(完整版)等比数列专项练习题(精较版)
(完整版)等比数列的性质练习题

考点1等比数列的通项与前n 项和题型1已知等比数列的某些项,求某项【例1】已知{}n a 为等比数列,162,262==a a ,则=10a题型2 已知前n 项和n S 及其某项,求项数.【例2】⑴已知n S 为等比数列{}n a 前n 项和,93=n S ,48=n a ,公比2=q ,则项数=n .⑵已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数. 题型3 求等比数列前n 项和【例3】等比数列Λ,8,4,2,1中从第5项到第10项的和.【例4】已知n S 为等比数列{}n a 前n 项和,13233331-+++++=n n a Λ,求n S【例5】已知n S 为等比数列{}n a 前n 项和,n n n a 3)12(⋅-=,求n S .【新题导练】1.已知{}n a 为等比数列,6,3876321=++=++a a a a a a ,求131211a a a ++的值.2.如果将100,50,20依次加上同一个常数后组成一个等比数列,则这个等比数列的公比为 .3.已知n S 为等比数列{}n a 的前n 项和,364,243,362===n S a a ,则=n ; 4.已知等比数列{}n a 中,21a =,则其前3项的和3S 的取值范围是 .5.已知n S 为等比数列{}n a 前n 项和,0>n a ,80=n S ,65602=n S ,前n 项中的数值最大的项为54,求100S .考点2 证明数列是等比数列【例6】已知数列{}n a 和{}n b 满足:λ=1a ,4321-+=+n a a n n ,)213()1(+--=n a b n n n ,其中λ为实数,+∈N n . ⑴ 对任意实数λ,证明数列{}n a 不是等比数列;⑵ 试判断数列{}n b 是否为等比数列,并证明你的结论.【新题导练】6.已知数列{}n a 的首项123a =,121n n n a a a +=+,1,2,3,n =….证明:数列1{1}n a -是等比数列;考点3 等比数列的性质【例7】已知n S 为等比数列{}n a 前n 项和,54=n S ,602=n S ,则=n S 3 . 【新题导练】7.已知等比数列{}n a 中,36)2(,04624=++>a a a a a n ,则=+53a a .考点4 等比数列与其它知识的综合 【例8】设n S 为数列{}n a 的前n 项和,已知()21n n n ba b S -=- ⑴证明:当2b =时,{}12n n a n --⋅是等比数列; ⑵求{}n a 的通项公式【新题导练】8.设n S 为数列{}n a 的前n 项和,1a a =,13n n n a S +=+,*n ∈N .⑴ 设3n n n b S =-,求数列{}n b 的通项公式;⑵ 若)(1++∈≥N n a a n n ,求a 的取值范围.7.等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .8.已知数列{}n a 的前n 项和为n S ,()1(1)3n n S a n N *=-∈; ⑴求1a ,2a 的值;⑵证明数列{}n a 是等比数列,并求n S .。
等比数列练习题(有答案)

一、等比数列选择题1.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,102103101a a -<-,则使得1n T >成立的最大自然数n 的值为( )A .102B .203C .204D .2052.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=( ) A .4B .5C .8D .153.已知公差不为0的等差数列{a n }的前n 项和为S n ,a 1=2,且a 1,a 3,a 4成等比数列,则S n 取最大值时n 的值为( ) A .4B .5C .4或5D .5或64.已知正项等比数列{}n a 满足112a =,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( )A .312或112B .312C .15D .65.已知等比数列{}n a 中,1354a a a ⋅⋅=,公比q =,则456a a a ⋅⋅=( ) A .32B .16C .16-D .32-6.等比数列{}n a 中11a =,且14a ,22a ,3a 成等差数列,则()*na n N n∈的最小值为( ) A .1625B .49C .12D .17.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中错误的是( )A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13n S n =C .13(1)n a n n =--D .{}3n S 是等比数列8.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )A .-3+(n +1)×2nB .3+(n +1)×2nC .1+(n +1)×2nD .1+(n -1)×2n9.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( )A .1:3B .3:1C .3:5D .5:310.设n S 为等比数列{}n a 的前n 项和,若110,,22n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4⎛⎤ ⎥⎝⎦B .20,3⎛⎤ ⎥⎝⎦C .30,4⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭11.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,416a =,则6S =( )A .32B .63C .123D .12612.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 13.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=14,且a n =1n n b b +,则b 2020=( )A .22017B .22018C .22019D .2202014.一个蜂巢有1只蜜蜂,第一天,它飞出去找回了5个伙伴;第二天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第六天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂. A .55989B .46656C .216D .3615.公差不为0的等差数列{}n a 中,23711220a a a -+=,数列{}n b 是等比数列,且77b a =,则68b b =( )A .2B .4C .8D .1616.在数列{}n a 中,12a =,121n n a a +=-,若513n a >,则n 的最小值是( ) A .9B .10C .11D .1217.正项等比数列{}n a 满足:241a a =,313S =,则其公比是( ) A .14B .1C .12D .1318..在等比数列{}n a 中,若11a =,54a =,则3a =( ) A .2B .2或2-C .2-D19.已知1,a 1,a 2,9四个实数成等差数列,1,b 1,b 2,b 3,9五个数成等比数列,则b 2(a 2﹣a 1)等于( )A .8B .﹣8C .±8D .9820.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于,若第六个单音的频率为f ,则( ) A .第四个单音的频率为1122f - B .第三个单音的频率为142f - C .第五个单音的频率为162fD .第八个单音的频率为1122f二、多选题21.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或1422.已知数列{}n a 的前n 项和为n S ,1+14,()n n a S a n N *==∈,数列12(1)n n n n a +⎧⎫+⎨⎬+⎩⎭的前n 项和为n T ,n *∈N ,则下列选项正确的是( ) A .24a =B .2nn S =C .38n T ≥D .12n T <23.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a ⋅>,87101a a -<-,则下列结论正确的是( ) A .01q << B .791a a ⋅> C .n S 的最大值为9SD .n T 的最大值为7T24.设{}n a 是各项均为正数的数列,以n a ,1n a +为直角边长的直角三角形面积记为n S ()n *∈N ,则{}n S 为等比数列的充分条件是( )A .{}n a 是等比数列B .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅或 2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列C .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅和 2a ,4a ,⋅⋅⋅,2n a ,⋅⋅⋅均是等比数列D .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅和 2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅均是等比数列,且公比相同 25.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( ) A .()21121n nS n a -=-⋅B .212n n S S =C .2311222n n n S S ≥-+ D .212n n S S ≥+26.已知数列{}n a 前n 项和为n S .且1a p =,122(2)n n S S p n --=≥(p 为非零常数)测下列结论中正确的是( ) A .数列{}n a 为等比数列 B .1p =时,41516S =C .当12p =时,()*,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+ 27.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( ) A .01q <<B .8601a a <<C .n S 的最大值为7SD .n T 的最大值为6T28.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n S n +为等比数列B .数列{}n a 的通项公式为121n n a -=-C .数列{}1n a +为等比数列D .数列{}2n S 的前n 项和为2224n n n +---29.已知数列{}n a 的前n 项和为S n ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .22212413nn a a a -+++=D .m n +为定值30.数列{}n a 为等比数列( ). A .{}1n n a a ++为等比数列 B .{}1n n a a +为等比数列 C .{}221n n a a ++为等比数列D .{}n S 不为等比数列(n S 为数列{}n a 的前n 项)31.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a >,87101a a -<-.则下列结论正确的是( ) A .01q <<B .791a a <C .n T 的最大值为7TD .n S 的最大值为7S32.在递增的等比数列{a n }中,S n 是数列{a n }的前n 项和,若a 1a 4=32,a 2+a 3=12,则下列说法正确的是( ) A .q =1 B .数列{S n +2}是等比数列C .S 8=510D .数列{lga n }是公差为2的等差数列33.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,99100101a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的D .使1n T >成立的最大自然数n 等于19834.对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a -<,1k k a a +<,则称k a 是数列{}n a 的“谷值”,k 是数列{}n a 的“谷值点”,在数列{}n a 中,若98n a n n =+-,下面哪些数不能作为数列{}n a 的“谷值点”?( ) A .3B .2C .7D .535.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+-【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.C【分析】由题意可得1021031a a >,1021031,1a a ><,利用等比数列的性质即可求解. 【详解】由10210310a a ->,即1021031a a >,则有21021a q ⨯>,即0q >。
(完整版)等差、等比数列》专项练习题

《等差、等比数列》专项练习题一、选择题:1.已知等差数列{a n }中,a 1=1,d=1,则该数列前9项和S 9等于( ) A.55 B.45 C.35 D.252.已知等差数列{an}的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( ) A .180 B .-180 C .90 D .-90 3.已知等差数列{a n }中,a 2+a 8=8,则该数列前9项和S 9等于( )A.18B.27C.36D.454.等比数列{a n }中,a 3=7,前3项之和S 3=21, 则公比q 的值为 ( ) A .1B .-21C .1或-1D .-1或21 5.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 ( )A .4B .23 C .916 D .26.若两数的等差中项为6,等比中项为5,则以这两数为两根的一元二次方程为 ( ) A .x 2-6x +25=0 B .x 2+12x +25=0 C .x 2+6x -25=0 D .x 2-12x +25=0 7.已知等比数列{}n a 中,公比2q =,且30123302a a a a ⋅⋅⋅⋅=,那么36930a a a a ⋅⋅⋅⋅ 等于A .102B .202C .162D .1528.等比数列的前n 项和S n =k ·3n +1,则k 的值为( )A .全体实数B .-1C .1D .3二、填空题:1.等差数列{}n a 的前n 项和n n S n 32+=.则此数列的公差=d .2. 数列{a n },{b n }满足a n b n =1, a n =n 2+3n +2,则{b n }的前10次之和为 3.若{}n a 是首项为1,公差为2的等差数列,11+=n n n a a b ,则数列{}n b 的前n 项和n T= . 4.在等比数列{a n }中,已知a 1=23,a 4=12,则q =_____ ____,a n =____ ____. 5.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q =___ ___.三、解答题:1. 设{a n }为等差数列,S n 为{a n }的前n 项和,S 7=7,S 15=75,已知T n 为数列{S nn}的前n 项数,求T n . 2.已知数列{}n a 是等差数列,其前n 项和为n S ,12,633==S a . (1)求数列{}n a 的通项公式;(2)求.nS S S 11121+++ 3.已知数列满足a 1=1,a n +1=2a n +1(n ∈N *)(1) 求证数列{a n +1}是等比数列;(2) 求{a n }的通项公式.4.在等比数列{a n }中,a 1+a n =66,a 2·a n -1=128,且前n 项和S n =126,求n 及公比q .参考答案一、选择题:1.B 提示: 998911452s ⨯=⨯+⨯=2.A 提示:由等差数列性质,a 4+a 6=a 3+a 7=-4与a 3·a 7=-12联立,即a 3,a 7是方程x 2+4x -12=0的两根,又公差d >0,∴a 7>a 3⇒a 7=2,a 3=-6,从而得a 1=-10,d =2,S 20=180.3.C 提示:在等差数列{a n }中,a 2+a 8=8,∴ 198a a +=,则该数列前9项和S 9=199()2a a +=36 CAD B B二、填空题:1.答案:2提示:411==S a ,102322221=⨯+==+S a a ,62=∴a ,2=d . 2. 512提示:b n =1a n =1(n +1)(n +2) =1n +1 -1n +2∴S 10=b 1+b 2+…b n =12 -112 =512 .3.答案:69nn + 提示:)321121(21)32)(12(1,12+-+=++=+=n n n n b n a n n ,用裂项求和法求得96+=n nT n .4.2, 3·2n -2.5.251+.三、解答题:1.解:设数列{a n }的公差为d ,则S n =na 1+12n (n -1)d .∵S 7=7,S 15=75,∴⎩⎨⎧7a 1+21d =7 15a 1+105d =75, ∴⎩⎨⎧a 1=-2d =1∴S n n =a 1+12 ·(n -1)d =-2+12·(n -1) ∴S n +1n +1 -S n n =12 ∴数列{S n n }是等差数列,其首项为-2,公差为12, ∴T n =n ·(-2)+n (n -1)2·12 =14 n 2-94n .2.解:(1)设数列{}n a 的公差为d,由题意得方程组⎪⎩⎪⎨⎧=⨯+=+1222336211d a d a ,解得 ⎩⎨⎧==221d a ,∴数列{}n a 的通项公式为n d n a a n 2)1(1=-+=,即n a n 2=.(2)∵n a n 2=,∴)1(2)(1+=+=n n a a n S n n . ∴n S S S 11121+++ )1(1321211+++⨯+⨯=n n .3.(1)证明由a n +1=2a n +1得a n +1+1=2(a n +1)又a n +1≠0 ∴111+++n n a a =2即{a n +1}为等比数列.(2)解析: 由(1)知a n +1=(a 1+1)q n -1即a n =(a 1+1)q n -1-1=2·2n -1-1=2n-14.解析:∵a 1a n =a 2a n -1=128,又a 1+a n =66,∴a 1、a n 是方程x 2-66x +128=0的两根,解方程得x 1=2,x 2=64, ∴a 1=2,a n =64或a 1=64,a n =2,显然q ≠1. 若a 1=2,a n =64,由qqa a n --11=126得2-64q =126-126q ,∴q =2,由a n =a 1q n-1得2n -1=32, ∴n =6.若a 1=64,a n =2,同理可求得q =21,n =6. 综上所述,n 的值为6,公比q =2或21.。
等比数列练习题(有答案)百度文库

14.已知等比数列 中, , ,则 ()
A. B. C. D.
15.设等差数列 的公差 ,若 是 与 的等比中项,则 ()
A.3或6B.3或-1
C.6D.3
16.已知等比数列 的通项公式为 ,则该数列的公比是()
A. B.9C. D.3
17.在等比数列 中, ,则 ()
A. B. C. D.
18.已知正项等比数列 满足 , ,又 为数列 的前n项和,则 ()
A. 或 B.
C.15D.6
19.已知正项等比数列 满足 ,若存在两项 , 使得 ,则 的最小值为()
A. B. C. D.
20.在流行病学中,基本传染数R0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.初始感染者传染R0个人,为第一轮传染,这R0个人中每人再传染R0个人,为第二轮传染,…….R0一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设新冠肺炎的基本传染数 ,平均感染周期为7天,设某一轮新增加的感染人数为M,则当M>1000时需要的天数至少为()参考数据:lg38≈1.58
【详解】
解:因为等比数列 中, , ,
所以 ,
因为 ,所以 ,
所以 ,
故选:A
14.B
【分析】
根据等比中项的性质可求得 的值,再由 可求得 的值.
【详解】
在等比数列 中,对任意的 , ,
由等比中项的性质可得 ,解得 ,
, ,因此, .
故选:B.
15.D
【分析】
由 是 与 的等比中项及 建立方程可解得 .
A. B.
C. D.
33.在公比 为整数的等比数列 中, 是数列 的前 项和,若 , ,则下列说法正确的是()
等比数列练习题(有答案)

一、等比数列选择题1.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列(){}111n n n a a -+-的前n 项的和为( )A .()2382133n n +--B .()23182155n n +---C .()2382133n n ++-D .()23182155n n +-+-2.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8B .8±C .8-D .13.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12B .18C .24D .324.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .25.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )A .-3+(n +1)×2nB .3+(n +1)×2nC .1+(n +1)×2nD .1+(n -1)×2n6.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里B .86里C .90里D .96里7.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-B .3-C .3D .88.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,102103101a a -<-,则使得1n T >成立的最大自然数n 的值为( )A .102B .203C .204D .2059.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( ) A .1:3B .3:1C .3:5D .5:310.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .681a a >B .01q <<C .n S 的最大值为7SD .n T 的最大值为7T11.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .8B .7C .6D .412.已知等比数列{}n a 的前5项积为32,112a <<,则35124a a a ++的取值范围为( ) A .73,2⎡⎫⎪⎢⎣⎭B .()3,+∞C .73,2⎛⎫ ⎪⎝⎭D .[)3,+∞13.等比数列{}n a 中,1234a a a ++=,4568a a a ++=,则789a a a ++等于( ) A .16B .32C .64D .12814.已知等比数列{}n a 的n 项和2n n S a =-,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 15.在等比数列{}n a 中,12345634159,88a a a a a a a a +++++==-,则123456111111a a a a a a +++++=( ) A .35B .35C .53D .53-16.数列{}n a 满足119211021119n n n n a n --⎧≤≤=⎨≤≤⎩,,,则该数列从第5项到第15项的和为( )A .2016B .1528C .1504D .99217.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a14a =,则14m n +的最小值为( ) A .53B .32C .43D .11618.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的中间一层共有灯( )A .3盏B .9盏C .27盏D .81盏19.已知等比数列{}n a ,7a =8,11a =32,则9a =( ) A .16B .16-C .20D .16或16-20.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )A .15B .10C .5D .3二、多选题21.题目文件丢失!22.已知等差数列{}n a ,其前n 项的和为n S ,则下列结论正确的是( ) A .数列|n S n ⎧⎫⎨⎬⎩⎭为等差数列 B .数列{}2na 为等比数列C .若,()m n a n a m m n ==≠,则0m n a +=D .若,()m n S n S m m n ==≠,则0m n S += 23.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )A .101a <<B.11b <<C .22n n S T <D .22n n S T ≥24.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或1425.设{}n a 是无穷数列,1n n n A a a +=+,()1,2,n =,则下面给出的四个判断中,正确的有( )A .若{}n a 是等差数列,则{}n A 是等差数列B .若{}n A 是等差数列,则{}n a 是等差数列C .若{}n a 是等比数列,则{}n A 是等比数列D .若{}n A 是等差数列,则{}2n a 都是等差数列26.关于递增等比数列{}n a ,下列说法不正确的是( ) A .10a >B .1q >C .11nn a a +< D .当10a >时,1q >27.关于递增等比数列{}n a ,下列说法不正确的是( ) A .当101a q >⎧⎨>⎩B .10a >C .1q >D .11nn a a +< 28.设n S 为等比数列{}n a 的前n 项和,满足13a =,且1a ,22a -,34a 成等差数列,则下列结论正确的是( )A .113()2n n a -=⋅-B .36nn S a =+C .若数列{}n a 中存在两项p a ,s a3a =,则19p s +的最小值为83D .若1n n t S m S ≤-≤恒成立,则m t -的最小值为11629.记单调递增的等比数列{a n }的前n 项和为S n ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n n aC .21nn S =- D .121n n S -=-30.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( ) A .01q << B .8601a a << C .n S 的最大值为7SD .n T 的最大值为6T31.设数列{}n x ,若存在常数a ,对任意正数r ,总存在正整数N ,当n N ≥,有n x a r -<,则数列{}n x 为收敛数列.下列关于收敛数列正确的有( )A .等差数列不可能是收敛数列B .若等比数列{}n x 是收敛数列,则公比(]1,1q ∈-C .若数列{}n x 满足sin cos 22n x n n ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,则{}n x 是收敛数列 D .设公差不为0的等差数列{}n x 的前n 项和为()0n n S S ≠,则数列1n S ⎧⎫⎨⎬⎩⎭一定是收敛数列32.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a >,87101a a -<-.则下列结论正确的是( ) A .01q <<B .791a a <C .n T 的最大值为7TD .n S 的最大值为7S33.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,数列(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x =B .()2xf x =C .()f x =D .()ln f x x =34.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,99100101a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的D .使1n T >成立的最大自然数n 等于19835.对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a -<,1k k a a +<,则称k a 是数列{}n a 的“谷值”,k 是数列{}n a 的“谷值点”,在数列{}n a 中,若98n a n n =+-,下面哪些数不能作为数列{}n a 的“谷值点”?( ) A .3B .2C .7D .5【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.D 【分析】根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入()111n n n a a -+-可知数列为等比数列,求和即可.【详解】因为公比大于1的等比数列{}n a 满足2420a a +=,38a =,所以31121208a q a q a q ⎧+=⎨=⎩,解得2q,12a =,所以1222n nn a -=⨯=,()()()111111222111n n n n n n n n a a ++-+--+=⋅⋅-=∴--,(){}111n n n a a -+∴-是以8为首项,4-为公比的等比数列,()23357921118[1(4)]8222222(1)1(4)155n n n n n n S -++---∴=-+--++⋅==+---,故选:D 【点睛】关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可. 2.A 【分析】分析出70a >,再结合等比中项的性质可求得7a 的值. 【详解】设等比数列{}n a 的公比为q ,则2750a a q =>,由等比中项的性质可得275964a a a ==,因此,78a =.故选:A. 3.C 【分析】将已知条件整理为()()22121328a q q q -+=,可得()22183221q q a q +=-,进而可得()4427612249633221q a a a q q q q +=+=-,分子分母同时除以4q ,利用二次函数的性质即可求出最值. 【详解】因为{}n a 是等比数列,543264328a a a a +--=,所以432111164328a q a q a q a q +--=,()()2221232328a q q q q q ⎡⎤+-+=⎣⎦, 即()()22121328a q q q -+=,所以()22183221q q a q +=-,()()465424761111221248242496963323212121q a a a q a q a q q q a q q a q q q +=+=+=⨯==---, 令210t q =>,则()222421211t t t q q-=-=--+, 所以211t q==,即1q =时2421q q -最大为1,此时242421q q -最小为24, 所以7696a a +的最小值为24, 故选:C 【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化. 4.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B. 5.D 【分析】利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】设等比数列{a n }的公比为q ,易知q ≠1,所以由题设得()()3136161711631a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,两式作差得-T n =1+2+22+…+2n -1-n ×2n=1212n---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D.【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 6.D 【分析】由题意得每天行走的路程成等比数列{}n a 、且公比为12,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可. 【详解】由题意可知此人每天走的步数构成12为公比的等比数列, 由题意和等比数列的求和公式可得611[1()]2378112a -=-, 解得1192a =,∴此人第二天走1192962⨯=里, ∴第二天走了96里,故选:D . 7.A 【分析】根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2326a a a =,即2(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)661(2)2422S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A 8.C 【分析】由题意可得1021031a a >,1021031,1a a ><,利用等比数列的性质即可求解. 【详解】由10210310a a ->,即1021031a a >,则有21021a q ⨯>,即0q >。
等比数列练习题(有答案) 百度文库

一、等比数列选择题1.已知单调递增数列{}n a 的前n 项和n S 满足()()*21n n n S a a n =+∈N,且0nS>,记数列{}2nn a ⋅的前n 项和为n T ,则使得2020n T >成立的n 的最小值为( )A .7B .8C .10D .112.在等比数列{}n a 中,24a =,532a =,则4a =( ) A .8 B .8-C .16D .16-3.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=( ) A .4B .5C .8D .154.已知{}n a 是正项等比数列且1a ,312a ,22a 成等差数列,则91078a a a a +=+( ) A1B1C.3-D.3+5.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭6.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-B .3-C .3D .87.已知等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,则n n S =a ( )A .14n -B .41n -C .12n -D .21n -8.在数列{}n a 中,12a =,对任意的,m n N *∈,m n m n a a a +=⋅,若1262n a a a ++⋅⋅⋅+=,则n =( )A .3B .4C .5D .69.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8B .8±C .8-D .110.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕=大吕=太簇.据此,可得正项等比数列{}n a 中,k a =( )A.n -B.n -C.D..题目文件丢失!12.已知{}n a 是各项均为正数的等比数列,121a a +=,344a a +=,则5678a a a a +++=( )A .80B .20C .32D .255313.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1-B .1C .2或2-D .214.若数列{}n a 是等比数列,且17138a a a =,则311a a =( ) A .1B .2C .4D .815.已知正项等比数列{}n a 满足112a =,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( ) A .312或112B .312 C .15D .616.设b R ∈,数列{}n a 的前n 项和3nn S b =+,则( ) A .{}n a 是等比数列B .{}n a 是等差数列C .当1b ≠-时,{}n a 是等比数列D .当1b =-时,{}n a 是等比数列17.已知数列{}n a 是等比数列,n S 为其前n 项和,若364,12S S ==,则12S =( ) A .50B .60C .70D .8018.已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a +++=,则k =( ) A .2 B .3C .4D .519.题目文件丢失!20.已知等比数列{}n a 中,n S 是其前n 项和,且5312a a a +=,则42S S =( ) A .76B .32C .2132D .14二、多选题21.题目文件丢失!22.一个弹性小球从100m 高处自由落下,每次着地后又跳回原来高度的23再落下.设它第n 次着地时,经过的总路程记为n S ,则当2n ≥时,下面说法正确的是( ) A .500n S < B .500n S ≤C .n S 的最小值为7003D .n S 的最大值为40023.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )A .101a <<B.11b <<C .22n n S T <D .22n n S T ≥24.已知1a ,2a ,3a ,4a 依次成等比数列,且公比q 不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q 的值是( ) ABCD25.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列B .2nn a =C .数列{}2na 的前n 项和为21223n +-D .数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,则1n T <26.已知数列{}n a 是公比为q 的等比数列,4n n b a =+,若数列{}n b 有连续4项在集合{-50,-20,22,40,85}中,则公比q 的值可以是( ) A .34-B .23-C .43-D .32-27.在等比数列{a n }中,a 5=4,a 7=16,则a 6可以为( ) A .8 B .12 C .-8D .-1228.已知数列是{}n a是正项等比数列,且3723a a +=,则5a 的值可能是( ) A .2B .4C .85D .8329.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( ) A .01q <<B .8601a a <<C .n S 的最大值为7SD .n T 的最大值为6T30.在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路B .此人第三天走的路程站全程的18C .此人第一天走的路程比后五天走的路程多六里D .此人后三天共走了42里路31.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若14q =-,则n n T S > D .若34q =-,则n n T S > 32.设数列{}n a 满足*12335(21)2(),n a a a n a n n ++++-=∈N 记数列{}21na n +的前n 项和为,n S 则( ) A .12a =B .221n a n =- C .21n nS n =+ D .1n n S na +=33.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,数列(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x =B .()2xf x =C .()f x =D .()ln f x x =34.已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,*n ∈N ,则下列选项正确的为( )A .数列{}1n a +是等差数列B .数列{}1n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <35.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+-【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.B 【分析】由数列n a 与n S 的关系转化条件可得11n n a a -=+,结合等差数列的性质可得n a n =,再由错位相减法可得()1122n n T n +=-⋅+,即可得解.【详解】由题意,()()*21n n n S a a n N=+∈,当2n ≥时,()11121n n n S a a ---=+,所以()()11122211n n n n n n n a S S a a a a ---=-=+-+, 整理得()()1110n n n n a a a a --+--=,因为数列{}n a 单调递增且0n S >,所以110,10n n n n a a a a --+≠--=,即11n n a a -=+, 当1n =时,()11121S a a =+,所以11a =, 所以数列{}n a 是以1为首项,公差为1的等差数列, 所以n a n =,所以1231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,()23412122232122n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅,所以()()234111212222222212212n nn n n n T n n n +++--=++++⋅⋅⋅+-⋅=-⋅=-⋅--,所以()1122n n T n +=-⋅+,所以876221538T =⨯+=,987223586T =⨯+=,所以2020n T >成立的n 的最小值为8. 故选:B. 【点睛】关键点点睛:解决本题的关键是数列n a 与n S 关系的应用及错位相减法的应用. 2.C 【分析】根据条件计算出等比数列的公比,再根据等比数列通项公式的变形求解出4a 的值. 【详解】因为254,32a a ==,所以3528a q a ==,所以2q ,所以2424416a a q ==⨯=,故选:C. 3.C 【分析】由等比中项,根据a 3a 11=4a 7求得a 7,进而求得b 7,再利用等差中项求解. 【详解】 ∵a 3a 11=4a 7, ∴27a =4a 7, ∵a 7≠0, ∴a 7=4, ∴b 7=4, ∴b 5+b 9=2b 7=8. 故选:C 4.D 【分析】 根据1a ,312a ,22a 成等差数列可得3121222a a a ⨯=+,转化为关于1a 和q 的方程,求出q 的值,将91078a a a a ++化简即可求解.【详解】因为{}n a 是正项等比数列且1a ,312a ,22a 成等差数列, 所以3121222a a a ⨯=+,即21112a q a a q =+,所以2210q q --=,解得:1q =+1q =(222291078787813a a a q a q q a a a a ++====+++,故选:D 5.D 【分析】由2n n S a =-利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0nn n S T λ-->恒成立,转化为()()321(1)210nnnλ---+>对*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.【详解】当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-, 两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=, 所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列, 所以1112211212nn n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nnn T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由2(1)0n n n S T λ-->,得214141(1)10234n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以221131(1)1022n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以211131(1)110222n n n nλ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.又*n N ∈,所以1102n⎛⎫-> ⎪⎝⎭, 所以1131(1)1022n n nλ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,即()()321(1)210nnnλ---+>对*n N ∈恒成立,当n 为偶数时,()()321210nnλ--+>,所以()()321321663212121nnn n n λ-+-<==-+++, 令6321n n b =-+,则数列{}n b 是递增数列,所以22693215λb <=-=+; 当n 为奇数时,()()321210nnλ-++>,所以()()321321663212121nnn n n λ-+--<==-+++,所以16332121λb -<=-=-=+, 所以1λ>-.综上,实数λ的取值范围是91,5⎛⎫- ⎪⎝⎭.故选:D. 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 6.A 【分析】根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2326a a a =,即2(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)661(2)2422S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A 7.D【分析】根据题中条件,先求出等比数列的公比,再由等比数列的求和公式与通项公式,即可求出结果. 【详解】因为等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,所以2413514522q a a a a =++==, 因此()()111111111221112n nnn n n n n na q S q q a a q q q ---⎛⎫- ⎪--⎝⎭====--⎛⎫ ⎪⎝⎭. 故选:D. 8.C 【分析】令1m =,可得112+=⋅=n n n a a a a ,可得数列{}n a 为等比数列,利用等比数列前n 项和公式,求解即可. 【详解】因为对任意的,m n N *∈,都有m n m n a a a +=⋅,所以令1m =,则112+=⋅=n n n a a a a , 因为10a ≠,所以0n a ≠,即12n na a +=, 所以数列{}n a 是以2为首项,2为公比的等比数列,所以2(12)6212n -=-,解得n =5,故选:C 9.A 【分析】分析出70a >,再结合等比中项的性质可求得7a 的值. 【详解】设等比数列{}n a 的公比为q ,则2750a a q =>,由等比中项的性质可得275964a a a ==,因此,78a =.故选:A. 10.C 【分析】根据题意,由等比数列的通项公式,以及题中条件,即可求出结果. 【详解】因为三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为11n n a a q -=,所以q =所以111111k k n n k a a a a a ---⎛⎫ ⎪⎛== ⎭⎝⎝1111n k k n n na a----==⋅ 故选:C.11.无12.A 【分析】由条件求出公比q ,再利用前4项和和公比求5678a a a a +++的值. 【详解】根据题意,由于{}n a 是各项均为正数的等比数列,121a a +=,()234124a a q a a +==+,∴24q =,0q >,2q则()()456781234161480a a a a q a a a a +++=+++=+=.故选:A 13.C 【分析】根据等比数列的通项公式,由题中条件,求出公比,进而可得出结果. 【详解】设等比数列{}n a 的公比为q ,因为12a =,且53a a =,所以21q =,解得1q =±, 所以91012a a q ==±.故选:C. 14.C 【分析】根据等比数列的性质,由题中条件,求出72a =,即可得出结果. 【详解】因为数列{}n a 是等比数列,由17138a a a =,得378a =,所以72a =,因此231174a a a ==.故选:C. 15.B 【分析】首先利用等比数列的性质求3a 和公比q ,再根据公式求5S . 【详解】正项等比数列{}n a 中,2432a a a =+∴,2332a a =+∴,解得32a =或31a =-(舍去) 又112a =, 2314a q a ==, 解得2q,5151(132)(1)312112a q S q --∴===--,故选:B 16.D 【分析】根据n S 与n a 的关系求出n a ,然后判断各选项. 【详解】由题意2n ≥时,111(3)(3)23nn n n n n a S S b b ---=-=+-+=⨯,13n na a +=(2)n ≥, 113a Sb ==+,若212333a a b⨯==+,即1b =-,则{}n a 是等比数列,否则不是等比数列,也不是等差数列, 故选:D . 【点睛】关键点点睛:本题考查等比数列的定义.在由1n n n a S S -=-求通项时,2n ≥必须牢记,11a S =它与(2)n a n ≥的求法不相同,因此会影响{}n a 的性质.对等比数列来讲,不仅要求3423a a a a ==,还必须满足3212a a a a =. 17.B 【分析】由等比数列前n 项和的性质即可求得12S . 【详解】 解:数列{}n a 是等比数列,3S ∴,63S S -,96S S -,129S S -也成等比数列,即4,8,96S S -,129S S -也成等比数列, 易知公比2q,9616S S ∴-=,12932S S -=,121299663332168460S S S S S S S S =-+-+-+=+++=.故选:B. 18.B 【分析】本题首先可设公比为q ,然后根据132185k a a a ++++=得出()2284k q a a ++=,再然后根据24242k a a a +++=求出2q,最后根据等比数列前n 项和公式即可得出结果. 【详解】设等比数列{}n a 的公比为q , 则132112285k k a a a a a a q q +++++++==,即()2285184k q a a ++=-=,因为24242k a a a +++=,所以2q,则()21123221112854212712k k k a a a a a ++⨯-+++++=+==-,即211282k +=,解得3k =, 故选:B. 【点睛】关键点点睛:本题考查根据等比数列前n 项和求参数,能否根据等比数列项与项之间的关系求出公比是解决本题的关键,考查计算能力,是中档题.19.无20.B 【分析】由5312a a a +=,解得q ,然后由414242212(1)111(1)11a q S q q q a q S qq---===+---求解. 【详解】在等比数列{}n a 中,5312a a a +=, 所以421112a q a q a +=,即42210q q +-=, 解得212q =所以414242212(1)1311(1)121a q S q q q a q S q q---===+=---, 故选:B 【点睛】本题主要考查等比数列通项公式和前n 项和公式的基本运算,属于基础题,二、多选题 21.无22.AC 【分析】由运动轨迹分析列出总路程n S 关于n 的表达式,再由表达式分析数值特征即可 【详解】由题可知,第一次着地时,1100S =;第二次着地时,221002003S =+⨯;第三次着地时,232210020020033S ⎛⎫=+⨯+⨯ ⎪⎝⎭;……第n 次着地后,21222100200200200333n n S -⎛⎫⎛⎫=+⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭则211222210020010040013333n n n S --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,显然500n S <,又n S 是关于n 的增函数,2n ≥,故当2n =时,n S 的最小值为40070010033+=; 综上所述,AC 正确 故选:AC 23.ABC 【分析】利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】因为数列{}n a 为递增数列,所以123a a a <<,所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,所以21122b b b <=,即1b < 又22234b b b <=,即2122b b =<, 所以11b >,即11b <<,故B 正确;{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++= 22(121)2[13(21)]22n n n n +-++⋅⋅⋅+-==,因为12n n n b b +⋅=,则1122n n n b b +++⋅=,所以22n n b b +=,则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+=1101101122(222)(222)()(21)n n nb b b b --++⋅⋅⋅++++⋅⋅⋅+=+-1)1)n n>-=-,当n =1时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时假设当n=k时,21)2k k ->21)k k ->, 则当n=k +11121)21)21)2k k k k k ++-=+-=->2221(1)k k k >++=+所以对于任意*n N ∈,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题. 24.AB 【分析】因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d ,分类讨论,即可得到答案 【详解】解:因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d , ①若删去2a ,则有3142a a a =+,得231112a q a a q =+,即2321q q =+, 整理得()()()2111qq q q -=-+,因为1q ≠,所以21q q =+, 因为0q >,所以解得q =, ②若删去3a ,则2142a a a =+,得31112a q a a q =+,即321q q =+, 整理得(1)(1)1q q q q -+=-,因为1q ≠,所以(1)1q q +=, 因为0q >,所以解得12q -+=,综上12q +=或12q -+=, 故选:AB 25.BD 【分析】根据22n n S a =-,利用数列通项与前n 项和的关系得1,1,2n nS n a S n =⎧=⎨≥⎩,求得通项n a ,然后再根据选项求解逐项验证. 【详解】当1n =时,12a =,当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=, 又212a a =,所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2nn a =,24nn a =,数列{}2na 的前n 项和为()141444143n n nS +--'==-, 则22log log 2nn n b a n ===,所以()1111111n n b b n n n n +==-⋅⋅++,所以 1111111 (11123411)n T n n n =-+-++-=-<++, 故选:BD 【点睛】方法点睛:求数列的前n 项和的方法(1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 26.BD 【分析】先分析得到数列{}n a 有连续四项在集合{54-,24-,18,36,81}中,再求等比数列的公比. 【详解】 4n n b a =+ 4n n a b ∴=-数列{}n b 有连续四项在集合{-50,-20,22,40,85}中∴数列{}n a 有连续四项在集合{54-,24-,18,36,81}中又数列{}n a 是公比为q 的等比数列,∴在集合{54-,24-,18,36,81}中,数列{}n a 的连续四项只能是:24-,36,54-,81或81,54-,36,24-.∴363242q ==--或243236q -==-. 故选:BD 27.AC 【分析】求出等比数列的公比2q =±,再利用通项公式即可得答案;【详解】5721624a q q a ==⇒=±,当2q时,65428a a q ==⨯=,当2q =-时,654(2)8a a q ==⨯-=-, 故选:AC. 【点睛】本题考查等比数列通项公式的运算,考查运算求解能力,属于基础题. 28.ABD 【分析】根据基本不等式的相关知识,结合等比数列中等比中项的性质,求出5a 的范围,即可得到所求. 【详解】解:依题意,数列是{}n a 是正项等比数列,30a ∴>,70a >,50a >,∴2373752323262a a a a a +=, 因为50a >,所以上式可化为52a ,当且仅当3a =,7a = 故选:ABD . 【点睛】本题考查了等比数列的性质,考查了基本不等式,考查分析和解决问题的能力,逻辑思维能力.属于中档题. 29.ABD 【分析】先分析公比取值范围,即可判断A ,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】若0q <,则67670,00a a a a <>∴<与671a a >矛盾; 若1q ≥,则11a >∴671,1a a >>∴67101a a ->-与67101a a -<-矛盾; 因此01q <<,所以A 正确;667710101a a a a -<∴>>>-,因此2768(,1)0a a a =∈,即B 正确; 因为0n a >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;因为当7n ≥时,(0,1)n a ∈,当16n ≤≤时,(1,)n a ∈+∞,所以n T 的最大值为6T ,即D 正确; 故选:ABD 【点睛】本题考查等比数列相关性质,考查综合分析判断能力,属中档题.30.ACD 【分析】若设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列,由6378S =求得首项,然后分析4个选项可得答案.【详解】解:设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列, 因为6378S =,所以1661(1)2=378112a S -=-,解得1192a =,对于A ,由于21192962a =⨯=,所以此人第二天走了九十六里路,所以A 正确; 对于B ,由于 3148119248,43788a =⨯=>,所以B 不正确; 对于C ,由于378192186,1921866-=-=,所以此人第一天走的路程比后五天走的路程多六里,所以C 正确; 对于D ,由于4561111924281632a a a ⎛⎫++=⨯++= ⎪⎝⎭,所以D 正确, 故选:ACD 【点睛】此题考查等比数的性质,等比数数的前项n 的和,属于基础题. 31.BD 【分析】先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q ->-,上式等价于1010n q q ⎧->⎨->⎩①或1010n q q ⎧-<⎨-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.综上所述,q 的取值范围是()()1,00,-+∞.2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以()2311222n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,而0n S >,且()()1,00,q ∈-⋃+∞.所以,当112q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误. 当12(0)2q q -<<≠时,0n n T S -<,即n n T S <. 当12q =-或2q 时,0,n n n n T S T S -==,A 选项错误.综上所述,正确的选项为BD. 故选:BD 【点睛】本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题. 32.ABD 【分析】由已知关系式可求1a 、n a ,进而求得{}21na n +的通项公式以及前n 项和,n S 即可知正确选项. 【详解】由已知得:12a =,令12335...(21)2n n T a a a n a n =++++-=, 则当2n ≥时,1(21)2n n n T T n a --=-=,即221n a n =-,而122211a ==⨯-也成立, ∴221n a n =-,*n N ∈,故数列{}21n a n +通项公式为211(21)(21)2121n n n n =-+--+,∴111111111121 (133557232121212121)n nS n n n n n n =-+-+-++-+-=-=---+++,即有1n n S na +=, 故选:ABD 【点睛】关键点点睛:由已知12335...(21)2n n T a a a n a n =++++-=求1a 、n a ,注意验证1a 是否符合n a 通项,并由此得到{}21na n +的通项公式,利用裂项法求前n 项和n S . 33.AC 【分析】直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可.【详解】设等比数列{}n a 的公比为q .对于A ,则2221112()()n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,故A 是“保等比数列函数”;对于B ,则111()22()2n n n n a a a n a n f a f a ++-+==≠ 常数,故B 不是“保等比数列函数”; 对于C,则1()()n n f a f a +===,故C 是“保等比数列函数”;对于D ,则11ln ln ln ln ln ()1()ln ln ln ln n n n n n n n n na a q a qq f a f a a a a a ++⋅+====+≠ 常数,故D 不是“保等比数列函数”. 故选:AC. 【点睛】本题考查等比数列的定义,考查推理能力,属于基础题. 34.BCD 【分析】由数列的递推式可得1121n n n n a S S a ++=-=+,两边加1后,运用等比数列的定义和通项公式可得n a ,1112211(21)(21)2121n n n n n n n n a a +++==-----,由数列的裂项相消求和可得n T . 【详解】解:由121n n n S S a +=++即为1121n n n n a S S a ++=-=+,可化为112(1)n n a a ++=+,由111S a ==,可得数列{1}n a +是首项为2,公比为2的等比数列,则12nn a +=,即21n n a =-,又1112211(21)(21)2121n n n n n n n n a a +++==-----,可得22311111111111212*********n n n n T ++=-+-+⋯+-=-<------, 故A 错误,B ,C ,D 正确. 故选:BCD . 【点睛】本题考查数列的递推式和等比数列的定义、通项公式,以及数列的裂项相消法求和,考查化简运算能力和推理能力,属于中档题. 35.ACD 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a ,再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假.【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去), ∴a ij =a i 1•3j ﹣1=[2+(i ﹣1)×m ]•3j ﹣1=(3i ﹣1)•3j ﹣1,∴a 67=17×36,∴S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn ) 11121131313131313n n n n a a a ---=+++---()()() 12=(3n ﹣1)•2312n n +-() 14=n (3n +1)(3n ﹣1) 故选:ACD.【点睛】本题主要考查等差数列,等比数列的通项公式的求法,分组求和法,等差数列,等比数列前n 项和公式的应用,属于中档题.。
等比数列练习题(有答案) 百度文库

一、等比数列选择题1.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=14,且a n =1n n b b +,则b 2020=( )A .22017B .22018C .22019D .220202.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12B .18C .24D .323.在等比数列{}n a 中,24a =,532a =,则4a =( ) A .8B .8-C .16D .16-4.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .25.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记{}n a 的前n 项积为nT,则下列选项错误的是( ) A .01q << B .61a > C .121T > D .131T > 6.设{a n }是等比数列,若a 1 + a 2 + a 3 =1,a 2 + a 3 + a 4 =2,则 a 6 + a 7 + a 8 =( ) A .6B .16C .32D .647.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>08.设n S 为等比数列{}n a 的前n 项和,若110,,22n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4⎛⎤ ⎥⎝⎦B .20,3⎛⎤ ⎥⎝⎦C .30,4⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭9.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( ) A .1:3B .3:1C .3:5D .5:310.已知等比数列{}n a 的前n 项和为n S ,若213a a =,且数列{}13n S a -也为等比数列,则n a 的表达式为( )A .12nn a ⎛⎫= ⎪⎝⎭B .112n n a +⎛⎫= ⎪⎝⎭C .23nn a ⎛⎫= ⎪⎝⎭D .123n n a +⎛⎫= ⎪⎝⎭11.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,416a =,则6S =( )A .32B .63C .123D .12612.一个蜂巢有1只蜜蜂,第一天,它飞出去找回了5个伙伴;第二天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第六天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂. A .55989B .46656C .216D .3613.在数列{}n a 中,32a =,12n n a a +=,则5a =( ) A .32B .16C .8D .414.已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则n T 的最大值为( ) A .152B .142C .132D .12215.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .816.已知1,a 1,a 2,9四个实数成等差数列,1,b 1,b 2,b 3,9五个数成等比数列,则b 2(a 2﹣a 1)等于( ) A .8B .﹣8C .±8D .9817.设数列{}n a ,下列判断一定正确的是( )A .若对任意正整数n ,都有24nn a =成立,则{}n a 为等比数列B .若对任意正整数n ,都有12n n n a a a ++=⋅成立,则{}n a 为等比数列C .若对任意正整数m ,n ,都有2m nm n a a +⋅=成立,则{}n a 为等比数列D .若对任意正整数n ,都有31211n n n n a a a a +++=⋅⋅成立,则{}n a 为等比数列18.数列{}n a 满足:点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上,则{}n a 的前10项和为( ) A .4092B .2047C .2046D .102319.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a14a =,则14m n +的最小值为( ) A .53B .32C .43D .11620.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( ) A .40B .81C .121D .242二、多选题21.在数列{}n a 中,如果对任意*n N ∈都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0C .若32nn a =-+,则数列{}n a 是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 22.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或1423.已知数列是{}n a是正项等比数列,且3723a a +=,则5a 的值可能是( ) A .2B .4C .85D .8324.数列{}n a 对任意的正整数n 均有212n n n a a a ++=,若22a =,48a =,则10S 的可能值为( ) A .1023B .341C .1024D .34225.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正确的是( )A .数列{}2n a 是等比数列B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .数列{}2log n a 是等差数列D .数列{}n a 中,10S ,20S ,30S 仍成等比数列26.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( ) A .数列{a n }为等差数列 B .1233BE BA BC =+ C .数列{a n }为等比数列D .14nn n a a +-=27.已知数列{}n a 是等比数列,有下列四个命题,其中正确的命题有( ) A .数列{}n a 是等比数列 B .数列{}1n n a a +是等比数列C .数列{}2lg na是等比数列D .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列28.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路B .此人第一天走的路程比后五天走的路程多6里C .此人第二天走的路程比全程的14还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍29.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n naC .21nn S =- D .121n n S -=-30.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若14q =-,则n n T S > D .若34q =-,则n n T S > 31.已知数列{}n a 满足11a =,()*123nn na a n N a +=∈+,则下列结论正确的有( ) A .13n a ⎧⎫+⎨⎬⎩⎭为等比数列 B .{}n a 的通项公式为1123n n a +=-C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=-- 32.已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,*n ∈N ,则下列选项正确的为( )A .数列{}1n a +是等差数列B .数列{}1n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <33.已知等比数列{a n }的公比23q =-,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( ) A .a 9•a 10<0B .a 9>a 10C .b 10>0D .b 9>b 1034.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,99100101a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的D .使1n T >成立的最大自然数n 等于19835.等差数列{}n a 的公差为d ,前n 项和为n S ,当首项1a 和d 变化时,3813++a a a 是一个定值,则下列各数也为定值的有( ) A .7aB .8aC .15SD .16S【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.A 【分析】根据已知条件计算12320182019a a a a a ⋅⋅⋅⋅的结果为20201b b ,再根据等比数列下标和性质求解出2020b 的结果. 【详解】 因为1n n nb a b +=,所以32019202020202412320182019123201820191b b b b b b a a a a a b b b b b b ⋅⋅⋅⋅=⋅⋅⋅⋅⋅=, 因为数列{}n a 为等比数列,且10102a =, 所以()()()123201820191201922018100910111010a a a a a a a a a a a a ⋅⋅⋅=⋅⋅⋅⋅⋅⋅22220192019101010101010101010102a a a a a =⋅⋅⋅==所以2019202012b b =,又114b =,所以201720202b =, 故选:A. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.2.C 【分析】将已知条件整理为()()22121328a q q q -+=,可得()22183221q q a q +=-,进而可得()4427612249633221q a a a q q q q +=+=-,分子分母同时除以4q ,利用二次函数的性质即可求出最值. 【详解】因为{}n a 是等比数列,543264328a a a a +--=,所以432111164328a q a q a q a q +--=,()()2221232328a q q q q q ⎡⎤+-+=⎣⎦, 即()()22121328a q q q -+=,所以()22183221q q a q +=-,()()465424761111221248242496963323212121q a a a q a q a q q q a q q a q q q +=+=+=⨯==---,令210t q =>,则()222421211t t t q q -=-=--+, 所以211t q==,即1q =时2421q q -最大为1,此时242421q q -最小为24, 所以7696a a +的最小值为24, 故选:C 【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化. 3.C 【分析】根据条件计算出等比数列的公比,再根据等比数列通项公式的变形求解出4a 的值. 【详解】因为254,32a a ==,所以3528a q a ==,所以2q ,所以2424416a a q ==⨯=,故选:C. 4.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B. 5.D 【分析】等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,可得67(1)(1)0a a --<,因此61a >,71a <,01q <<.进而判断出结论. 【详解】 解:等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,67(1)(1)0a a ∴--<,11a >,若61a <,则一定有71a <,不符合由题意得61a >,71a <,01q ∴<<,故A 、B 正确. 6712a a +>,671a a ∴>,6121231267()1T a a a a a a =⋯=>,故C 正确,131371T a =<,故D 错误,∴满足1n T >的最大正整数n 的值为12.故选:D . 6.C 【分析】根据等比数列的通项公式求出公比2q ,再根据等比数列的通项公式可求得结果.【详解】设等比数列{}n a 的公比为q ,则234123()2a a a a a a q ++=++=,又1231a a a ++=,所以2q,所以55678123()1232a a a a a a q ++=++⋅=⨯=.故选:C . 7.A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况. 8.A 【分析】设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1102n q -⨯>,1(1)221n q q-<-,即可求出参数q 的取值范围;【详解】解:设等比数列{}n a 的公比为q ,依题意可得1q ≠. 110,2n a a >=,2n S <, ∴1102n q -⨯>,1(1)221n q q-<-, 10q ∴>>. 144q ∴-,解得34q. 综上可得:{}n a 的公比的取值范围是:30,4⎛⎤⎥⎝⎦.故选:A . 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 9.A 【分析】由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得20202021ln ln a a . 【详解】{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,所以由2017202120172018201920202021T T T a a a a ==⋅,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,22021201820213()1a a a q ==,2202020192020()1a a a q==,即322021a q =,122020a q =,所以1220203202121ln ln ln 123ln 3ln ln 2qa q a q q ===. 故选:A . 【点睛】本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论. 10.D 【分析】设等比数列{}n a 的公比为q ,当1q =时,111133(3)n S a na a n a -=-=-,该式可以为0,不是等比数列,当1q ≠时,11113311n n a aS a q a q q-=-⋅+---,若是等比数列,则11301a a q -=-,可得23q =,利用213a a =,可以求得1a 的值,进而可得n a 的表达式 【详解】设等比数列{}n a 的公比为q当1q =时,1n S na =,所以111133(3)n S a na a n a -=-=-, 当3n =时,上式为0,所以{}13n S a -不是等比数列. 当1q ≠时,()1111111n nn a q a aq S qq q-==-⋅+---,所以11113311n n a aS a q a q q-=-⋅+---, 要使数列{}13n S a -为等比数列,则需11301a a q -=-,解得23q =. 213a a =,2123a ⎛⎫∴= ⎪⎝⎭,故21111222333n n n n a a q -+-⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的关键点是熟记等比数列的前n 项和公式,等比数列通项公式的一般形式,由此若11113311n n a a S a q a q q -=-⋅+---是等比数列,则11301aa q-=-,即可求得q 的值,通项即可求出. 11.D 【分析】根据等比数列的通项公式建立方程,求得数列的公比和首项,代入等比数列的求和公式可得选项. 【详解】设等比数列{}n a 的公比为(0)q q >.∵312283S a a =+, ∴123122()83a a a a a ++=+,即321260a a a --=. ∴2260q q --=,∴2q 或32q =-(舍去),∵416a =,∴4132a a q==, ∴6616(1)2(12)126112a q S q --===--, 故选:D. 12.B 【分析】第n 天蜂巢中的蜜蜂数量为n a ,则数列{}n a 成等比数列.根据等比数列的通项公式,可以算出第6天所有的蜜蜂都归巢后的蜜蜂数量. 【详解】设第n 天蜂巢中的蜜蜂数量为n a ,根据题意得 数列{}n a 成等比数列,它的首项为6,公比6q = 所以{}n a 的通项公式:1666n n n a -=⨯=到第6天,所有的蜜蜂都归巢后, 蜂巢中一共有66646656a =只蜜蜂. 故选:B . 13.C 【分析】根据12n n a a +=,得到数列{}n a 是公比为2的等比数列求解. 【详解】 因为12n n a a +=,所以12n na a +=, 所以数列{}n a 是公比为2的等比数列. 因为32a =,所以235328a a q ===. 故选:C 14.A 【分析】根据29T T =得到761a =,再由2121512a a a q ==,求得1,a q 即可.【详解】设等比数列{}n a 的公比为q ,由29T T =得:761a =, 故61a =,即511a q =. 又2121512a a a q ==,所以91512q =, 故12q =, 所以()()211122123411...2n n n n n n n T a a a a a a q--⎛⎫=== ⎪⎝⎭,所以n T 的最大值为15652T T ==.故选:A. 15.C 【分析】利用等比数列的性质运算求解即可. 【详解】根据题意,等比数列{}n a 满足2237610216a a a a a ++=,则有222288216a a a a ++=,即()22816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C . 16.A 【分析】由已知条件求出公差和公比,即可由此求出结果. 【详解】设等差数列的公差为d ,等比数列的公比为q , 则有139d +=,419q ⋅=,解之可得83d =,23q =, ()22218183b a a q ∴-=⨯⨯=.故选:A. 17.C 【分析】根据等比数列的定义和判定方法逐一判断. 【详解】对于A ,若24nna =,则2nn a =±,+1+12n n a =±,则12n na a +=±,即后一项与前一项的比不一定是常数,故A 错误;对于B ,当0n a =时,满足12n n n a a a ++=⋅,但数列{}n a 不为等比数列,故B 错误; 对于C ,由2m nm n a a +⋅=可得0n a ≠,则+1+12m n m n a a +⋅=,所以1+1222n n m n m n a a +++==,故{}n a 为公比为2的等比数列,故C 正确;对于D ,由31211n n n n a a a a +++=⋅⋅可知0n a ≠,则312n n n n a a a a +++⋅=⋅,如1,2,6,12满足312n n n n a a a a +++⋅=⋅,但不是等比数列,故D 错误. 故选:C. 【点睛】方法点睛:证明或判断等比数列的方法, (1)定义法:对于数列{}n a ,若()10,0n n na q q a a +=≠≠,则数列{}n a 为等比数列; (2)等比中项法:对于数列{}n a ,若()2210n n n n a a a a ++=≠,则数列{}n a 为等比数列;(3)通项公式法:若n n a cq =(,c q 均是不为0的常数),则数列{}n a 为等比数列;(4)特殊值法:若是选择题、填空题可以用特殊值法判断,特别注意0n a =的判断. 18.A 【分析】根据题中条件,先得数列的通项,再由等比数列的求和公式,即可得出结果. 【详解】因为点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上, 所以()12,2nn a n N n -=∈≥,因此()12n n a n N ++=∈,即数列{}n a 是以4为首项,以2为公比的等比数列, 所以{}n a 的前10项和为()10412409212-=-.故选:A. 19.B 【分析】设正项等比数列{}n a 的公比为0q >,由7652a a a =+,可得22q q =+,解得2q,根据存在两项m a 、n a14a =14a =,6m n +=.对m ,n 分类讨论即可得出. 【详解】解:设正项等比数列{}n a 的公比为0q >, 满足:7652a a a =+,22q q ∴=+,解得2q,存在两项m a 、n a14a =,∴14a =,6m n ∴+=,m ,n 的取值分别为(1,5),(2,4),(3,3),(4,2),(5,1),则14m n+的最小值为143242+=.故选:B . 20.C 【分析】根据已知条件先计算出等比数列的首项和公比,然后根据等比数列的前n 项和公式求解出5S 的结果.【详解】因为12234,12a a a a +=+=,所以23123a a q a a +==+,所以1134a a +=,所以11a =, 所以()5515113121113a q S q--===--, 故选:C.二、多选题21.BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}n a ,考虑121,1,1n n n a a a ++===,211n n n na a a a +++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;若32nn a =-+,2113n n n na a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确; 若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确. 故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1. 22.BD 【分析】设设等比数列{}n a 的公比为q ,则0q >,由已知得1112114a a ++=,解方程计算即可得答案. 【详解】解:设等比数列{}n a 的公比为q ,则0q >,因为21531a a a ==,2311a a q == , 所以51115135151511111112111114a a a a a a a a a a a a a ++=++=++=+=+++=,解得1412a q =⎧⎪⎨=⎪⎩或1142.a q ⎧=⎪⎨⎪=⎩, 当14a =,12q =时,551413121412S ⎛⎫- ⎪⎝⎭==-,数列{}n a 是递减数列;当114a =,2q 时,5314S =,数列{}n a 是递增数列; 综上,5314S =. 故选:BD. 【点睛】本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为1112114a a ++=,进而解方程计算. 23.ABD 【分析】根据基本不等式的相关知识,结合等比数列中等比中项的性质,求出5a 的范围,即可得到所求. 【详解】解:依题意,数列是{}n a 是正项等比数列,30a ∴>,70a >,50a >,∴2373752323262a a a a a +=, 因为50a >,所以上式可化为52a ,当且仅当3a =,7a = 故选:ABD . 【点睛】本题考查了等比数列的性质,考查了基本不等式,考查分析和解决问题的能力,逻辑思维能力.属于中档题. 24.AB 【分析】首先可得数列{}n a 为等比数列,从而求出公比q 、1a ,再根据等比数列求和公式计算可得; 【详解】解:因为数列{}n a 对任意的正整数n 均有212n n n a a a ++=,所以数列{}n a 为等比数列,因为22a =,48a =,所以2424a q a ==,所以2q =±, 当2q时11a =,所以101012102312S -==-当2q =-时11a =-,所以()()()101011234112S -⨯--==--故选:AB 【点睛】本题考查等比数列的通项公式及求和公式的应用,属于基础题. 25.AC 【分析】 由已知得12n na 可得以2122n n a -=,可判断A ;又1111122n n n a --⎛⎫== ⎪⎝⎭,可判断B ;由122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.【详解】等比数列{}n a 中,满足11a =,2q,所以12n n a ,所以2122n n a -=,所以数列{}2n a 是等比数列,故A 正确;又1111122n n n a --⎛⎫== ⎪⎝⎭,所以数列1n a ⎧⎫⎨⎬⎩⎭是递减数列,故B 不正确; 因为122log log 21n n a n -==-,所以{}2log n a 是等差数列,故C 正确;数列{}n a 中,101010111222S -==--,202021S =-,303021S =-,10S ,20S ,30S 不成等比数列,故D 不正确; 故选:AC . 【点睛】本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判定,属于中档题. 26.BD 【分析】 证明1233BE BA BC =+,所以选项B 正确;设BD tBE =(0t >),易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误;数列{1n n a a --}是以4为首项,4为公比的等比数列,所以14nn n a a +-=,所以选项D 正确,易得321a =,选项C 不正确.【详解】因为2AE EC =,所以23AE AC=, 所以2()3AB BE AB BC +=+, 所以1233BE BA BC =+,所以选项B 正确;设BD tBE =(0t >),则当n ≥2时,由()()1123n n n n BD tBE a a BA a a BC -+==-+-,所以()()111123n n n n BE a a BA a a BC t t-+=-+-, 所以()11123n n a a t --=,()11233n n a a t +-=, 所以()11322n n n n a a a a +--=-, 易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误; 因为2a -1a =4,114n nn n a a a a +--=-,所以数列{1n n a a --}是以4为首项,4为公比的等比数列,所以14nn n a a +-=,所以选项D 正确,易得321a =,显然选项C 不正确. 故选:BD 【点睛】本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平. 27.ABD 【分析】分别按定义计算每个数列的后项与前项的比值,即可判断. 【详解】根据题意,数列{}n a 是等比数列,设其公比为q ,则1n na q a +=, 对于A ,对于数列{}n a ,则有1||n na q a ,{}n a 为等比数列,A 正确; 对于B ,对于数列{}1n n a a +,有211n n n na a q a a +-=,{}1n n a a +为等比数列,B 正确; 对于C ,对于数列{}2lg n a ,若1n a =,数列{}n a 是等比数列,但数列{}2lg n a 不是等比数列,C 错误;对于D ,对于数列1n a ⎧⎫⎨⎬⎩⎭,有11111n n n n a a a q a --==,1n a ⎧⎫⎨⎬⎩⎭为等比数列,D 正确. 故选:ABD . 【点睛】本题考查用定义判断一个数列是否是等比数列,属于基础题. 28.BCD 【分析】设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q = 的等比数列,由6=378S 求得首项,然后逐一分析四个选项得答案. 【详解】解:根据题意此人每天行走的路程成等比数列, 设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q =的等比数列. 所以661161[1()](1)2=3781112a a q S q --==--,解得1192a =. 选项A:5561119262a a q ⎛⎫==⨯= ⎪⎝⎭,故A 错误, 选项B:由1192a =,则61378192186S a -=-=,又1921866-=,故B 正确. 选项C:211192962a a q ==⨯=,而6194.54S =,9694.5 1.5-=,故C 正确.选项D:2123111(1)192(1)33624a a a a q q ++=++=⨯++=, 则后3天走的路程为378336=42-, 而且336428÷=,故D 正确. 故选:BCD【点睛】本题考查等比数列的性质,考查等比数列的前n 项和,是基础题. 29.BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】由23464a a a =得3334a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q或12q =.又因为数列{}n a 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na ,()1122112n n n S ⨯-==--,所以()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.30.BD 【分析】先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q ->-,上式等价于1010n q q ⎧->⎨->⎩①或1010n q q ⎧-<⎨-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.综上所述,q 的取值范围是()()1,00,-+∞.2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以()2311222n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,而0n S >,且()()1,00,q ∈-⋃+∞.所以,当112q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误.当12(0)2q q -<<≠时,0n n T S -<,即n n T S <. 当12q =-或2q 时,0,n n n n T S T S -==,A 选项错误.综上所述,正确的选项为BD. 故选:BD 【点睛】本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题. 31.ABD 【分析】 由()*123nn na a n N a +=∈+两边取倒数,可求出{}n a 的通项公式,再逐一对四个选项进行判断,即可得答案. 【详解】 因为112323n nn n a a a a ++==+,所以11132(3)n n a a ++=+,又11340a +=≠, 所以13n a ⎧⎫+⎨⎬⎩⎭是以4为首项,2位公比的等比数列,11342n n a -+=⨯即1123n n a +=-,故选项A 、B 正确. 由{}n a 的通项公式为1123n n a +=-知,{}n a 为递减数列,选项C 不正确.因为1231n na +=-,所以 1n a ⎧⎫⎨⎬⎩⎭的前n 项和23112(23)(23)(23)2(222)3n n n T n +=-+-++-=+++-22(12)2312234n n n n +-⨯-=⨯-=--.选项D 正确,故选:ABD 【点睛】本题考查由递推公式判断数列为等比数列,等比数列的通项公式及前n 项和,分组求和法,属于中档题. 32.BCD 【分析】由数列的递推式可得1121n n n n a S S a ++=-=+,两边加1后,运用等比数列的定义和通项公式可得n a ,1112211(21)(21)2121n n n n n n n n a a +++==-----,由数列的裂项相消求和可得n T . 【详解】解:由121n n n S S a +=++即为1121n n n n a S S a ++=-=+,可化为112(1)n n a a ++=+,由111S a ==,可得数列{1}n a +是首项为2,公比为2的等比数列,则12nn a +=,即21n n a =-,又1112211(21)(21)2121n n n n n n n n a a +++==-----,可得22311111111111212*********n n n n T ++=-+-+⋯+-=-<------, 故A 错误,B ,C ,D 正确. 故选:BCD . 【点睛】本题考查数列的递推式和等比数列的定义、通项公式,以及数列的裂项相消法求和,考查化简运算能力和推理能力,属于中档题. 33.AD 【分析】设等差数列的公差为d ,运用等差数列和等比数列的通项公式分析A 正确,B 与C 不正确,结合条件判断等差数列为递减数列,即可得到D 正确. 【详解】数列{a n }是公比q 为23-的等比数列,{b n }是首项为12,公差设为d 的等差数列, 则8912()3a a =-,91012()3a a =-, ∴a 9•a 1021712()3a =-<0,故A 正确; ∵a 1正负不确定,故B 错误;∵a 10正负不确定,∴由a 10>b 10,不能求得b 10的符号,故C 错误; 由a 9>b 9且a 10>b 10,则a 1(23-)8>12+8d ,a 1(23-)9>12+9d , 由于910,a a 异号,因此90a <或100a <故 90b <或100b <,且b 1=12可得等差数列{b n }一定是递减数列,即d <0, 即有a 9>b 9>b 10,故D 正确. 故选:AD 【点睛】本题考查了等差等比数列的综合应用,考查了等比数列的通项公式、求和公式和等差数列的单调性,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 34.ABD 【分析】由已知9910010a a ->,得0q >,再由99100101a a -<-得到1q <说明A 正确;再由等比数列的性质结合1001a <说明B 正确;由10099100·T T a =,而10001a <<,求得10099T T <,说明C 错误;分别求得1981T >,1991T <说明D 正确.【详解】 对于A ,9910010a a ->,21971·1a q ∴>,()2981··1a q q ∴>.11a >,0q ∴>.又99100101a a -<-,991a ∴>,且1001a <. 01q ∴<<,故A 正确;对于B ,299101100100·01a a a a ⎧=⎨<<⎩,991010?1a a ∴<<,即99101·10a a -<,故B 正确; 对于C ,由于10099100·T T a =,而10001a <<,故有10099T T <,故C 错误; 对于D ,()()()()19812198119821979910099100·····991T a a a a a a a a a a a =⋯=⋯=⨯>, ()()()199121991199219899101100·····1T a a a a a a a a a a =⋯=⋯<,故D 正确.∴不正确的是C .故选:ABD . 【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.BC 【分析】根据等差中项的性质和等差数列的求和公式可得出结果. 【详解】由等差中项的性质可得381383a a a a ++=为定值,则8a 为定值,()11515815152a a S a +==为定值,但()()11616891682a a S a a +==+不是定值.故选:BC. 【点睛】本题考查等差中项的基本性质和等差数列求和公式的应用,考查计算能力,属于基础题.。
等比数列专题(有答案) 百度文库

一、等比数列选择题1.等比数列{}n a 的前n 项和为n S ,416a =-,314S a =+,则公比q 为( )A .2-B .2-或1C .1D .22.在等比数列{}n a 中,24a =,532a =,则4a =( ) A .8B .8-C .16D .16-3.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记{}n a 的前n 项积为nT,则下列选项错误的是( ) A .01q <<B .61a >C .121T >D .131T >4.已知{}n a 是正项等比数列且1a ,312a ,22a 成等差数列,则91078a a a a +=+( ) A1B1C.3-D.3+5.已知数列{}n a 满足112a =,*11()2n n a a n N +=∈.设2n n n b a λ-=,*n N ∈,且数列{}n b 是单调递增数列,则实数λ的取值范围是( )A .(,1)-∞B .3(1,)2-C .3(,)2-∞D .(1,2)-6.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中错误的是( ) A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13nS n = C .13(1)n a n n =--D .{}3n S 是等比数列7.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-B .3-C .3D .88.已知各项均为正数的等比数列{}n a 的前4项和为30,且53134a a a =+,则3a =( ) A .2B .4C .8D .169.记n S 为正项等比数列{}n a 的前n 项和,若2415S S ==,,则7S =( ). A .710S =B .723S =C .7623S =D .71273S =10.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 11.已知数列{}n a 是等比数列,n S 为其前n 项和,若364,12S S ==,则12S =( ) A .50B .60C .70D .8012.在数列{}n a 中,32a =,12n n a a +=,则5a =( ) A .32B .16C .8D .413.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕=大吕=太簇.据此,可得正项等比数列{}n a 中,k a =( )A.n -B.n -C. D. 14..在等比数列{}n a 中,若11a =,54a =,则3a =( ) A .2B .2或2-C .2-D15.古代数学名著《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:一女子善于织布,每天织的布是前一天的2倍,已知她5天共织布5尺,问该女子每天分别织布多少?由此条件,若织布的总尺数不少于20尺,该女子需要的天数至少为 ( ) A .6B .7C .8D .916.已知{}n a 为等比数列.下面结论中正确的是( ) A .1322a a a +≥B .若13a a =,则12a a =C .2221322a a a +≥D .若31a a >,则42a a >17.数列{}n a 满足119211021119n n n n a n --⎧≤≤=⎨≤≤⎩,,,则该数列从第5项到第15项的和为( )A .2016B .1528C .1504D .99218.设b R ∈,数列{}n a 的前n 项和3nn S b =+,则( )A .{}n a 是等比数列B .{}n a 是等差数列C .当1b ≠-时,{}n a 是等比数列D .当1b =-时,{}n a 是等比数列19.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a14a =,则14m n+的最小值为( )A .53B .32C .43D .11620.等比数列{}n a 的各项均为正数,且101010113a a =.则313232020log log log a a a +++=( )A .3B .505C .1010D .2020二、多选题21.题目文件丢失! 22.题目文件丢失!23.一个弹性小球从100m 高处自由落下,每次着地后又跳回原来高度的23再落下.设它第n 次着地时,经过的总路程记为n S ,则当2n ≥时,下面说法正确的是( ) A .500n S < B .500n S ≤C .n S 的最小值为7003D .n S 的最大值为40024.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列25.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或1426.已知集合{}*21,A x x n n N==-∈,{}*2,nB x x n N ==∈将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25B .26C .27D .2827.已知等比数列{}n a 的公比0q <,等差数列{}n b 的首项10b >,若99a b >,且1010a b >,则下列结论一定正确的是( )A .9100a a <B .910a a >C .100b >D .910b b >28.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( )A .数列{a n }为等差数列B .1233BE BA BC =+ C .数列{a n }为等比数列D .14nn n a a +-=29.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a ⋅>,87101a a -<-,则下列结论正确的是( ) A .01q << B .791a a ⋅> C .n S 的最大值为9SD .n T 的最大值为7T30.在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍31.已知数列{}n a 前n 项和为n S .且1a p =,122(2)n n S S p n --=≥(p 为非零常数)测下列结论中正确的是( ) A .数列{}n a 为等比数列 B .1p =时,41516S =C .当12p =时,()*,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+ 32.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若14q =-,则n n T S > D .若34q =-,则n n T S > 33.设数列{}n a 满足*12335(21)2(),n a a a n a n n ++++-=∈N 记数列{}21na n +的前n 项和为,n S 则( ) A .12a =B .221n a n =- C .21n nS n =+ D .1n n S na +=34.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,数列(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x =B .()2xf x =C .()f x =D .()ln f x x =35.已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设n n b c a =,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( ) A .8B .9C .10D .11【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.A 【分析】由416a =-,314S a =+列出关于首项与公比的方程组,进而可得答案. 【详解】 因为314S a =+, 所以234+=a a ,所以()2131416a q q a q ⎧+=⎪⎨=-⎪⎩, 解得2q =-, 故选:A . 2.C 【分析】根据条件计算出等比数列的公比,再根据等比数列通项公式的变形求解出4a 的值. 【详解】因为254,32a a ==,所以3528a q a ==,所以2q ,所以2424416a a q ==⨯=,故选:C. 3.D 【分析】等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,可得67(1)(1)0a a --<,因此61a >,71a <,01q <<.进而判断出结论. 【详解】解:等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,67(1)(1)0a a ∴--<,11a >,若61a <,则一定有71a <,不符合由题意得61a >,71a <,01q ∴<<,故A 、B 正确. 6712a a +>,671a a ∴>,6121231267()1T a a a a a a =⋯=>,故C 正确,131371T a =<,故D 错误,∴满足1n T >的最大正整数n 的值为12.故选:D . 4.D 【分析】 根据1a ,312a ,22a 成等差数列可得3121222a a a ⨯=+,转化为关于1a 和q 的方程,求出q 的值,将91078a a a a ++化简即可求解.【详解】因为{}n a 是正项等比数列且1a ,312a ,22a 成等差数列, 所以3121222a a a ⨯=+,即21112a q a a q =+,所以2210q q --=,解得:1q =+1q =(222291078787813a a a q a q q a a a a ++====+++,故选:D 5.C 【分析】 由*11()2n n a a n N +=∈可知数列{}n a 是公比为2的等比数列,12n n a =,得2(2)2n n nn b n a λλ-==-,结合数列{b n }是单调递增数列,可得1n n b b +>对于任意的*n N ∈*恒成立,参变分离后即可得解.【详解】 由*11()2n n a a n N +=∈可知数列{}n a 是公比为2的等比数列, 所以1111()222n n n a -==,2(2)2n n nn b n a λλ-==- ∵数列{n b 是单调递增数列, ∴1n n b b +>对于任意的*n N ∈*恒成立, 即1(12)2(2)2n n n n λλ++->-,整理得:22n λ+<32λ∴< ,故选:C. 【点睛】本题主要考查了已知数列的单调性求参,一般研究数列的单调性的方法有: 一、利用数列单调性的定义,由1n n a a +>得数列单增,1n n a a +<得数列单减; 二、借助于函数的单调性研究数列的单调性. 6.C 【分析】由1(2)n n n a S S n -=-≥代入得出{}n S 的递推关系,得证1n S ⎧⎫⎨⎬⎩⎭是等差数列,可判断A ,求出n S 后,可判断B ,由1a 的值可判断C ,求出3n S 后可判断D . 【详解】2n ≥时,因为130n n n a S S -+=,所以1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确;1113S a ==,113S =,公差3d =,所以133(1)3n n n S =+-=,所以13n S n =,B 正确; 113a =不适合13(1)n a n n =--,C 错误;1313n n S +=,数列113n +⎧⎫⎨⎬⎩⎭是等比数列,D 正确. 故选:C . 【点睛】易错点睛:本题考查由数列的前n 项和求数列的通项公式,考查等差数列与等比数列的判断,在公式1n n n a S S -=-中2n ≥,不包含1a ,因此由n S 求出的n a 不包含1a ,需要特别求解检验,否则易出错. 7.A 【分析】根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2326a a a =,即2(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)661(2)2422S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A 8.C 【分析】根据等比数列的通项公式将53134a a a =+化为用基本量1,a q 来表示,解出q ,然后再由前4项和为30求出1a ,再根据通项公式即可求出3a . 【详解】设正数的等比数列{}n a 的公比为()0q q >,因为53134a a a =+,所以4211134a q a q a =+,则42340q q --=,解得24q =或21q =-(舍),所以2q,又等比数列{}n a 的前4项和为30,所以23111130a a q a q a q +++=,解得12a =, ∴2318a a q ==.故选:C . 9.D 【分析】利用等比数列前n 项和公式列出方程组,求出首项和公比,由此能求出这个数列的前7项和. 【详解】n S 为正项等比数列{}n a 的前n 项和,21S =,45S =,∴21410(1)11(1)51q a q qa q q ⎧⎪>⎪⎪-⎪=⎨-⎪⎪-⎪=-⎪⎩,解得113a =,2q ,771(12)1273123S -∴==-.故选:D . 10.D【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 11.B 【分析】由等比数列前n 项和的性质即可求得12S . 【详解】 解:数列{}n a 是等比数列,3S ∴,63S S -,96S S -,129S S -也成等比数列,即4,8,96S S -,129S S -也成等比数列, 易知公比2q,9616S S ∴-=,12932S S -=,121299663332168460S S S S S S S S =-+-+-+=+++=.故选:B. 12.C 【分析】根据12n n a a +=,得到数列{}n a 是公比为2的等比数列求解. 【详解】因为12n n a a +=,所以12n na a +=, 所以数列{}n a 是公比为2的等比数列. 因为32a =,所以235328a a q ===. 故选:C 13.C 【分析】根据题意,由等比数列的通项公式,以及题中条件,即可求出结果. 【详解】因为三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为11n n a a q -=,所以q =所以111111k k n n k a a a a a ---⎛⎫ ⎪⎛== ⎭⎝⎝1111n k k n n na a----==⋅ 故选:C. 14.A 【分析】由等比数列的性质可得2315a a a =⋅,且1a 与3a 同号,从而可求出3a 的值【详解】解:因为等比数列{}n a 中,11a =,54a =,所以23154a a a =⋅=,因为110a =>,所以30a >, 所以32a =, 故选:A 15.B 【分析】设女子第一天织布1a 尺,则数列{}n a 是公比为2的等比数列,由题意得515(12)512a S -==-,解得1531a =,由此能求出该女子所需的天数至少为7天. 【详解】设女子第一天织布1a 尺,则数列{}n a 是公比为2的等比数列,由题意得515(12)512a S -==-,解得1531a =, 5(12)312012n n S -∴=-,解得2125n . 因为6264=,72128=∴该女子所需的天数至少为7天.故选:B 16.C 【分析】取特殊值可排除A ,根据等比数列性质与基本不等式即可得C 正确,B ,D 错误. 【详解】解:设等比数列的公比为q ,对于A 选项,设1231,2,4a a a =-==-,不满足1322a a a +≥,故错误;对于B 选项,若13a a =,则211a a q =,则1q =±,所以12a a =或12a a =-,故错误; 对于C 选项,由均值不等式可得2221313222a a a a a +≥⋅=,故正确;对于D 选项,若31a a >,则()2110a q ->,所以()14221a a a q q -=-,其正负由q 的符号确定,故D 不确定. 故选:C. 17.C 【分析】利用等比数列的求和公式进行分项求和,最后再求总和即可 【详解】因为119211021119n n n n a n --⎧≤≤=⎨≤≤⎩,,,所以,41049104561022222212a a a -+++=++==--,498448941112152222222212a a a -+++=++=++==--,该数列从第5项到第15项的和为10494465422222(2121)2(64322)16941504-+-=⨯-+-=⨯+-=⨯=故选:C 【点睛】解题关键在于利用等比数列的求和公式进行求解,属于基础题 18.D 【分析】根据n S 与n a 的关系求出n a ,然后判断各选项. 【详解】由题意2n ≥时,111(3)(3)23n n n n n n a S S b b ---=-=+-+=⨯,13n na a +=(2)n ≥, 113a Sb ==+,若212333a a b⨯==+,即1b =-,则{}n a 是等比数列,否则不是等比数列,也不是等差数列, 故选:D . 【点睛】关键点点睛:本题考查等比数列的定义.在由1n n n a S S -=-求通项时,2n ≥必须牢记,11a S =它与(2)n a n ≥的求法不相同,因此会影响{}n a 的性质.对等比数列来讲,不仅要求3423a a a a ==,还必须满足3212a a a a =. 19.B 【分析】设正项等比数列{}n a 的公比为0q >,由7652a a a =+,可得22q q =+,解得2q,根据存在两项m a 、n a14a =14a =,6m n +=.对m ,n 分类讨论即可得出. 【详解】解:设正项等比数列{}n a 的公比为0q >, 满足:7652a a a =+,22q q ∴=+,解得2q,存在两项m a 、n a14a =,∴14a =,6m n ∴+=,m ,n 的取值分别为(1,5),(2,4),(3,3),(4,2),(5,1),则14m n+的最小值为143242+=.故选:B . 20.C 【分析】利用等比数列的性质以及对数的运算即可求解. 【详解】由120202201932018101010113a a a a a a a a =====,所以313232020log log log a a a +++()10103101010113log log 31010a a ===.故选:C二、多选题 21.无 22.无23.AC 【分析】由运动轨迹分析列出总路程n S 关于n 的表达式,再由表达式分析数值特征即可 【详解】由题可知,第一次着地时,1100S =;第二次着地时,221002003S =+⨯;第三次着地时,232210020020033S ⎛⎫=+⨯+⨯ ⎪⎝⎭;……第n 次着地后,21222100200200200333n n S -⎛⎫⎛⎫=+⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭则211222210020010040013333n n n S --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,显然500n S <,又n S 是关于n 的增函数,2n ≥,故当2n =时,n S 的最小值为40070010033+=; 综上所述,AC 正确 故选:AC 24.BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 25.BD 【分析】设设等比数列{}n a 的公比为q ,则0q >,由已知得1112114a a ++=,解方程计算即可得答案. 【详解】解:设等比数列{}n a 的公比为q ,则0q >,因为21531a a a ==,2311a a q == , 所以51115135151511111112111114a a a a a a a a a a a a a ++=++=++=+=+++=, 解得1412a q =⎧⎪⎨=⎪⎩或1142.a q ⎧=⎪⎨⎪=⎩, 当14a =,12q =时,551413121412S ⎛⎫- ⎪⎝⎭==-,数列{}n a 是递减数列;当114a =,2q 时,5314S =,数列{}n a 是递增数列; 综上,5314S =. 故选:BD. 【点睛】本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为1112114a a ++=,进而解方程计算. 26.CD 【分析】由题意得到数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,结合等差数列以及等比数列的求和公式,验证即可求解. 【详解】由题意,数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,可得当25n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,2,4,8,16,32,可得52520(139)2(12)40062462212S ⨯+-=+=+=-,2641a =,所以2612492a =,不满足112n n S a +>; 当26n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,2,4,8,16,32,可得52621(141)2(12)44162503212S ⨯+-=+=+=-,2743a =,所以2612526a =,不满足112n n S a +>; 当27n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,2,4,8,16,32,可得52722(143)2(12)48462546212S ⨯+-=+=+=-,2845a =,所以2712540a =,满足112n n S a +>; 当28n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,45,2,4,8,16,32,可得52823(145)2(12)52962591212S ⨯+-=+=+=-,2947a =,所以2812564a =,满足112n n S a +>,所以使得112n n S a +>成立的n 的可能取值为27,28. 故选:CD. 【点睛】本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力. 27.AD 【分析】根据等差、等比数列的性质依次判断选项即可. 【详解】对选项A ,因为0q <,所以29109990a a a a q a q =⋅=<,故A 正确;对选项B ,因为9100a a <,所以91000a a >⎧⎨<⎩或9100a a <⎧⎨>⎩,即910a a >或910a a <,故B 错误;对选项C ,D ,因为910,a a 异号,99a b >,且1010a b >,所以910,b b 中至少有一个负数, 又因为10b >,所以0d <,910b b >,故C 错误,D 正确. 故选:AD【点睛】本题主要考查等差、等比数列的综合应用,考查学生分析问题的能力,属于中档题. 28.BD【分析】证明1233 BEBA BC=+,所以选项B正确;设BD tBE=(0t>),易得()114n n n na a a a+--=-,显然1n na a--不是同一常数,所以选项A 错误;数列{1n na a--}是以4为首项,4为公比的等比数列,所以14nn na a+-=,所以选项D正确,易得321a=,选项C不正确.【详解】因为2AE EC=,所以23AE AC=,所以2()3AB BE AB BC+=+,所以1233BE BA BC=+,所以选项B正确;设BD tBE=(0t>),则当n≥2时,由()()1123n n n nBD tBE a a BA a a BC-+==-+-,所以()()111123n n n nBE a a BA a a BCt t-+=-+-,所以()11123n na at--=,()11233n na at+-=,所以()11322n n n na a a a+--=-,易得()114n n n na a a a+--=-,显然1n na a--不是同一常数,所以选项A错误;因为2a-1a=4,114n nn na aa a+--=-,所以数列{1n na a--}是以4为首项,4为公比的等比数列,所以14nn n a a +-=,所以选项D 正确,易得321a =,显然选项C 不正确. 故选:BD 【点睛】本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平. 29.AD 【分析】根据题意71a >,81a <,再利用等比数列的定义以及性质逐一判断即可. 【详解】因为11a >,781a a ⋅>,87101a a -<-, 所以71a >,81a <,所以01q <<,故A 正确.27981a a a =<⋅,故B 错误;因为11a >,01q <<,所以数列{}n a 为递减数列,所以n S 无最大值,故C 错误; 又71a >,81a <,所以n T 的最大值为7T ,故D 正确. 故选:AD 【点睛】本题考查了等比数列的性质、定义,考查了基本知识的掌握情况,属于基础题. 30.BD 【分析】根据题意,得到此人每天所走路程构成以12为公比的等比数列,记该等比数列为{}n a ,公比为12q =,前n 项和为n S ,根据题意求出首项,再由等比数列的求和公式和通项公式,逐项判断,即可得出结果. 【详解】由题意,此人每天所走路程构成以12为公比的等比数列, 记该等比数列为{}n a ,公比为12q =,前n 项和为n S , 则16611163237813212a S a ⎛⎫- ⎪⎝⎭===-,解得1192a =, 所以此人第三天走的路程为23148a a q =⋅=,故A 错;此人第一天走的路程比后五天走的路程多()1611623843786a S a a S --=-=-=里,故B 正确;此人第二天走的路程为213789694.54a a q =⋅=≠=,故C 错; 此人前三天走的路程为31231929648336S a a a =++=++=,后三天走的路程为6337833642S S -=-=,336428=⨯,即前三天路程之和是后三天路程之和的8倍,D 正确; 故选:BD. 【点睛】本题主要考查等比数列的应用,熟记等比数列的通项公式与求和公式即可,属于常考题型. 31.AC 【分析】由122(2)n n S S p n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 错误;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】由122(2)n n S S p n --=≥,得22p a =. 3n ≥时,1222n n S S p ---=,相减可得120n n a a --=,又2112a a =,数列{}n a 为首项为p ,公比为12的等比数列,故A 正确; 由A 可得1p =时,44111521812S -==-,故B 错误; 由A 可得m n m n a a a +⋅=等价为2121122m n m n p p ++⋅=⋅,可得12p =,故C 正确;38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,则3856a a a a +>+,即D 不正确; 故选:AC. 【点睛】本题考查等比数列的通项公式和求和公式,考查数列的递推关系式,考查学生的计算能力,属于中档题. 32.BD 【分析】先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意;当1q ≠时,()1101n n a q S q-=>-,即101nq q ->-,上式等价于1010n q q ⎧->⎨->⎩①或1010n q q ⎧-<⎨-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.综上所述,q 的取值范围是()()1,00,-+∞.2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以()2311222n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,而0n S >,且()()1,00,q ∈-⋃+∞.所以,当112q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误. 当12(0)2q q -<<≠时,0n n T S -<,即n n T S <. 当12q =-或2q 时,0,n n n n T S T S -==,A 选项错误.综上所述,正确的选项为BD. 故选:BD 【点睛】本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题. 33.ABD 【分析】由已知关系式可求1a 、n a ,进而求得{}21na n +的通项公式以及前n 项和,n S 即可知正确选项. 【详解】由已知得:12a =,令12335...(21)2n n T a a a n a n =++++-=, 则当2n ≥时,1(21)2n n n T T n a --=-=,即221n a n =-,而122211a ==⨯-也成立, ∴221n a n =-,*n N ∈,故数列{}21n a n +通项公式为211(21)(21)2121n n n n =-+--+,∴111111111121 (133557232121212121)n nS n n n n n n =-+-+-++-+-=-=---+++,即有1n n S na +=, 故选:ABD【点睛】关键点点睛:由已知12335...(21)2n n T a a a n a n =++++-=求1a 、n a ,注意验证1a 是否符合n a 通项,并由此得到{}21na n +的通项公式,利用裂项法求前n 项和n S . 34.AC 【分析】直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可. 【详解】设等比数列{}n a 的公比为q .对于A ,则2221112()()n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,故A 是“保等比数列函数”; 对于B ,则111()22()2n n n n a a a n a n f a f a ++-+==≠ 常数,故B 不是“保等比数列函数”; 对于C,则1()()n n f a f a +===,故C 是“保等比数列函数”;对于D ,则11ln ln ln ln ln ()1()ln ln ln ln n n n n n n n n na a q a qq f a f a a a a a ++⋅+====+≠ 常数,故D 不是“保等比数列函数”. 故选:AC. 【点睛】本题考查等比数列的定义,考查推理能力,属于基础题. 35.AB 【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{c n }的通项公式,利用数列的分组求和法可得数列{c n }的前n 项和T n ,验证得答案. 【详解】由题意,a n =1+2(n ﹣1)=2n ﹣1,12n n b -=,n n b c a ==2•2n ﹣1﹣1=2n ﹣1,则数列{c n }为递增数列,其前n 项和T n =(21﹣1)+(22﹣1)+(23﹣1)+…+(2n ﹣1) =(21+22+ (2))﹣n ()21212n n -=-=-2n +1﹣2﹣n .当n =9时,T n =1013<2019; 当n =10时,T n =2036>2019. ∴n 的取值可以是8,9. 故选:AB 【点睛】本题考查了分组求和,考查了等差等比数列的通项公式、求和公式,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列
一、选择题
1、若等比数列的前3项依次为 2 ,32 ,62 ,……则第四项为( )
A 、1
B 、n 2
C 、92
D 、82
2、公比为15 的等比数列一定是( )
A 、递增数列
B 、摆动数列
C 、递减数列
D 、都不对
3、在等比数列{a n }中,若a 4●a 7 = -512,a 2 + a 9 = 254,且公比为整数,则a 12 =
A 、-1024
B 、-2048
C 、1024
D 、2048
4、已知等比数列的公比为2,前4项的和为1,则前8项的和等于( )
A 、15
B 、17
C 、19
D 、21
5、设A 、G 分别是正数a 、b 的等差中项和等比中项,则有( )
A 、ab ≥ AG
B 、ab < AG
C 、ab ≤ AG
D 、AG 与ab 的大小无法确定
6、{a n }为等比数列,下列结论中不正确的是( )
A 、{a n 2}为等比数列
B 、{ 1
a n }为等比数列
C 、{lg a n }为等差数列
D 、{a n a n +1}为等比数列
7、一个等比数列前几项和S n = ab n+ c,a ≠ 0,b ≠ 0且b≠ 1,a、b、c为常数,
那么a、b、c必须满足()
A、a + b = 0
B、c + b = 0
C、c + a = 0
D、a + b + c = 0
8、若a、b、c成等比数列,a、x、b和b、y、c都成等差数列,且xy≠0,则a
x
+ c
y
的值为()
A、1
B、2
C、3
D、4
9、已知{ a n }是等比数列,a2 = 2,a5 = 1
4,则公比q =()
A、-1
2B、-2 C、2 D、
1
2
10、如果-1,a,b,c,-9成等比数列,那么()
A、b = 3,ac = 9
B、b = -3,ac = 9
C、b = 3,ac = -9
D、b = -3,ac = -9
11、已知数列1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则a2 - a1 b2
的值是()
A、1
2B、-
1
2C、
1
2或-
1
2D、
1
4
12、等比数列{a n}中,a6 + a2 = 34,a6 - a2 = 30,那么a4等于()
A、8
B、16
C、±8
D、±16
13、若等比数列a n满足a n a n+1 = 16n,则公比为()
A、2
B、4
C、8
D、±16
14、等比数列{ a n }中,|a 1| = 1,a 5 = -8a 2,a 5 > a 2,则a n =( )
A 、(-2)n -1
B 、- (-2)n -1
C 、(-2)n
D 、- (-2)n
15、已知等比数列{a n }中,a 6 - 2a 3 = 2,a 5 - 2a 2 = 1,则等比数列{a n }的公比是A 、-1 B 、2 C 、3 D 、4
16、正项等比数列{a n }中,a 2a 5 = 10,则lg a 3 + lg a 4 =( )
A 、-1
B 、1
C 、2
D 、0
17、在等比数列{b n }中,b 3•b 9 = 9,则b 6的值为( )
A 、3
B 、±3
C 、-3
D 、9
18、在等比数列{a n }中,a 2a 5a 7 =16π3 ,则tan(a 1a 4a 9) =( )
A 、-√3
B 、√3
C 、-√33
D 、√33
19、若等比数列{a n } 满足a 4 + a 8 = -3,则a 6(a 2+2a 6+a 10) =( )
A 、9
B 、6
C 、3
D 、-3
20、设等比数列{a n } 的前n 项和为S n ,若S 6S 3 =3,则S 9
S 6 =( )
A 、12
B 、73
C 、83
D 、1
21、在等比数列{a n } 中,a n >0,a 2 = 1 - a 1,a 4 = 9 - a 3,则a 4 + a 5 =(
)
A 、16
B 、27
C 、36
D 、81
22、在等比数列{a n} 中a2 = 3,则a1a2a3 =()
A、81
B、27
C、22
D、9
23、等比数列{a n} 中a4,a8是方程x2+3x+2=0 的两根,则a5a6a7 =()
A、8
B、±2 2
C、-2 2
D、2 2
24、在等比数列{a n} 中,若a3a4a5a6a7 = 243,则a72
a9的值为()
A、9
B、6
C、3
D、2
25、在3 和9 之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则这两个数的和是()
A、91
2B、10
1
4C、11
1
4D、12
1
2
26、已知等比数列1,a2,9,⋯,则该等比数列的公比为()
A、3或-3
B、3 或1
3C、3 D、
1
3
27、在等比数列{a n} 中,前7 项和S7=16,又a12 + a22 +⋯+ a72 = 128,则a1 - a2
+ a3 -a4 + a5 - a6 + a7 =()
A、8
B、13
2C、6 D、
7
2
28、等比数列{a n} 的前n项和为S n,a1=1,若4a1,2a2,a3成等差数列,则
S4 =()
A、7
B、8
C、16
D、15
二、填空题
29、在等比数列{a n }中,若S 4 = 240,a 2 + a 4 = 180,则a 7 = ______,q =______。
30、数列{a n }满足a 1 = 3,a n +1 = -a n 3 ,则a n = ______,S n = ______。
31、等比数列a ,-6,m ,-54,……的通项a n = ___________。
32、{a n }为等差数列,a 1 = 1,公差d = z ,从数列{a n }中,依次选出第1,
3,32……3n -1项,组成数列{b n },则数列{b n }的通项公式是__________,它的前几项之和是__________。
33、在等比数列{a n }中,
(1)若q = 12 ,S 6 = 31516 ,则a 5 = ;
(2) 若S 3 = 7a 3 ,则q =______;
(3) 若a 1+a 2 +a 3=-3 , a 1a 2a 3=8,则S 4 =____.
34、在等比数列{a n }中,
(1) 若a 7•a 12=5,则a 8•a 9•a 10•a 11=____;
(2) 若a 1+a 2=324,a 3+a 4=36,则a 5+a 6=______;
(3) 若q 为公比,a k =m ,则a k +p =______;
35、一个数列的前n 项和S n =8n -3,则它的通项公式a n =____
36、在2 和30 之间插入两个正数,使前三个成为等比数列,后三个成等
差数列,则这两个正数之和是_______.
37、已知数列{a n } 中,a 1=1,a n =2a n -1+3,则此数列的一个通项公式是
_________ .
38、数列314 ,418 ,5116 ,…的前n 项之和是_________。
39、等比数列{a n } 的首项a 1= -1,前n 项和为S n ,若S 10S 5
= 3132 ,则公比q 等于_________ .
40、若等比数列的首项为4,公比为2,则其第3 项和第5 项的等比中项
是______.
三、计算题
41、有四个数,前三个数成等差数列,后三个成等比数列,并且第一个数
与第四个数的和为37,第二个数与第三个数的和为36,求这四个数。
42、等比数列{a n }的公比q > 1,其第17项的平方等于第24项,求:使a 1 + a 2 + a 3 +……+ a n >
1a 1 + 1a 2 +…+ 1a n 成立的自然数n 的取值范围。
43、已知等比数列{a n},公比q > 0,求证:S n S n+2 < S n+12
44、数列{a n}的前n项和记为A n,数列{b n}的前n项和为B n,已知A n =
128
3( 1-1
4n),
a n = 2
b n,求B n及数列{|b n|}的前n项和S n。