空间自相关统计量备课讲稿
空间统计-空间自相关分析

空间自相关分析1.1 自相关分析空间自相关分析是指邻近空间区域单位上某变量的同一属性值之间的相关程度,主要用空间自相关系数进行度量并检验区域单位的这一属性值在空间区域上是否具有高高相邻、低低相邻或者高低间错分布,即有无聚集性。
若相邻区域间同一属性值表现出相同或相似的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域也高(低),则称为空间正相关;若相邻区域间同一属性值表现出不同的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域低(高),则称为空间负相关;若相邻区域间同一属性值不表现任何依赖关系,即呈随机分布,则称为空间不相关。
空间自相关分析分为全局空间自相关分析和局部空间自相关分析,全局自相关分析是从整个研究区域内探测变量在空间分布上的聚集性;局域空间自相关分析是从特定局部区域内探测变量在空间分布上的聚集性,并能够得出具体的聚集类型及聚集区域位置,常用的方法有Moran's I 、Gear's C 、Getis 、Morans 散点图等。
1.1.1 全局空间自相关分析全局空间自相关分析主要用Moran's I 系数来反映属性变量在整个研究区域范围内的空间聚集程度。
首先,全局Moran's I 统计法假定研究对象之间不存在任何空间相关性,然后通过Z-score 得分检验来验证假设是否成立。
Moran's I 系数公式如下:112111()()I ()()n nij i j i j n nnij i i j i n w x x x x w x x =====--=-∑∑∑∑∑(式 错误!文档中没有指定样式的文字。
-1)其中,n 表示研究对象空间的区域数;i x 表示第i 个区域内的属性值,j x 表示第j 个区域内的属性值,x 表示所研究区域的属性值的平均值;ij w 表示空间权重矩阵,一般为对称矩阵。
Moran's I 的Z-score 得分检验为:Z =式 错误!文档中没有指定样式的文字。
空间相关和空间自相关

空间相关和空间自相关以空间相关和空间自相关为题,本文将探讨空间相关的概念、应用以及空间自相关的原理和作用。
一、空间相关的概念和应用空间相关是指在地理空间中,不同地点之间存在的相关性。
它是地理学中一个重要的概念,用于描述地理现象在空间上的分布规律和相互关系。
空间相关的研究对于理解地理现象、预测未来趋势以及制定相应的管理和决策非常重要。
空间相关有两种基本形式:正相关和负相关。
正相关表示两个地点的特征值在空间上呈现相似的分布规律,即一个地点的特征值的增加或减少与另一个地点的特征值的增加或减少是同步的。
负相关则表示两个地点的特征值在空间上呈现相反的分布规律,即一个地点的特征值的增加或减少与另一个地点的特征值的增加或减少是相反的。
空间相关的应用广泛,例如在城市规划中,可以利用空间相关分析来确定不同区域的发展趋势和相互关系,从而为城市的合理布局和规划提供科学依据。
在环境保护领域,可以利用空间相关研究分析不同地区的环境污染程度和相互影响,以制定相应的环境保护政策和措施。
在农业生产中,可以利用空间相关分析来确定不同地区的土壤质量和适宜作物的种植,从而提高农业生产的效益。
二、空间自相关的原理和作用空间自相关是指地理现象在空间上的自相关性。
它是空间统计学中的一个重要概念,用于描述地理现象在空间上的自我关联程度。
空间自相关的研究对于揭示地理现象的内在规律和空间结构,以及解释地理现象的空间分布和相互作用机制非常重要。
空间自相关的原理基于地理现象的空间分布规律和相互作用机制。
如果一个地理现象在空间上呈现出聚集的分布规律,即相似的特征值更有可能在空间上相邻地点之间出现,那么可以说这个地理现象具有正的空间自相关。
反之,如果一个地理现象在空间上呈现出分散的分布规律,即相似的特征值更有可能在空间上远离的地点之间出现,那么可以说这个地理现象具有负的空间自相关。
空间自相关的作用是揭示地理现象的空间结构和相互作用机制。
通过空间自相关分析,可以确定地理现象的空间分布规律和相互关系,从而为地理现象的研究和解释提供依据。
基于Moran统计量的空间自相关理论发展和方法改进

三、技术改进
近年来,随着大数据和人工智能技术的发展,基于Moran统计量的空间自相关 理论在数据采集、处理和分析方法上进行了许多创新。
三、技ቤተ መጻሕፍቲ ባይዱ改进
1、数据采集技术:传统的方法主要依赖于调查和统计数据,但这些数据的获 取成本较高且更新速度慢。现在,利用遥感、GIS等技术,可以更快速、准确地 获取空间数据,为空间自相关分析提供了更丰富、更实时的数据源。
五、结论与展望
展望未来,空间自相关理论仍有广阔的发展空间。随着大数据和技术的不断 发展,将会有更多高效、准确的空间数据获取和处理技术涌现,为空间自相关分 析提供更多可能性。此外,新的空间自相关分析方法也正在不断开发和完善,可 以更好地满足不同领域的研究需求。可以预见,未来空间自相关理论将会在更多 领域发挥更大的作用,帮助人们更好地理解和解决各种实际问题。
谢谢观看
三、技术改进
2、数据处理技术:以往的空间自相关分析主要依赖于手动或半自动的方式, 无法处理大规模的数据。而现在,利用编程和算法,可以自动、高效地处理大规 模的空间数据,提高了分析的效率和准确性。
三、技术改进
3、数据分析方法:除了传统的Moran统计量,现在还有许多新的方法用于空 间自相关分析,如Geary系数、Getis-Ord G*等。这些方法可以提供更丰富的空 间自相关信息,如局域自相关和异质性等。
此外,我们还发现这两个指标的计算方法和应用领域也存在一定的差异。 Moran指数多应用于经济、人口等数据的空间自相关研究,而G系数则更多地应用 于生态系统、自然灾害等领域。这可能与不同领域的数据特点和研究者的问题有 关。
结论
结论
本次演示通过对比分析全局空间自相关Moran指数和G系数的特点及应用,揭 示了这两个指标在反映空间数据的聚集性和关联性方面的差异。这有助于深化对 全局空间自相关的理解,为相关领域的研究提供参考。然而,由于研究范围的限 制,本次演示未能涵盖所有相关领域的应用情况。未来可以进一步拓展这两个指 标在其他领域的应用对比研究,同时加强其理论和方法论的探讨。
《空间统计与分析》课程教学大纲

《空间统计与分析》教学大纲一、课程基本信息1.课程代码:211227002.课程中文名称:空间统计与分析课程英文名称:Spatial Statistics and Analysis3.面向对象:地理信息科学,软件工程,信息工程及遥感科学与技术专业4.开课学院(课部)、系(中心、室):信息工程学院空间信息工程系5.总学时数:40讲课学时数:28,实验学时数:126.学分数:2.57.授课语种:中文,考试语种:中文8.教材:二、课程内容简介本课程介绍了空间数据、空间统计和空间分析的概念、基础理论、方法和技术,并结合具体的应用案例,使学生了解空间数据的基本类型、特性和应用潜力,掌握相关空间统计分析方法,并能应用这些方法解决地理、环境、经济、生态等相关领域的空间问题,锻炼学生基本的分析问题与解决问题的科研能力。
三、课程的地位、作用和教学目标尽管空间分析和空间统计已经存在了半个多世纪,但是GIS一一不管其中的S是代表系统(system)还是代表"科学(science)" 的历史却相对较短。
GIS近些年的开展与成熟与空间分析和空间统计的进步密切相关。
空间统计分析,即空间数据的统计分析,是现代计量地理学中的一个快速开展的方向和领域,其核心是认识与地理位置相关的数据间的空间依赖、空间关联或空间自相关,通过空间位置建立数据间的统计关系。
《空间统计与分析》是地理信息科学专业本科生必修的一门专业主干课程,面向地理信息科学专业的大三学生,该课程从基础理论、方法与技术、应用实践三个层次来对空间统计与分析技术进行讲解,由浅入深地引导学生学习、回顾和总结低年级时所学的基本概率统计知识,并逐渐过渡到空间统计与地学分析方法的学习和实践中来。
其目的是帮助学生掌握空间数据的定量统计分析方法,学会对空间数据进行表示、描述、测度,学习如何利用统计知识来挖掘空间模式,进行空间相关性、空间自相关等规律的探索,增强学生的基本科研能力,学会能够针对具体案例,综合利用多种统计方法和软件来解决具体空间问题。
《空间统计分析》课件

空间回归分析
总结词
适用于具有空间依赖性和异质性的数据
VS
详细描述
空间回归分析适用于具有空间依赖性和异 质性的数据。这些数据通常在地理位置上 存在相关性,并且可能受到局部环境、社 会经济等因素的影响。例如,在疾病地理 学中,可以利用空间回归分析来研究疾病 发病率与地理位置之间的关系。
空间回归分析
总结词
R软件介绍
统计计算和图形呈现的编程语言
01
R是一种开源的统计计算和图形呈现的编程语言,广泛应用于数
据分析和数据挖掘领域。
强大的统计分析功能
02
R提供了大量的统计分析函数和包,可以进行各种统计分析,如
回归分析、聚类分析、主成分分析等。
灵活的可视化功能
03
R支持多种图形绘制系统,如基础图形、lattice和ggplot2等,
传感器数据
通过各种传感器采集的环境监 测数据,如气象站、水文站等
。
其他数据
包括商业数据、政府公开数据 等,涵盖了各种与空间位置相
关的信息。
空间数据的处理方法
数据清洗
去除重复、错误或不完 整的数据,确保数据质
量。
坐标转换
将数据从一种坐标系转 换到另一种坐标系,以
便进行空间分析。
数据聚合
将小区域数据合并为较 大区域,以便进行更高
森林火灾风险的空间分析
总结词
评估森林火灾风险的区域差异
详细描述
利用空间统计分析方法,评估不同区 域的森林火灾风险,识别高风险区域 ,为森林防火和资源管理提供科学依 据。
气候变化对农业产量的影响研究
总结词
分析气候变化对农业产量的影响程度
详细描述
通过空间统计分析,研究气候变化对农业产量的影响程度, 分析不同地区的气候变化对农业产量的贡献,为农业可持续 发展提供决策支持。
空间统计-空间自相关分析

空间自相关分析1.1 自相关分析空间自相关分析是指邻近空间区域单位上某变量的同一属性值之间的相关程度,主要用空间自相关系数进行度量并检验区域单位的这一属性值在空间区域上是否具有高高相邻、低低相邻或者高低间错分布,即有无聚集性。
若相邻区域间同一属性值表现出相同或相似的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域也高(低),则称为空间正相关;若相邻区域间同一属性值表现出不同的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域低(高),则称为空间负相关;若相邻区域间同一属性值不表现任何依赖关系,即呈随机分布,则称为空间不相关。
空间自相关分析分为全局空间自相关分析和局部空间自相关分析,全局自相关分析是从整个研究区域内探测变量在空间分布上的聚集性;局域空间自相关分析是从特定局部区域内探测变量在空间分布上的聚集性,并能够得出具体的聚集类型及聚集区域位置,常用的方法有Moran's I 、Gear's C 、Getis 、Morans 散点图等。
1.1.1 全局空间自相关分析全局空间自相关分析主要用Moran's I 系数来反映属性变量在整个研究区域范围内的空间聚集程度。
首先,全局Moran's I 统计法假定研究对象之间不存在任何空间相关性,然后通过Z-score 得分检验来验证假设是否成立。
Moran's I 系数公式如下:112111()()I ()()n nij i j i j n nnij i i j i n w x x x x w x x =====--=-∑∑∑∑∑(式 错误!文档中没有指定样式的文字。
-1)其中,n 表示研究对象空间的区域数;i x 表示第i 个区域内的属性值,j x 表示第j 个区域内的属性值,x 表示所研究区域的属性值的平均值;ij w 表示空间权重矩阵,一般为对称矩阵。
Moran's I 的Z-score 得分检验为:Z =式 错误!文档中没有指定样式的文字。
空间自相关;

空间自相关;空间自相关是地理信息系统中的一个重要概念。
它是研究空间数据的相互依存关系的一种方法,利用统计学模型来揭示空间数据的空间自相关性,用于空间数据的空间模式识别和空间预测分析。
空间自相关与数据的空间分布和空间结构密切相关,可以帮助我们理解和预测自然和人类活动的空间分布及其影响,从而对地理空间信息的应用提供支持。
空间自相关的定义空间自相关指的是一个空间变量值的自我相关性。
它是用来描述相邻空间点之间相互影响程度的指标,表示空间上相邻点之间同一特征的值之间的相似程度。
空间自相关通常通过计算相关系数来衡量同一特征在空间上的相关性。
例如,如何判断一块土地上的植被分布,就需要通过分析该地区内不同处的植被变量之间的相关性程度,以及它们在空间上的分布特点。
空间自相关的应用空间自相关有广泛的应用,主要体现在以下几个方面:1. 空间自相关分析在分类和识别中的应用:空间自相关可以引出地理实体数据的空间分布和空间结构的信息,用于地物分类和识别。
通过对空间自相关的分析,可以掌握实体对象在空间上的相互依存关系,从而更准确地识别复杂的地物类型。
2. 空间自相关在地形分析和灾害研究中的应用:通过空间自相关研究山区地形上地貌变化的空间分布规律,可以更加深入地探究地表形态的变化、山体滑坡、地面沉降等生态环境问题。
在灾害研究中,空间自相关的分析有助于预测和识别自然灾害的潜在危险区域,可以提高灾害管理和应急救援的效果和准确性。
3. 空间自相关在城市规划和交通运输中的应用:空间自相关可以更加精确地描述城市规划和交通运输的发展模式和趋势,并为建立城市交通服务网络提供重要的决策基础。
空间自相关的分析可以帮助我们了解不同城市区域之间的相互依存性和交通通达性,为公共交通资源的合理使用提供科学依据。
空间自相关分析的方法在实际的地理空间数据分析过程中,我们需要依据不同的数据类型和分析需求,选择相应的空间自相关方法。
一般而言,空间自相关的分析方法包括以下几种:1. 基于空间距离的自相关分析方法:这种方法是指通过计算数据点之间的距离和权重系数来衡量它们之间的空间相互依存程度。
第4章空间统计分析课件

2.1 简单的二进制邻接矩阵
123 456 789
车的行走方式
123 456 789 王、后的行走方式
16
17
18
19
20
2.2 基于距离的二进制空间权重矩阵
21
22
空间自相关按功能大致分为两类: 全域型空间自相关(Global Spatia Autocorrelation) 区域型空间自相关(Local Spatia Autocorrelation)
45
人均GDP局部Moran指数表
46
河南地级市人均GDP局部Moran指数
47
48
49
4.2 G统计量
全局G统计量的计算公式为: 对每一个区域单元的统计量为:
50
对统计量的检验与局部Moran指数相似,其检验值为
显著的正值表示在该区域单元周围,高观测值的区域 单元趋于空间集聚,而显著的负值表示低观测值的区 域单元趋于空间集聚。
25
3.1 Moran’s I
设研究区域中存在n个面积单元,第i个 单元上的观测值记为xi,观测变量在n个单 元中的均值记为 ,Moran’s I定义为:
26
-1≤ I ≤1 1表示极强的正空间自相关,-1表示极强的 负空间自相关。
27
对于Moran指数,可以用标准化统计量Z来检 验n个区域是否存在空间自相关关系,Z的计算公 式为:
第4章 空间统计分析
§4.1 空间自相关 Spatial autocorrelation
1
空间统计分析,即空间数据的统计分析,通过 空间位置建立数据间的统计关系。
空间统计学产生的原因: 大多数经典统计学分析要求样本相互独立, 而空间数据间并非完全独立,而是存在依赖性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间自相关统计量
空间自相关的测度指标
1全局空间自相关
全局空间自相关是对属性值在整个区域的空间特征的描述[8]。
表示全局空间自相关的指标和方法很多,主要有全局Moran ’s I 、全局Geary ’s C 和全局Getis-Ord G [3,5]都是通过比较邻近空间位置观察值的相似程度来测量全局空间自相关的。
全局Moran ’s I
全局Moran 指数I 的计算公式为:
()()
()∑∑∑∑∑=====---=n i n j n i i
ij n i n j j i ij x x w x x x x w n I 111211
∑∑∑∑=≠=≠--=n i n i j ij n i n i j j i ij w S x x x x w 121))((
其中,n 为样本量,即空间位置的个数。
x i 、x j 是空间位置i 和j 的观察值,w ij 表示空间位置i 和j 的邻近关系,当i 和j 为邻近的空间位置时,w ij =1;反之,w ij =0。
全局Moran 指数I 的取值范围为[-1,1]。
对于Moran 指数,可以用标准化统计量Z 来检验n 个区域是否存在空间自相关关系,Z 的计算公式为:
)()(I VAR I E I Z -==i
n w n w S x x d w i i i n i j i j ij
≠----∑≠j )2/()1())((
E(I i )和VAR(I i )是其理论期望和理论方差。
数学期望EI=-1/(n-1)。
当Z 值为正且显著时,表明存在正的空间自相关,也就是说相似的观测值(高值或低值)Z 关,相似的观测值趋于分散分布;当Z 值为零时,观测值呈独立随机分布。
全局Geary ’s C
全局Geary ’s C 测量空间自相关的方法与全局Moran ’s I 相似,其分子的交叉乘积项不同,即测量邻近空间位置观察值近似程度的方法不同,其计算公式为:
()()()
∑∑∑∑∑=====---=
n i n j n i i ij n i n j j i ij x x w x x w n C 1112112
21
差的乘积,而全局Geary ’s C 比较的是邻近空间位置的观察值之差,由于并不关心x i 是否大于x j ,只关心x i 和x j 之间差异的程度,因此对其取平方值。
全局Geary ’s C 的取值范围为[0,2],数学期望恒为1。
当全局Geary ’s C 的观察值<1,并且有统计学意义时,提示存在正空间自相关;当全局Geary ’s C 的观察值>1时,存在负空间自相关;全局Geary ’s C 的观察值=1时,无空间自相关。
其假设检验的方法同全局Moran ’s I 。
值得注意的是,全局Geary ’s C 的数学期望不受空间权重、观察值和样本量的影响,恒为1,导致了全局Geary ’s C 的统计性能比全局Moran ’s I 要差,这可能是全局Moran ’s I 比全局Geary ’s C 应用更加广泛的原因。
全局Geti-Ord G
全局Getis-Ord G 与全局Moran ’s I 和全局Geary ’s C 测量空间自相关的方法相似,其分子的交叉乘积项不同,即测量邻近空间位置观察值近似程度的方法不同,其计算公式为:
()()()i
j i i i j i j wij d x x
G d i j x x =≠∑∑∑∑
全局Getis-Ord G 直接采用邻近空间位置的观察值之积来测量其近似程
度,与全局Moran ’s I 和全局Geary ’s C 不同的是,全局Getis-Ord G 定义空间
邻近的方法只能是距离权重矩阵w ij(d),是通过距离d定义的,认为在距离d 内的空间位置是邻近的,如果空间位置j在空间位置i的距离d内,那么权重w ij(d)=1,否则为0。
从公式中可以看出,在计算全局Getis-Ord G时,如果空间位置i和j在设定的距离d内,那么它们包括在分子中;如果距离超过
d,则没有包括在分子中,而分母中则包含了所有空间位置i和j的观察值
xi、xj,即分母是固定的。
如果邻近空间位置的观察值都大,全局Getis-Ord G的值也大;如果邻近空间位置的观察值都小,全局Getis-Ord G的值也小。
因此,可以区分“热点区”和“冷点区”两种不同的正空间自相关,这是全局
Getis-Ord G的典型特性,但是它在识别负空间自相关时效果不好。
全局Getis-Ord G的数学期望E(G)=W/n(n-1),当全局Getis-Ord G的观察值大于数学期望,并且有统计学意义时,提示存在“热点区”;当全局Getis-Ord G的观察值小于数学期望,提示存在“冷点区”。
假设检验方法同全局Moran’s I 和全局Geary’s C。
2局部空间自相关
局部空间自相关统计量LISA的构建需要满足两个条件[9]:①局部空间自相关统计量之和等于相应的全局空间自相关统计量;②能够指示每个空间位置的观察值是否与其邻近位置的观察值具有相关性。
相对于全局空间自相关而言,局部空间自相关分析的意义在于:①当不存在全局空间自相关时,寻找可能被掩盖的局部空间自相关的位置;②存在全局空间自相关时,探讨分析是否存在空间异质性;③空间异常值或强影响点位置的确定;④寻找可能存在的与全局空间自相关的结论不一致的局部空间自相关的位置,如全局空间自相关分析结论为正全局空间自相关,分析是否存在有少量的负局部空间自相关的空间
位置,这些位置是研究者所感兴趣的。
由于每个空间位置都有自己的局部空间自相关统计量值,因此,可以通过显著性图和聚集点图等图形将局部空间自相关的分析结果清楚地显示出来,这也是局部空间自相关分析的优势所在[3,5]。
局部Moran ’s I
为了能识别局部空间自相关,每个空间位置的局部空间自相关统计量的值都要计算出来,空间位置为i 的局部Moran ’s I 的计算公式为:
∑--=j
j ij i i x x w S x x I )()(2 局部Moran 指数检验的标准化统计量为:
)()
()(i i i i I VAR I E I I Z -=
E(I i )和VAR(I i )是其理论期望和理论方差。
局部Moran ’s I 的值大于数学期望,并且通过检验时,提示存在局部的正空间自相关;局部Moran ’s I 的值小于数学期望,提示存在局部的负空间自相关。
缺点是不能区分“热点区”和“冷点区”两种不同的正空间自相关。
局部Geary ’s C
局部Geary ’s C 的计算公式为:
2
()()X i j j wij x x i j μ=-≠∑
()i U C = 局部Geary ’s C 的值小于数学期望,并且通过假设检验时,提示存在局部的正空间自相关;局部Geary ’s C 的值大于数学期望,提示存在局部的负空间自相关。
缺点也是不能区分“热点区”和“冷点区”两种不同的正空间自相关。
局部Getis-Ord G
局部Getis-Ord G 同全局Getis-Ord G 一样,只能采用距离定义的空间邻近方法生成权重矩阵,其计算公式为:
∑∑=i j
j j ij i x x w G /
对统计量的检验与局部Moran 指数相似,其检验值为
)()()(i i i
i G VAR G E G G Z -= =i
n w n w S x x d w i i i n i j i j ij ≠----∑≠j )2/()1())((
当局部Getis-Ord G 的值大于数学期望,并且通过假设检验时,提示存在“热点区”;当局部Getis-Ord G 的值小于数学期望,并且通过假设检验时,提示存在“冷点区”。
缺点是识别负空间自相关时效果较差。
全局自相关与局部自相关适用性对比分析
对于定量资料计算全局空间自相关时,可以使用全局Moran ’s I 、全局
Geary ’s C 和全局Getis-Ord G 统计量。
全局空间自相关是对整个研究空间的一个总体描述,仅仅对同质的空间过程有效,然而,由于环境和社会因素等外界条件的不同,空间自相关的大小在整个研究空间,特别是较大范围的研究空间上并不一定是均匀同质的,可能随着空间位置的不同有所变化,甚至可能在一些空间位置发现正空间自相关,而在另一些空间位置发现负空间自相关,这种情况在全局空间自相关分析中是无法发现的,这种现象称为空间异质性。
为了能识别这种空间异质性,需要使用局部空间自相关统计量来分析空间自相关性,如局部Moran ’s I 、局部Geary ’s C 和局部Getis-Ord G [3,6-7]。
全局自相关统计量仅仅为整个研究空间的空间自相关情况提供了一个总体描述,其正确应用的前提是要求同质的空间过程,当空间过程为异质时结论不可靠。
为了能正确识别空间异质性,需要应用局部空间自相关统计量。