交直流混联系统的潮流资料

合集下载

交直流混合电力系统潮流计算

交直流混合电力系统潮流计算

交直流电力系统潮流计算摘要:由于我国能源分布与经济发达地区的不均衡性,今后能源大规模、远距离流动成为必然。

特高压直流输电具有送电容量大、送电距离远等优点,在今后的能源流动中具有不可替代的地位。

本文首先阐述了高压直流输电系统的发展及运行特点,总结已有的交直流电力系统潮流计算的一般方法,提出一种实用新型交直流电力系统潮流计算方法。

同时对大规模交直流互联系统,提出了分区并行潮流算法的思路。

关键词:电力系统,交直流互联,潮流计算1. 引言我国地域辽阔,水能、煤炭资源较丰富,油、气资源相对贫乏,发电能源资源的分布和用电负荷的分布极不均衡。

一方面,全国可开发的水电资源有近2/3 分布在西部的四川、云南、西藏三省区,煤炭保有储量的2/3分布在山西、陕西、内蒙古三省区;另一方面,东部沿海和京广铁路沿线以东地区经济发达,用电负荷约占全国的 2/3。

今后我国水能和煤炭资源的开发多集中在西南、西北和晋、陕、蒙地区,并逐步西移和北移,而东部沿海和京广铁路沿线东地区国民经济持续快速发展,导致能源产地与能源消费地区之间的距离越来越远,使得我国能源配置的距离、特点和方式都发生了巨大变化,因此必然引起能源和电力的跨区域大规模流动。

直流输电一般定位于一定距离、一定规模的电力外送,在今后的电网发展中将日益受到重视。

随着电力大规模流动的距离逐渐加大,现有的±500kV直流输电将无法满足要求,客观上需要采用更高一级的直流输电电压等级。

根据对我国西南水电外送输电方案的多次滚动规划研究成果并结合国外的相关研究结论,±800kV 直流输电在技术上是可行的,比较适合我国的实际情况。

随着高压直流输电的应用越来越广泛,交直流混合电力系统将越来越普遍存在,其潮流算法也应当相应的有所发展,以适应实际的需求。

交直流互联电力系统潮流算法主要分为联合求解法和交替求解法。

联合求解法的收敛性好,但破坏了交流潮流算法中雅可比矩阵的结构,计算效率会随着直流系统的增加而降低;交替求解法的收敛条件相对苛刻,不需要修改交流系统的雅可比矩阵,易于实现。

交直流混联电力系统潮流算法研究的开题报告

交直流混联电力系统潮流算法研究的开题报告

交直流混联电力系统潮流算法研究的开题报告一、题目背景随着电力系统的快速发展,面对日益增多的电能需求,国内外都在加速推进交直流混联电力系统的应用研究。

混联电力系统是指在一定范围内同时采用交流和直流输电的电力系统。

该系统具有有效利用能源、提高系统可靠性和经济性的优势。

交直流混联电力系统中,由于直流系统和交流系统之间具有相互引入、相互阻塞的特性,其潮流计算和控制变得更为复杂。

因此,为实现混联电力系统中各系统之间的平稳运行,必须对其交直流混联电力系统的潮流算法进行深入研究。

二、研究目的本研究旨在探讨交直流混联电力系统潮流算法,建立混联电力系统的数学模型,深入分析不同情况下混联电力系统的潮流计算方法,为混联电力系统的稳定性和可靠性提供理论支持。

三、研究方法本研究将针对交直流混联电力系统的数学模型进行建立,分析混联电力系统中交流和直流系统之间的相互作用和影响。

通过建立混联电力系统的潮流计算模型,并运用相关的数值方法,对混联电力系统中的潮流进行计算和分析。

然后,对混联电力系统中不同情况下的潮流传输特性进行模拟分析。

四、主要研究内容(1)交直流混联电力系统数学模型的建立。

(2)交直流混联电力系统的潮流计算模型的建立。

(3)分析交直流混联电力系统中不同情况下的潮流计算方法。

(4)模拟交直流混联电力系统中不同情况下的潮流传输特性。

五、预期结果本研究将通过对交直流混联电力系统的数学模型的建立和潮流计算方法的分析,得出混联电力系统的稳定性和可靠性的结论,并为混联电力系统的实际运行提供理论依据。

六、结论本研究将对交直流混联电力系统的潮流算法进行深入研究,探讨不同情况下的潮流计算方法,加深了对混联电力系统的认识,为混联电力系统的实际应用提供可靠的理论支持。

交直流混联电力系统潮流计算与机组组合

交直流混联电力系统潮流计算与机组组合

工程技术科技创新导报 Science and Technology Innovation Herald26“西电东送”“北电南送”是我国未来电力格局的重要发展趋势,随着多个直流输电工程的投入运行,大规模交直流混联电力网络逐步形成,这给电力系统的运行和管理提出了更高的要求。

科学、可靠的潮流算法是进行交直流混联系统运行分析的重要基础,且随着精益化调度管理方式的不断推行,如何解决机组组合问题也逐渐受到关注,对于交直流混联电力系统来说,考虑安全约束的机组组合能够保证电网运行的安全性和可靠性。

基于以上,该文简要研究了交直流混联电力系统潮流计算及机组组合的相关问题。

1 交直流混联电力系统潮流计算对于交直流混联电力系统来说,其潮流计算模型将直流系统状态变量和控制变量引入到了交流系统非线性方程中,增加了缪奥数直流系统方程,因此,传统的交流系统潮流计算方法已经难以适用,需要进行改进和补充,满足交直流混联电力系统潮流计算要求。

一般来说,交直流混联电力系统潮流计算方法主要有如下两种。

1.1 统一迭代法统一迭代法是以极坐标下牛顿法为基础发展而来的一种潮流计算方法,在进行迭代求解的过程中,这种算法将交流节点状态变量及直流系统变量进行了统一。

利用统一迭代法技能型交直流混联电力系统潮流计算有着收敛性良好的优点,其适应性较为广泛,对于不同控制方式、网络结构的算例来说都能够进行迭代计算,求取收敛解[1]。

但需要注意的是,应用统一迭代算法进行交直流混联电力系统潮流计算的过程中,加入了Jac obia n矩阵阶数,在每一次进行迭代之后,都需要对Jacobian矩阵进行重新计算,这就大大增加了潮流计算的计算量。

针对这个问题,可以对统一迭代法进行一定的改进,减少计算量。

下面来例举两种改进方法:对传统牛顿法改进,对数学模型进行简化,在交直流混联电力系统潮流计算过程中,只需要对Jacobi an矩阵进行一次计算即可,这就大大降低了计算量,以网络大小和收敛准确度要求为依据,综合应用三阶收敛牛顿法、六阶收敛牛顿法以及简化牛顿法,这对于提升潮流计算中的求解速度有着积极的意义。

交直流混联系统的潮流分析装置和潮流分析方法[发明专利]

交直流混联系统的潮流分析装置和潮流分析方法[发明专利]

专利名称:交直流混联系统的潮流分析装置和潮流分析方法专利类型:发明专利
发明人:董新洲,王浩男,金勃良
申请号:CN202010307640.2
申请日:20200417
公开号:CN111416358A
公开日:
20200714
专利内容由知识产权出版社提供
摘要:本发明提出了一种交直流混联系统的潮流分析装置和潮流分析方法。

其中,装置包括:存储器,存储器存储有计算机程序;处理器,处理器执行计算机程序时执行以下步骤:获取直流输电系统的交流系统电压和换相电抗、整流器的第一触发角、逆变器的第二触发角;根据交流系统电压、换相电抗、第一触发角和第二触发角构建交流等效模型;根据交流等效模型进行潮流计算,得到交直流混联系统的潮流分析结果。

从而将交直流混联系统的潮流分析计算问题转化为纯交流系统的潮流分析计算问题,克服直流系统变量在潮流分析计算中不易解耦的问题,兼顾潮流计算的效率和精度。

申请人:清华大学
地址:100084 北京市海淀区清华园1号
国籍:CN
代理机构:北京友联知识产权代理事务所(普通合伙)
更多信息请下载全文后查看。

交直流混合潮流计算程序

交直流混合潮流计算程序

交直流混合潮流计算程序引言:交直流混合潮流计算是电力系统中一项重要的计算方法,能够准确计算电力系统中交流和直流电流的分布和功率流动情况。

本文将介绍交直流混合潮流计算程序的基本原理、计算流程以及应用。

一、基本原理交直流混合潮流计算程序是基于潮流计算理论和电力系统的运行特点开发而成的。

潮流计算是指根据电力系统的拓扑结构、负荷和发电机的参数,通过求解节点电压和线路功率的方程组,得到电力系统中各节点的电压和功率分布情况。

交直流混合潮流计算程序在传统潮流计算的基础上,考虑了交直流电源的并联运行,能够更加准确地反映电力系统的实际运行情况。

二、计算流程交直流混合潮流计算程序的计算流程一般包括以下几个步骤:1. 数据准备:收集并整理电力系统的拓扑结构、负荷和发电机的参数等相关数据,并进行数据预处理,确保数据的准确性和一致性。

2. 潮流方程建立:根据电力系统的物理特性和运行条件,建立交直流混合潮流计算的方程组。

该方程组一般包括节点电压方程、线路功率方程和交直流电源运行方程等。

3. 潮流方程求解:采用数值计算方法,通过迭代运算求解潮流方程组。

常用的计算方法包括高斯-赛德尔迭代法、牛顿-拉夫逊迭代法等。

4. 结果分析:对潮流计算结果进行分析和比较,得到电力系统中各节点的电压和功率分布情况。

根据分析结果,可以评估电力系统的稳定性和安全性,为系统运行和调度提供参考依据。

三、应用交直流混合潮流计算程序在电力系统的规划、设计和运行中具有广泛的应用价值。

主要应用包括以下几个方面:1. 电网规划:交直流混合潮流计算可以帮助规划人员评估电力系统的承载能力和稳定性,优化输电线路的布置和容量配置,提高电力系统的经济性和可靠性。

2. 电力系统设计:交直流混合潮流计算可以辅助设计人员确定电力系统的参数和运行方式,优化变电站和输电线路的选址和布置,确保电力系统在设计条件下的正常运行。

3. 运行调度:交直流混合潮流计算可以为电力系统的运行调度提供决策支持。

含VSC的交直流混联系统最优潮流及其损耗分析

含VSC的交直流混联系统最优潮流及其损耗分析

含VSC的交直流混联系统最优潮流及其损耗分析近年来,电力电子技术飞速发展,加上PWM控制技术的运用,以IGBT为主的全控型电力电子变换器占据了电流变换器的主导地位,其中IGBT为基础的电压源型变换器VSC的快速发展,使得两端柔性直流输电VSC-HVDC及多端柔性直流输电VSC-MTDC技术得以实现。

VSC-MTDC系统可实现多端供受电,相比于VSC-HVDC系统更具安全可靠性、运行方式更具灵活性及分布式电源消纳能力更好。

因此,研究含VSC-MTDC交直流混联系统最优潮流及其损耗问题,可为电力系统安全运行、系统方案规划、建设拓展方案等提供强有力依据,具有重要的价值及意义。

含VSC-MTDC的交直流混联系统潮流计算方法有别于传统纯交流系统计算,其计算更为复杂。

论文针对含VSC-MTDC交直流混联系统运用交替迭代法计算潮流时,Newton-Raphson产生的雅可比矩阵元素在每次迭代时需重新计算,影响潮流计算收敛速度的问题,提出考虑换流站损耗及其容量约束,改进交流部分迭代的雅可比矩阵元素,即将交流侧有功无功与电压偏导与换流站损耗计算式结合,形成交替迭代法的改进算法。

含VSC的网格式拓扑的交直流混联系统中,各VSC功率双向流通,其参考量对潮流及损耗的影响较常用的辐射式拓扑结构更大。

论文提出将Newton-Raphson法与改进遗传算法相结合,以曲线拟合理论计算的换流站损耗及直流电压偏移量为目标函数的最优潮流算法,通过优化VSC参考电压及参考功率,合理分配潮流,从而提高换流效率,降低换流站损耗。

针对含VSC交直流混联系统多区域互联的最优潮流问题,论文考虑了由VSC-MTDC系统互联后各区域市场经济性与损耗分摊的问题。

以社会福利最大及损耗分摊最小为目标函数,考虑相应潮流约束,采用NSGA-Ⅱ算法求解,分别得出系统Pareto最优解集及考虑N-1安全的Pareto最优解集。

在多个区域互联形成的互联互通电力市场机制下,极大限度的发挥电力余缺互补的优势,并且社会福利及损耗分摊会随潮流变化。

4-3交直流混联系统的潮流讲解

4-3交直流混联系统的潮流讲解
I t* k kT*Id*
2. 潮流计算方程式
输电方式的发展
电力工业萌芽阶段,以爱迪生(1847~1931)为代表的直 流派主张从发电到输电都采用直流,以西屋(1846~1914) 为代表的交流派则主张从发电到输电都采用交流。 由于多台发电机同步运行问题的解决以及变压器、三相感 应电动机的发明和完善,交流系统在经济技术上优越性日 益突出,以致取得主导地位。 如今,直流输电技术进一步发展,优势也逐步体现, HVDC(High Voltage Direct Current)在世界各大电力系 统中应用渐增,使得现代电力系统成为交流中包含直流输 电系统的交直流混联系统。 我国第一条大型直流输电线路工程-葛洲坝到上海 ±500kV、1080km高压直流输电线路已于1990年投入运行
所谓直流输电是将发电厂发出的交流电用整流器变 换成直流,经直流线路送至受端,再经逆变器变换 成三相交流后送往用户。
4.2 直流输电的基本原理
最简单的直流输电系统,它由直流输电线路、两 端的换流站组成。 换流站中主要设备有:换流器、换流变压器、平 波电抗器、交流滤波器、直流滤波器、无功补偿 设备和断路器。 功率传输从交流系统1开始,经整流变压器送入整 流器变成直流;然后通过直流输电线路送至逆换 流器,变成三相交流后再经逆换流变压器送给交 流系统2。显然,直流线路输送的完全是有功功率。
4-3 交直流混联系统的潮流计算方法
计算方法:
1. 统一迭代法(联合求解法) 以极坐标形式下的牛顿法 为基础,将交流节点电压的幅值和相角与直流系统中的 直流电压、直流电流、换流器变比、换流器的功率因素 及换流器控制角统一进行迭代求解。
2. 交替迭代法 在迭代过程中,将交流系统方程和直流系 统方程分别进行求解。在求解交流系统方程时,将直流 系统用接在相应节点上的已知其有功和无功功率的负荷 来等值。而在求解直流系统方程时,将交流系统模拟成 加在换流器交流母线上的一个恒定电压。

4-3交直流混联系统的潮流

4-3交直流混联系统的潮流
1. 3. 4. 5. 远距离大功率输电; 通过地下电缆向大城市供电; 交流系统互连。不同额定频率系统间或非同步运行的系 统联络(既要实现联网又要保持各自相对独立性); 配合新能源发电。如风力发电、太阳能发电等这些发电 方式不能保证工业频率,需先整流成直流传输然后逆变 成工频交流,以实现与交流系统并联运行
换流器的功能是把三相交流电变换成直流电或直流电变换成三相交流 电,前者称为整流,后者称为逆变。相应的换流设备称为整流器和逆 变器。换流器中最基本的元件是阀元件,现代高压直流输电系统所用 的阀元件为普通晶闸管。为了满足所需的电压和电流需要,用于直流 输电的换流器可由一个或多个换流桥串并联组成,换流桥为三相桥式 换流电路,有6个桥臂,桥臂由阀元件组成。
电力系统发生紧急功率缺口时应对更灵活快捷。
电力系统暂态过程中,当快速大幅度调整输送功率时,交流系统 的原动机并不立即承担全部功率增量,只是系统频率发生相应变 化。系统1频率下降,系统2频率升高,相当于先将系统1中所有转 动设备的动能转化为电能传输给了系统2,系统1的频率可以在随 后增加原动机出力后逐渐恢复。
4-3 交直流混联系统的潮流计算方法
计算方法:
1. 统一迭代法(联合求解法) 以极坐标形式下的牛顿法 为基础,将交流节点电压的幅值和相角与直流系统中的 直流电压、直流电流、换流器变比、换流器的功率因素 及换流器控制角统一进行迭代求解。 交替迭代法 在迭代过程中,将交流系统方程和直流系 统方程分别进行求解。在求解交流系统方程时,将直流 系统用接在相应节点上的已知其有功和无功功率的负荷 来等值。而在求解直流系统方程时,将交流系统模拟成 加在换流器交流母线上的一个恒定电压。
交、直流系统输电功率相 同的情况下,直流输电达到 一定距离时,建设换流站多 花费的投资恰好被直流输电 线路节省的投资完全补偿, 则称这个距离为交、直输电 的等值距离。随着电力电子 技术的进步,直流输电技术 的关键元件换流阀的耐压值 和过流量大大提高,造价大 幅下降,直流输电经济性优 势日益显著。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.
1. 标幺值下的换流器基本方程
基本关系 功率取 电压取 有
U dB RdB I dB PdB U dB I dB
P UB I B dB SB 3
U dB
dB
3 2

nt kTBU B
PdB IB U dB 6nt kTB
U dB 3 RdB nt X cB I dB X cB 6
交、直流系统输电功率相 同的情况下,直流输电达到 一定距离时,建设换流站多 花费的投资恰好被直流输电 线路节省的投资完全补偿, 则称这个距离为交、直输电 的等值距离。随着电力电子 技术的进步,直流输电技术 的关键元件换流阀的耐压值 和过流量大大提高,造价大 幅下降,直流输电经济性优 势日益显著。
高压直流输电主要用于:
4-3 交直流混联系统的潮流计算方法
计算方法:
1. 统一迭代法(联合求解法) 以极坐标形式下的牛顿法 为基础,将交流节点电压的幅值和相角与直流系统中的 直流电压、直流电流、换流器变比、换流器的功率因素 及换流器控制角统一进行迭代求解。 交替迭代法 在迭代过程中,将交流系统方程和直流系 统方程分别进行求解。在求解交流系统方程时,将直流 系统用接在相应节点上的已知其有功和无功功率的负荷 来等值。而在求解直流系统方程时,将交流系统模拟成 加在换流器交流母线上的一个恒定电压。
2000年±500kV、1800MW天生桥-广州超高压直流输电 线路投入运行,线路全长980km。 2003年±500kV、3000MW三峡-常州超高压直流输电线 路投入运行,线路全长890km。 由于我国幅原辽阔,一次能源分布不均衡,动力资源与重 要负荷中心距离很远,因此我国的送电格局是“西电东送” 和“北电南送”。 荆州至惠州博罗响水镇±500kV、3000MW、940km线路, 安顺至肇庆±500kV、3000MW、980km线路,三峡至上 海练唐±500kV、3000MW、940km线路、陕西至河南灵 宝、邯郸至新乡等多条高压直流输电陆续投入运行。 2010年6月18日云广特高压±800kV直流输电工程双极竣 工投产,这是西电东送项目之一,也是世界首条±800kV 直流输电工程,该输电线路工程西起自云南楚雄变电站, 经过云南、广西、广东三省辖区,东止于广东曾城穗东变 电站。 显然,我国已跨入交直流混合大电网时代。
电力系统中的各同步发电机只有在同步运行(即所有发电机以相同的速 度旋转且转子相对角差较小)状态下,才能使送出的电功率为定值, 并维持系统中任何点的电压、频率和功率潮流为定值。如果某些 发电机之间不能维持同步运行,其送出的电功率以及相应节点的 电压及相应线路的潮流将发生大幅度的周期性振荡,如果失去同 步的机组之间不能迅速恢复同步,系统的供电质量就无法继续保 证,即电力系统失去了稳定运行的状态。
1. 3. 4. 5. 远距离大功率输电; 通过地下电缆向大城市供电; 交流系统互连。不同额定频率系统间或非同步运行的系 统联络(既要实现联网又要保持各自相对独立性); 配合新能源发电。如风力发电、太阳能发电等这些发电 方式不能保证工业频率,需先整流成直流传输然后逆变 成工频交流,以实现与交流系统并联运行
2. 海底电缆输电(如向海岛输电);
所谓直流输电是将发电厂发出的交流电用整流器变 换成直流,经直流线路送至受端,再经逆变器变换 成三相交流后送往用户。
4.2 直流输电的基本原理
最简单的直流输电系统,它由直流输电线路、两 端的换流站组成。
换流站中主要设备有:换流器、换流变压器、平 波电抗器、交流滤波器、直流滤波器、无功补偿 设备和断路器。 功率传输从交流系统1开始,经整流变压器送入整 流器变成直流;然后通过直流输电线路送至逆换 流器,变成三相交流后再经逆换流变压器送给交 流系统2。显然,直流线路输送的完全是有功功率。
2.
3. 利用现代控制技术,直流输电通过对换流器的 控制可以快速地(毫秒级)调整线路上的功率, 从而提高交流系统的稳定性。 4. 无充电电流,不需为了抑制容性电压升高而并 联电抗器补偿。这点对于海底电缆长距离输电 意义特别重要。 5. 可限制短路电流,线路短路暂态过程中电流不 会超过2倍额定直流值
直流输电的主要缺优点
1. 换流站造价高 2. 要消耗较大的无功功率 3. 换流装置在交流侧和直流侧都要产生谐波电压 和电流,使变压器和电容器产生附加损耗和发 热,并对控制和通信带来干扰 4. 没有过零点,熄弧困难,还没有成熟的高压直 流断路器
直流输电的主要缺点:换流站的投资大。然而增 加的这部分投资可因线路投资小而得到补偿。
直流输电的主要优点
1. 线路造价低。导线电流密度相同的情况下,输送同样的功 率三相交流输电需三根导线,而直流输电仅需两根导线。 因而节省了材料,并减少了线路功率损耗(约少1/3) 交流输电的主要问题之一是稳定性问题,大容量长距离输 电将使线路建设投资大大增加。直流输电不仅不存在稳定 性问题,与交流输电线路并列运行时还能提高交流系统的 稳定性。直流输电系统可以联结两个不同步或者频率不同 的交流系统。 系统运行的稳定性

2 nt k TB ZB
U d* k T*U t* cos d X c* I d * U d* k kT *U t* cos I t* k kT * I d*
2. 潮流计算方程式
输电方式的发展
电力工业萌芽阶段,以爱迪生(1847~1931)为代表的直 流派主张从发电到输电都采用直流,以西屋(1846~1914) 为代表的交流派则主张从发电到输电都采用交流。 由于多台发电机同步运行问题的解决以及变压器、三相感 应电动机的发明和完善,交流系统在经济技术上优越性日 益突出,以致取得主导地位。 如今,直流输电技术进一步发展,优势也逐步体现, HVDC(High Voltage Direct Current)在世界各大电力系 统中应用渐增,使得现代电力系统成为交流中包含直流输 电系统的交直流混联系统。 我国第一条大型直流输电线路工程-葛洲坝到上海 ±500kV、1080km高压直流输电线路已于1990年投入运行
相关文档
最新文档