第10章传热与换热器资料
换热器流体力学与传热特性分析

换热器流体力学与传热特性分析换热器是工业生产过程中常见的设备之一,用于将热量从一个介质传递到另一个介质中。
换热器的工作原理就是通过流体力学的传输,将热能从一个流体中传输到另一个流体中,以达到降温、升温或保持恒温的目的。
在使用换热器时,了解流体力学与传热特性对于设备的性能和效率都有着重要的影响。
首先,我们来了解换热器的流体力学。
流体力学是研究流体运动规律和压力变化规律的学问,是研究换热器中流体传输规律的基础。
对于换热器而言,流体力学有以下几个方面的内容:第一,流体运动状态。
流体运动状态有两种类型,一种是层流运动,另一种是湍流运动。
在工业生产中,湍流运动相对较为常见。
在换热器中,流体运动的状态将直接影响到传热的效率。
第二,管道截面形状。
管道截面形状的不同,会导致流体的流动状态不同,进而影响到传热效果。
比如,圆形管道截面形状对于流体的流速是稳定的,而矩形截面形状则会导致流速的变化。
第三,流体的黏性。
黏性是测量流体抵抗剪切运动的能力的一种物理量。
高黏度的流体会产生大的阻力,使得流体的运动速度减慢,进而影响到传热效率。
其次,我们来了解换热器的传热特性。
传热特性是指当换热器中有流体传热时,影响换热器传热效能的因素。
了解传热特性可以帮助我们评估设备的性能以及选取最适合的换热器。
第一,温升与传热系数。
温升指的是流体通过换热器时,温度的变化量。
传热系数则表示传热的速率,也就是流体单位时间内传热的量。
通常情况下,温升与传热系数呈现反比例关系。
第二,换热面积。
换热面积指的是换热器中流体相互传热的表面积。
在实际使用过程中,一般会通过增加换热面积来提高传热效率。
第三,热传导方程。
热传导方程是研究物体中传热规律的数学公式。
可以通过热传导方程来描述换热器中流体传热的规律,从而实现提高传热效率的目的。
综上所述,流体力学和传热特性是换热器中非常重要的基础知识。
在实际使用过程中,我们应该充分了解流体力学的基本原理,以确保设备的正常运行。
传热学第十章

(2) 管壳式换热器 由管子和外壳构成。
(2) 管壳式换热器 由管子和外壳构成。
2壳程、4管程换热器
管壳式换热器结构牢固可靠、耐高温高压。
列管式冷凝器实例
波纹管换热器
波纹换热管
(3) 肋片管式换热器 由带肋片的管束构成的换热装置。
肋片管式换热器适用于管内液体和管外气体之间 的换热,且两侧表面传热系数相差较大的场合。
(4) 板翅式换热器 由金属板和波纹板形翅片层叠、交错焊接而成。
板翅式换热器结构紧凑、传热系数高。
(5) 板式换热器 由若干片压制成型的波纹状金属板叠加而成。
(5) 板式换热器
1 ,2 介质 3 环行孔道
垫圈 4 板片密封
垫圈 5 激光切焊
焊缝 6 焊接密封
流道
特点:结构紧凑 ,占用空间小;传热系数高 ;端部温差小(可达1℃); 热损失小 ,热效率高(≥98%); 适应性面式,在工程中最常用 混合式—适用于冷热流体为同类介质的场合 回热式(蓄热式) —适用于气体与气体间的换热,
为非稳态过程
2. 按表面的紧凑程度分: 紧凑式与非紧凑式 紧凑程度用当量直径d e (d h) 或传热面积密度 β来衡量 (β---单位体积中的传热面积)
kAo hi Ai 2 l di ho Ao
ri r0
通过肋壁的传热系数
10-2 换热器的类型
换热器:换热器也称热交换器,是把热量从一种 介质传给另一种介质的设备
换热器广泛应用于广泛应用于化工、能源、机械、 交通、制冷空调、航空航天以及日常生活等各个领 域。
换热器不仅是保证某些工艺流程和条件而广泛采用 的设备,也是开发利用工业二次能源,实现余热回 收和节能利用的主要设备。
紧凑式—β≥700m2/m3, 或dh≤6mm 层流换热器—β>3000m2/m3, 或100μm ≤dh≤1mm 微型换热器–β>15000m2/m3, 或100μm≤dh≤1mm
传热学第十章传热过程和换热器计算

1
10.1 传热过程的分析和计算
传热过程:热量由壁面一侧的流体通过壁面传到另一侧流 体中去的过程。(两个流体通过壁面的换热过程。) 【传热过程是传热学中特指的概念】
传热方程式: Φ = K A Δt
式中:K为传热系数(总传热系数)。对于不同的传热过程,
K的计算公式不同。
25
(1)加大传热温差 tm
在冷、热流体进、出口温度相同的情况下,逆流的平均温 差最大,顺流的平均温差最小,因此从强化传热的角度出 发,换热器应当尽量布置成逆流。
(2)减小传热热阻 Rk
1)多布置换热面,增加总传热面积A,可降低总传热热阻, 加大传热量。
2)降低污垢热阻。
3)减小对流换热热阻Rh1、Rh2。如果两个热阻相差较大,应 抓住主要矛盾,设法减小其中最大的热阻。
Φ Ko Ao (t fi t fo )
说明: 也可以以内表面为基准。
ho
4
3. 带保温层的金属圆管传热 —— 临界热绝缘直径
圆管外敷保温层后:
Φ
1
l(t fi t fo ) 1 ln( di 2 )
1
hidi 2
di
ho (di 2 )
可见,保温层使得导热热阻增加,换热削弱;降低对流 换热热阻,使得换热增强,那么,综合效果到底是增强 还是削弱呢?
传热工程技术的两个方向:强化传热技术与削弱传热技术 (又称隔热保温技术)。
24
无论是强化传热还是削弱传热,一般都是从改变传热温差和 改变传热热阻两方面入手。
以换热器内的传热过程为例:
kAtm
tm 1
tm Rk
tm Rh1 R Rh2
kA
传热强化途径: (1)加大传热温差 tm; (2)减小传热热阻 Rk 。
10传热学-传热过程和换热器

tf1 tf 2
K
For steady heat transfer through a series composite wall
K
1 1 n i 1 h1 i 1 i h2
二、通过圆筒壁的传热 (heat transfer through a cylinder)
二、对保温隔热材料的要求 1. 有最佳密度:使用时,应尽量使其使用密 度接近最佳密度; 2. 热导率小:选用热导率小的材料; 3. 温度稳定性好:在一定温度范围内,物性 值稳定 4. 有一定的机械强度; 5. 吸水、吸湿性小:水分会使材料导热系数 大大增加。 三、最佳保温隔热厚度
四、保温结构 为防止水或湿气进入,外加保护层。 为减少对环境的辐射散热,外加铝箔或聚酯镀铝薄膜。 五、保温隔热效率 设备和管道保温隔热前后的散热量(或冷损失量)之差 与保温隔热前散热量0(或冷损失量)之比,即:
Heat transfer rate:
KAt KA(t f 1 t f 2 )
where A—surface area, m2 t—temperature difference, C K—overall heat transfer coefficient, W/m2· C
一、通过平壁的传热 (heat transfer through a plane wall)
注意:对于低温、超低温管道和设备的保冷,一般的 保温隔热材料不能满足要求,须采用多层镀铝薄膜和 网状玻璃纤维布并抽真空。
0 0
§3 换热器(Heat exchangers)
一、换热器的种类(Heat exchanger types) 1. 按原理分 间壁式换热器:冷热流体被固体壁隔开,如蒸发 器、冷凝器等。 混合式换热器:在这种换热器中,两种流体相互 混合,依靠直接接触交换热量。如水和空气直接 接触的冷却水塔。 回热式(或蓄热式、再生式)换热器:在这种换热 器中,冷热流体交替地与固体壁接触,使固体壁 周期地吸热和放热,从而将热流体的热量传给冷 流体。如锅炉的再生式空气预热器和燃气轮机的 空气预热器。
《传热学》杨世铭-陶文铨-第十章传热分析与计算

t x
t
Ax dt k dA 0 t
t x ln kAx t
t x texp(kAx )
可见,当地温差随换热面呈指数变化,则沿整个换热面的平 均温差为: 1 A 1 A
t m
A
0
t x dA x
A
0
t exp( kAx )dA x
l (t fi t fo ) Φ (d o 2 )
d 0 dd o 2 do2
d l (t fi t fo ) 1 1 2 2 dd o 2 (do 2 ) 22 do 2 h2 do 2
22 d cr or h2
Bi
t h th R tc tc
式中:下标1、2分别表示两种流体,上角标 ` 表示进口, `` 表示出口,图表中均以P为横坐标,R为参量。
(2)P的物理意义:流体2的实际温升与理论上所能达到
的最大温升之比,所以只能小于1 (3)R的物理意义:两种流体的热容量之比
t h t h qmc cc R tc tc qmh ch
Φ
l (t fi t fo )
d 1 1 1 ln( o ) hi d i 2 di ho d o
圆管外敷保温层后:
Φ
l (t fi t fo )
d o1 do2 1 1 1 1 ln( ) ln( ) hi d i 21 di 22 d o1 ho d o 2
TB,out TA,in (tube side)
增加管程
TB,in (shell side) TA,in (tube side) TA,out TB,out
TB,in (shell side)
传热过程分析与换热器的热计算

传热过程分析与换热器的热计算传热是指物体之间由于温度差异而出现的热量传递的现象。
传热过程分析是研究物体内部和物体之间的热量传递方式和传热速率的科学方法。
而换热器是一种用于加热或冷却流体的设备,通过换热器进行传热过程,可以实现能量的转移和利用。
本文将重点介绍传热过程分析和换热器的热计算。
热传导是一种由于温度梯度引起的分子间能量传递方式。
它主要发生在固体内部或固体与液体/气体之间接触的表面上。
热传导的传热速率与温度差、导热系数和传热距离有关。
可以使用傅里叶热传导定律来计算热传导速率。
对流传热是通过流体的传递热量。
它可以分为自然对流和强制对流。
自然对流是通过密度差异引起的流体运动,而强制对流是通过外部力(例如风扇或泵)的作用引起的流体运动。
对流传热的传热速率与流体的热导率、流体速度、传热表面积和温度差有关。
可以使用牛顿冷却定律或恒定换热表达式来计算对流传热速率。
辐射传热是通过电磁辐射传递热量。
辐射传热不需要介质,可以在真空中传递热量。
辐射传热的传热速率与物体的表面温度、发射率和表面积有关。
可以使用斯特藩-玻尔兹曼定律来计算辐射传热速率。
在换热器的热计算中,需要确定热源和热负荷之间的传热量。
考虑到换热器的热效率,还需要根据实际运行条件计算热量损失。
热计算的基本原则是能量守恒。
以热交换器为例,热交换器是常见的换热器类型之一,用于在两个流体之间交换热量。
热交换器通常由两个平行的管道组成,一个用于热源,一个用于热负荷。
通过选择合适的热交换器类型和优化设计,可以最大限度地提高热交换效率。
热交换器的热计算主要包括确定传热量、计算传热系数和计算温度差。
传热量可以通过两个流体的热容和温度差来计算。
传热系数是一个表示热交换器传热性能的常数,可以根据热交换器类型和流体性质来确定。
温度差可以通过温度测量仪器来测量。
热交换器的热计算还需要考虑热损失。
热损失可以通过热辐射、热传导和热对流来计算。
对于热辐射损失,可以使用斯特藩-玻尔兹曼定律。
第十章传热和换热器

tw,
q qc qr (hc hr ) tw t f
qr , tam
h tw t f
qc , hc , t f
§ 10-3 换热器的型式和基本构造
一、分类
1.按结构型式分: 1)间壁式: 冷、热流体被固体壁面隔开。
如:暖风机、冷凝器、蒸发器等。
暖风机
风冷冷凝器
2)混合式: 冷、热流体互相混合。 如:喷淋式冷却塔、蒸汽喷射器。
以管壳式换热器为例,说明方法的要点.
总传热系数可表示为:
1 k
1 ho
Rw
Rf
1 hi
do di
(a)
Rw 管壁导热热阻
R f 污垢热阻
工业换热器中的管内流体的流动一般都是处于 旺盛湍流状态,hi 与流速u的0.8次方成正比.则
two
ho A1 two t fo ho f A2 two t fo
h0A0 (tw0 t f 0 )
为肋面总效率:
A1 A2 f
A0
1
tf1 tf2
1
hi Ai Ai ho A0
则以光壁为基准的传热系数:
ki
1
1
1
hi ho
定义肋化系数: Ao Ai
1, 1
(3)根据结构,算出传热系数K。(带有假设性)
(4)由传热方程(换热面积A已定),得到 。
(5)由热平衡方程得出’(出口温度均是未知量,也 带假设性.) (6)与’的误差<5%,则满足计算要求. 否则重新假设t,重复上述步骤.
2. 传热单元数法
1)换热器的效能定义:
实际传热量 最大可能传热量
实际传热量: M1c1(t'1t"1 ) M 2c2 (t"2 t'2 )
传热与换热器设计

m
t m
t 1 t 2 ln( t1 )
t 2
K
i
0
1
R1 R2
第二部分 GB151-1999
1、GB151-1999标准的适用范围
(1)本标准适用于固定管板式、浮头式、U 形管式和填函式换热器;
(2)适用的参数为: DN≤2600mm,PN≤35MPa, 且DN×PN≤1.75×104(mm·MPa)。
第二部分 GB151-1999
(2)而当管程压力高于壳程压力时,GB151规 定:接头试压应按图样规定,或按供需双方商定 的方法进行。出现上述工况时,一般按如下处理 方法:
1)用0.9ΦReL的应力值计算壳程的试验压力, 以尽量提高壳程试验压力使其达到管程试验压力, 但此时必须注意壳程其它元件是否也能承受在此 试验压力下的强度及密封性能。
第二部分 GB151-1999
用上述办法不能提高到规定的管程试验压力 时,可采取以下办法:
① 若差距不大,可以考虑适当增加厚度; ② 如仍然相差甚远,则只能以壳程允许的 最大试验压力试压,其后,再在壳程用氨渗透、 卤素渗透或氦渗透进行补充性试验。 2)对于可抽式管束,可先打管程高压,用 窥视镜从管板背面检查泄露情况。
第一部分 传热基本知识
⑤蒸汽一般走壳程,便于排液,传热系数也大。 ⑥粘度大的流体一般走壳程,便于提高流速。 ⑦给热系数小的流体如气体,应走壳程,易于提
高速度。 ⑧流量小的流体走壳程,易改变流动状态提高湍
动程度。
第一部分 传热基本知识
二、传热基本方程:
Qe K A t m
A
K
Qe t
蚀裕量的厚度。视换热管胀接和焊接取不同 的厚度。见GB151第5.6.2.1和5.6.2.2条。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Heat Exchangers
2020/11/10
传热学 李琼
1
本章的学习目的
分析实际传热问题的能力 传热过程? 综合应用三种基本传热方式及其相关公式 的能力 基本计算式(传热方程式)? kA(t f 1 t f 2 )
了解换热器的基本知识和设计过程
2020/11/10
略; 如果Tam升高或降低1 ℃,qr所占比例增加
或减小4%;
2020/11/10
传热学 李琼
17
例10-2
水平管常壁温条件下自然对流换热,同 时考虑辐射换热。
外壁温度tw2未知,须试算。 计算表明:
用发射率低的材料处理表面,可显著降低散 热损失。
采用好的保温材料并同时降低管道表面辐射 系数,是节能的有效措施。
传热学 李琼
11
§ 2有复合换热时的传热计算
复合换热 :在平壁、圆筒壁、肋壁的传 热中,当壁面上除对流换热外,还同时 存在辐射换热。
当换热流体为气体(自然对流)时,可能要考虑 表面的辐射换热。 分析原则:需要确定复合换热热阻或 复合换热表面传热系数。
2020/11/10
传热学 李琼
12
对流换热热流量: qc hc(tw t f )
2020/11/10
传热学 李琼
4
§ 1通过肋壁的传热
2020/11/10
传热学 李琼
5
一、肋壁总效率η
定义:
ηf和η谁大
h2 A2' (t w2 t f 2 ) h2 A2'' (t w2,m t f 2 )
h2 A2' (t w2 t f 2 ) h2 f A2 (t w2 t f 2 )
外墙内壁复合换热表面传热系数 ? 热损 失中辐射散热所占比例 ?
2020/11/10
传热学 李琼
15
解:辐射表面传热系数为:
则复合换热表面传热系数 壁面的散热热流密度为:
辐射散热量所占比例为: 50% 。
2020/11/10
传热学 李琼
16
例10-1
利用竖壁自然对流换热关联式计算hc; 判断热流方向,计算hr。 结果表明: 在一般常温下,如果hc较小,则辐射不可忽
2020/11/10
传热学 李琼
20
§3 传热的增强和削弱
增强传热,是指从分析影响传热的各种因素 出发,采取某些技术措施提高换热设备单位 传热面积的传热量,使设备趋于紧凑、重量 轻、节省金属材料以及降低动力消耗等。 削弱传热,是指采取隔热保温措施降低换热 设备热损失,以达节能、安全防护及满足工 艺要求等目的。 方法:热阻的控制,但要抓住主要矛盾,即 最大的热阻项。
传热学 李琼
2
基本要求
定量计算:
复合换热的分析与计算; 传热过程的分析与计算; 对数平均温差的计算; 间壁式换热器的设计计算和校核计算
定性分析:
传热过程的热阻分析方法; 传热过程强化与削弱的原则与措施; 综合传热问题的分析方法。
2020/11/10
传热学 李琼
3
主要内容
通过肋壁的传热 有复合换热时的传热计算 传热的增强和削弱 换热器的型式和基本构造 平均温度差 换热器计算 换热器性能评价简述
在采暖和保温等工程中,把复合换热表 面传热系数作为常数处理。 计算hr时,应分析传热过程的热流方向。
2020/11/10
传热学 李琼
14
冬季一车间的外墙内壁温tw =10℃;车 间内的固体表面温度tm=16.7℃;车间 内气温tf=20℃。已知车间内的固体表 面与外墙内壁的发射率均为ε=0.9,外 墙内壁对流换热表面传热系数 hc= 3.21W/(m2·K) 。求外墙热流密度 ?
2020/11/10
传热学 李琼
18
例10-3
热量由室内以复合换热方式(自然对流 和辐射)传递到窗内侧玻璃; 热量以复合换方式热通过窗内空气层; 热量由窗外侧玻璃以复合换热方式传递 给室外环境。 中空玻璃窗热流密度及传热系数
2020/11/10
传热学 李琼
19
例10-3计算表明
在一般计算时,可以忽略玻璃的导热热 阻; 与单层窗相比,双层窗节能50%; 采用Low-e玻璃,再节能40%; 真空夹层,节能达近80%; 若空气夹层换热按纯导热计算,误差大, 不可取。
2020/11/10
此公式与平壁的传热系数有
何不同?可否用于肋片管?
传热学 李琼
8
通过平壁的传热
1
k
hK公11的式计?算
1 h2
通过圆管的传热
ql
tf1 tf2 1 1 ln r2
1
h1
h1 2r1 2 r1 h2 2r2
h2
1
k
r2 r2 ln( r2 ) 1
h1r1 2 r1 h2
2020/11/10
传热学 李琼
9
三、肋壁强化传热效果分析
加肋前:
加肋后:
只要 1 就可以起到强化换热的效果。
注意:在 h 较小一侧(即热阻较大一侧)的换热表面设置肋片,
可以有效地降低换热热阻,从而获得较好的传热效果。而在热阻 较小一侧的换热表面设置肋片,可以有效地控制该表面的温度。
2020/11/10
辐射热流量:
qr
Cb
Tw 100
4
Ta m 100
4
qr
Cb
(1T0w0)4 tw
( Ta m 100 tf
)4
பைடு நூலகம்
(tw
tf
)
hr (tw
tf
)
复合换热热流量为:
2020/11/10
传热学 李琼
13
复合换热表面传热系数
hr与hc不同,除与tw,tf有关外,还与发 射率及周围环境温度有关。
h2 A2 (t w2 t f 2 )
( A2' f A2'' )
肋壁总效率
2020/11/10
A2
传热学 李琼
6
二、通过肋壁的传热量
光壁换热: 壁的导热: 肋壁换热:
定义肋化系数
2020/11/10
β大于1
传热学 李琼
7
分别可得 以光壁面面积为基准的传热系数 K 1 , 以肋壁面面积为基准的传热系数 K 2 。
传热学 李琼
10
分析:
肋间距越小,传热效果越好,但不应小于2δt; 肋高越大,肋片效率越小,但表面积越大,肋 化系数越大,需综合考虑; 两侧h相差3~5倍时(冷凝器)采用低β的螺 纹管; h相差10倍以上时(蒸汽-空气加热器)采用 高β的肋片管; h都低,双侧空气,双侧加肋(板翅式换热 器)。
2020/11/10
2020/11/10
传热学 李琼
21
一、强化传热的基本途径
根据传热过程方程式
强化传热的基本途径 :
提高传热系数
提高换热面积 (采用小管、加肋)
提高传热温差 (逆流)