<x≤90时, w =-120x +12000, ∵k =-120<0,∴w 随x 增大而减小.∴x =50时,w 最大=6000(元), ∵6050>6000,∴x =45时,w 最大=6050(元),即销售第45天时,当天获得的销售利润最大,最大利润是6050元.(8分)(3)24天.(10分)【解法提示】①当0≤x≤50,若w 不低于5600元,则w =-2x 2+180x +2000≥5600,解得30≤x≤60,∴30≤x ≤50;②当50<x≤90时,若w 不低于5600元,则w =-120x +12000≥5600,解得x≤1603,∴50<x≤1603,综合①①可得30≤x≤1603, ∴从第30天到第53天共有24天利润不低于5600元.。

相关文档
最新文档