高中物理经典复习资料电磁感应与电路规律的综合应用
全国通用 2020版高考物理一轮复习:第10章 第3讲 电磁感应规律的综合应用

第3讲 电磁感应规律的综合应用一、电磁感应中的电路问题 1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源。
(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路。
2.电源电动势和路端电压 (1)电动势:E =BLv 或E =nΔΦΔt。
(2)电源正、负极:用右手定则或楞次定律确定。
(3)路端电压:U =E -Ir =IR 。
二、电磁感应图象问题三、感应电流在磁场中所受的安培力 1.安培力的大小由感应电动势E =BLv ,感应电流I =E R 和安培力公式F =BIL 得F =B 2L 2vR 。
2.安培力的方向判断四、电磁感应中的能量转化与守恒1.能量转化的实质电磁感应现象的能量转化实质是其他形式能和电能之间的转化。
2.能量的转化感应电流在磁场中受安培力,外力克服安培力做功,将其他形式的能转化为电能,电流做功再将电能转化为内能(或其他形式的能)。
3.热量的计算电流(恒定)做功产生的热量用焦耳定律计算,公式Q=I2Rt。
(判断正误,正确的画“√”,错误的画“×”。
)1.闭合电路的欧姆定律同样适用于电磁感应电路。
(√)2.在闭合回路中切割磁感线的那部分导体两端的电压一定等于产生的感应电动势。
(×)3.电路中电流一定从高电势流向低电势。
(×)4.克服安培力做的功一定等于回路中产生的焦耳热。
(×)5.有安培力作用时导体棒不可能做加速运动。
(×)1.(电磁感应中的电路问题)如图所示,两个互连的金属圆环,小金属环的电阻是大金属环电阻的二分之一,磁场垂直穿过大金属环所在区域,当磁感应强度随时间均匀变化时,在大环内产生的感应电动势为E,则a、b两点间的电势差为( )A .12EB .13EC .23E D .E解析 a 、b 间的电势差等于路端电压,而小环电阻占电路总电阻的13,故a 、b 间电势差为U =13E ,B项正确。
高二物理 电磁感应与电路规律的综合应用1

高二物理 电磁感应与电路规律的综合应用1电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下两个方面:(1)受力情况、运动情况的动态分析。
思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。
要画好受力图,抓住 a =0时,速度v 达最大值的特点。
(2)功能分析,电磁感应过程往往涉及多种能量形势的转化。
例如:如图所示中的金属棒ab 沿导轨由静止下滑时,重力势能减小,一部分用来克服安培力做功转化为感应电流的电能,最终在R 上转转化为焦耳热,另一部分转化为金属棒的动能.若导轨足够长,棒最终达到稳定状态为匀速运动时,重力势能用来克服安培力做功转化为感应电流的电能,因此,从功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往是解决电磁感应问题的重要途径.一、电磁感应中的动力学问题这类问题覆盖面广,题型也多种多样;但解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等,基本思路是:【例1】如图所示,AB 、CD 是两根足够长的固定平行金属导轨,两导轨间的距离为L ,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B ,在导轨的 AC 端连接一个阻值为 R 的电阻,一根质量为m 、垂直于导轨放置的金属棒ab ,从静止开始沿导轨下滑,求此过程中ab 棒的最大速度。
已知ab 与导轨间的动摩擦因数为μ,导轨和金属棒的电阻都不计。
解析:ab 沿导轨下滑过程中受四个力作用,即重力mg ,支持F=BIL 界状态v与a 方向关系 运动状态的分析a 变化情况 F=ma 合外力 感应电流 确定电源(E ,r )r R E I +=力F N 、摩擦力F f 和安培力F 安,如图所示,ab 由静止开始下滑后,将是↓↑→↑→↑→↑→a F I E v 安(↑为增大符号),所以这是个变加速过程,当加速度减到a =0时,其速度即增到最大v =v m ,此时必将处于平衡状态,以后将以v m 匀速下滑ab 下滑时因切割磁感线,要产生感应电动势,根据电磁感应定律: E=BLv ① 闭合电路AC ba 中将产生感应电流,根据闭合电路欧姆定律: I=E/R ② 据右手定则可判定感应电流方向为aAC ba ,再据左手定则判断它受的安培力F 安方向如图示,其大小为:F 安=BIL ③取平行和垂直导轨的两个方向对ab 所受的力进行正交分解,应有:F N = mg cos θ F f = μmg cos θ由①②③可得Rv L B F 22=安 以ab 为研究对象,根据牛顿第二定律应有:mg sin θ –μmg cos θ-Rv L B 22=ma ab 做加速度减小的变加速运动,当a =0时速度达最大因此,ab 达到v m 时应有:mg sin θ –μmg cos θ-Rv L B 22=0 ④ 由④式可解得()22cos sin LB R mg v m θμθ-=注意:(1)电磁感应中的动态分析,是处理电磁感应问题的关键,要学会从动态分析的过程中来选择是从动力学方面,还是从能量、动量方面来解决问题。
第40讲电磁感应与力学规律的综合应用高中物理一轮复习

第40讲电磁感应与力学规律的综合应用高中物理一轮复习知识点总结考点一.产生感应电流的条件1.磁通量(1)定义式:jΦ=BS,式中B为匀强磁场的磁感应强度,S为垂直于磁场的投影面的面积。
(2)意义:(3)穿过S面的磁感线的条数,是标量,但有正负,正负代表磁感线从回路平面的哪个方向穿入。
(3)磁通量变化的类型①由于磁场B变化而引起闭合回路的磁通量的变化。
②由于闭合回路的面积S发生变化而引起磁通量的变化。
③磁场、闭合回路面积都发生变化时,也可引起穿过闭合电路的磁通量的变化。
2.产生感应电流的条件是:穿过闭合回路的磁通量发生变化。
3.产生感应电动势的条件:无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那部分导体相当于电源。
考点二.感应电流方向的判断1.楞次定律(1)内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:适用于一切电磁感应现象。
(3)应用楞次定律判断感应电流方向的一般步骤:①明确所研究的闭合回路中原磁场的方向;②明确穿过闭合回路的磁通量是增加还是减少;③楞次定律判定感应电流的磁场方向;④由安培定则根据感应电流的磁场方向判断出感应电流的方向。
(4)楞次定律的推广含义:总的来说,感应电流的效果总是要反抗(或阻碍)产生感应电流的原因,利用“结果”反抗“原因”的思想定性进行分析,具体可分为以下三种情况:①阻碍原磁通量的变化或原磁场的变化—“增反减同”。
②阻碍导体与磁场间的相对运动—“来拒去留”。
③阻碍原电流的变化(自感现象) —“增反减同”。
2.右手定则(1)判定方法:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,大拇指指向导体运动的方向,其余四指指的就是感应电流的方向。
(2)适用范围:适用于由导体切割磁感线而产生感应电流方向的判定。
(3)注意事项:①当磁场运动导体不动时,用右手定则,拇指指向是导体相对磁场的运动方向。
高三物理一轮总复习 第9章《电磁感应》3.1电磁感应规律的综合应用(一)(电路和图象) 新人教版

Bav Bav A. 3 B. 6
2Bav C. 3
D.Bav
【解析】 摆到竖直位置时,AB 切割磁感线的瞬时感应电动势 E
=B·2a12v=Bav.由闭合电路欧姆定律得,UAB=R+E R·R4=13Bav,故 A 24
正确. 【答案】 A
考点二 电磁感应中的图象问题 1.图象问题可以综合法拉第电磁感应定律、楞次定律或右手定则、 安培定则和左手定则,还有与之相关的电路知识和力学知识等. 2.图象问题的特点:考查方式比较灵活,有时根据电磁感应现象 发生的过程,确定图象的正确与否,有时依据不同的图象,进行综合 计算. 3.解题关键:弄清初始条件,正、负方向的对应,变化范围,所 研究物理量的函数表达式,进出磁场的转折点是解决问题的关键.
[例 2] 如图(a),线圈 ab、cd 绕在同一软铁芯上,在 ab 线圈中通 以变化的电流,用示波器测得线圈 cd 间电压如图(b)所示.已知线圈内 部的磁场与流经线圈的电流成正比,则下列描述线圈 ab 中电流随时间 变化关系的图中,可能正确的是( )
3.电磁感应与电路知识的关系图
4.电磁感应与电路综合问题的处理思路 (1)确定电源:首先,判断产生电磁感应现象的那一部分导体或电 路,以找到电路中的电源;其次,选择电磁感应定律的相应表达形式 求出感应电动势的大小,利用右手定则或楞次定律判断出感应电流的 方向.
(2)分析电路结构,画等效电路图,区分出内外电路. (3)根据串并联规律、焦耳定律、全电路的功率关系等解题.
[答案] AC
如图所示,竖直平面内有一金属环,半径为 a,总电阻为 R(指拉
直时两端的电阻),磁感应强度为 B 的匀强磁场垂直穿过环平面,在环
的最高点 A 用铰链连接长度为 2a、电阻为R2的导体棒 AB,AB 由水平
2020年高考物理十四大必考经典专题08 电磁感应的综合应用(电路问题、图像问题、动力学问题)

专题8电磁感应的综合应用 (电路问题、图像问题、动力学问题)考点一: 电磁感应中的电路问题1.分析电磁感应电路问题的基本思路(1)确定电源:用法拉第电磁感应定律和楞次定律或右手定则确定感应电动势的大小和电源“正负”极,电源内部电流从低电势流向高电势;(2)分析电路结构:根据“等效电源”和电路中其他元件的连接方式画出等效电路.注意区别内外电路,区别路端电压、电动势;(3)利用电路规律求解:根据E=BLv 或E=n t∆Φ∆ 结合闭合电路欧姆定律、串并联电路知识和电功率、焦耳定律等关系式联立求解.2.电磁感应电路的几个等效问题考点二电磁感应的图像问题1.图像问题类型类型据电磁感应过程选图像据图像分析判断电磁感应过程求解流程2.解题关键弄清初始条件、正负方向的对应变化范围、所研究物理量的函数表达式、进出磁场的转折点等是解决此类问题的关键.3.解决图像问题的一般步骤(1)明确图像的种类,即是B-t图还是Φ-t图,或者E-t图、I-t图等;(2)分析电磁感应的具体过程;(3)用右手定则、楞次定律、左手定则或安培定则确定有关方向的对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等知识写出函数关系式;(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;(6)画图像或判断图像.考点三:电磁感应中的动力学问题1.两种状态及处理方法状态特征处理方法平衡态加速度为零根据平衡条件列式分析根据牛顿第二定律进行动态分析非平衡态加速度不为零或结合功能关系进行分析2.力学对象和电学对象的相互关系3.用“四步法”分析电磁感应中的动力学问题典例精析★考点一:电磁感应中的电路问题◆典例一:(2018·芜湖模拟)如图所示,在匀强磁场中竖直放置两条足够长的平行导轨,磁场方向与导轨所在平面垂直,磁感应强度大小为B0,导轨上端连接一阻值为R的电阻和开关S,导轨电阻不计,两金属棒a和b的电阻都为R,质量分别为ma=0.02 kg和mb=0.01 kg,它们与导轨接触良好,并可沿导轨无摩擦地运动,若将b棒固定,开关S断开,用一竖直向上的恒力F拉a棒,稳定后a棒以v1=10 m/s的速度向上匀速运动,此时再释放b棒,b 棒恰能保持静止.(g=10 m/s2)(1)求拉力F的大小;(2)若将a棒固定,开关S闭合,释放b棒,求b棒滑行的最大速度v2;(3)若将a棒和b棒都固定,开关S断开,使磁感应强度从B0随时间均匀增加,经0.1 s后磁感应强度增大到2B0时,a 棒受到的安培力大小正好等于a 棒的重力,求两棒间的距离.解析:(1)设轨道宽度为L,开关S 断开,a 棒做切割磁感线运动,产生的感应电动势为E 1=B 0Lv 1,a 棒与b 棒构成串联闭合电路,电流为I 1=012B Lv R ,a 棒,b 棒受到的安培力大小为F a =I 1LB 0,F b =I 1LB 0,依题意,对a 棒有F=F a +G a ,对b 棒有F a =G b ,所以F=G a +G b =0.3 N.(2)a 棒固定、开关S 闭合后,当b 棒以速度v 2匀速下滑时,b 棒滑行速度最大,此时b 棒产生的感应电动势为E 2=B 0Lv 2,等效电路图如图2所示.其内、外总电阻R=R b +a aRR R R +=32R,所以电流为I 2=0232B Lv R=0223B Lv R ,b 棒受到的安培力与b 棒的重力平衡,有m b g=220223B L v R ,由(1)中分析可知m b g=22012B L v R ,联立可得v 2=7.5 m/s.(3)设两棒间距为d,当磁场均匀变化时,产生的感应电动势为E 3=B t ∆∆Ld,由于S 断开,回路中电流为I 3=32E R ,依题意,a 棒所受安培力2B 0I 3L=G a ,代入数据解得d=1 m.◆典例二:(2017·唐山模拟)在同一水平面上的光滑平行导轨P 、Q 相距l =1 m ,导轨左端接有如图所示的电路。
高考物理一轮复习文档第十章电磁感应规律的综合应用(一)电路和图象讲义

第3讲 电磁感应规律的综合应用(一)——电路和图象板块一 主干梳理·夯实基础【知识点1】 电磁感应和电路的综合 Ⅱ1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体相当于电源。
如:切割磁感线的导体棒、有磁通量变化的线圈等。
2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈;除电源外其余部分是外电路,外电路由电阻、电容等电学元件组成。
在外电路中,电流从高电势处流向低电势处;在内电路中,电流则从低电势处流向高电势处。
3.与电路相联系的几个公式 (1)电源电动势:E =n ΔΦΔt 或E =Bl v 。
(2)闭合电路欧姆定律:I =ER +r 。
电源的内电压:U 内=Ir 。
电源的路端电压:U 外=IR =E -Ir 。
(3)消耗功率:P 外=IU ,P 总=EI 。
(4)电热:Q =I 2Rt 。
【知识点2】 电磁感应中的图象问题 Ⅱ板块二 考点细研·悟法培优考点1电磁感应中的电路问题[解题技巧]1. 问题归类(1)以部分电路欧姆定律为中心,对六个基本物理量(电压、电流、电阻、电功、电功率、电热)、三条定律(部分电路欧姆定律、电阻定律和焦耳定律)以及若干基本规律(串、并联电路特点等)进行考查;(2)以闭合电路欧姆定律为中心,对电动势概念,闭合电路中的电流、路端电压以及闭合电路中能量的转化进行考查。
2.基本方法(1)确定电源:先判断产生电磁感应的是哪一部分导体,该部分导体可视为电源。
(2)分析电路结构,画等效电路图。
(3)利用电路规律求解,主要有欧姆定律、串并联规律等。
3.误区分析(1)不能正确根据感应电动势及感应电流的方向分析外电路中电势的高低。
因产生感应电动势的那部分电路相当于电源部分,故该部分电路中的电流相当于电源内部的电流,而外电路中电流的方向仍是从高电势到低电势。
(2)应用欧姆定律分析求解电路时,没有考虑到电源的内阻对电路的影响。
(3)对连接在电路中电表的读数不能正确进行分析,例如并联在等效电源两端的电压表,其示数是路端电压,而不是等效电源的电动势。
高中物理第十章 第3讲电磁感应规律的综合应用

知识点 1
电磁感应中的电路问题
1.电源和电阻
磁通量
Blv
E= n
DF Dt
内阻
E-Ir
2.电流方向 在外电路,电流由高电势流向低电势;在内电路,电流由低电势 流向高电势。
知识点 2
电磁感应中的图像问题 时间t (1)随 ______变化的图像,如B-t图像、Φ -t图 像、E-t图像和I-t图像 位移x (2)随______变化的图像,如E-x图像和I-x图像
4NBl 2 w (3) 3(R + r)
【总结提升】解决电磁感应电路问题的基本步骤
(1)“源”的分析:用法拉第电磁感应定律算出E的大小,用楞次 定律或右手定则确定感应电动势的方向:感应电流方向是电源 内部电流的方向,从而确定电源正负极,明确内阻r。 (2)“路”的分析:根据“等效电源”和电路中其他各元件的连接 方式画出等效电路图。 (3)根据E=Blv或 E=n
(2)E=Blv=1×1×3 V=3 V,
总电流 I=
E 3 = A=0.75 A, R总 4
路端电压U=IR外=0.75×2 V=1.5 V,
U 2 1.52 P1= = W=0.375 W, R1 6 U 2 1.52 P2= = W=0.75 W。1 N=0.75 N。 答案:(1)3 Ω (2)0.375 W 0.75 W (3)0.75 N
图像 类型 问题 类型
应用 知识
(1)由给定的电磁感应过程判断或画出正确的图 像 (2)由给定的有关图像分析电磁感应过程,求解 相应的物理量(用图像) 楞次定律 左手定则、安培定则、右手定则、_________、 法拉第电磁感应定律 ___________________、欧姆定律、牛顿运动定 律、函数图像等知识
高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习

专题九电磁感应定律及综合应用电磁感应是电磁学中最为重要的内容,也是高考命题频率最高的内容之一。
题型多为选择题、计算题。
主要考查电磁感应、楞次定律、法拉第电磁感应定律、自感等知识。
本部分知识多结合电学、力学部分出压轴题,其命题形式主要是电磁感应与电路规律的综合应用、电磁感应与力学规律的综合应用、电磁感应与能量守恒的综合应用。
复习中要熟练掌握感应电流的产生条件、感应电流方向的判断、感应电动势的计算,还要掌握本部分内容与力学、能量的综合问题的分析求解方法。
预测高考重点考查法拉第电磁感应定律及楞次定律和电路等效问题.综合试题还是涉及到力和运动、动量守恒、能量守恒、电路分析、安培力等力学和电学知识.主要的类型有滑轨类问题、线圈穿越有界磁场的问题、电磁感应图象的问题等.此除日光灯原理、磁悬浮原理、电磁阻尼、超导技术这些在实际中有广泛的应用问题也要引起重视。
知识点一、法拉第电磁感应定律法拉第电磁感应定律的内容是感应电动势的大小与穿过回路的磁通量的变化率成正比.在具体问题的分析中,针对不同形式的电磁感应过程,法拉第电磁感应定律也相应有不同的表达式或计算式.磁通量变化的形式表达式备注通过n 匝线圈内的磁通量发生变化E =n ·ΔΦΔt(1)当S 不变时,E =nS ·ΔB Δt (2)当B 不变时,E =nB ·ΔS Δt 导体垂直切割磁感线运动E =BLv 当v ∥B 时,E =0导体绕过一端且垂直于磁场方向的转轴匀速转动E =12BL 2ω线圈绕垂直于磁场方向的转轴匀速转动E =nBSω·sin ωt 当线圈平行于磁感线时,E 最大为E =nBSω,当线圈平行于中性面时,E =0知识点二、楞次定律与左手定则、右手定则1.左手定则与右手定则的区别:判断感应电流用右手定则,判断受力用左手定则.2.应用楞次定律的关键是区分两个磁场:引起感应电流的磁场和感应电流产生的磁场.感应电流产生高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习的磁场总是阻碍引起感应电流的磁场的磁通量的变化,“阻碍”的结果是延缓了磁通量的变化,同时伴随着能量的转化.3.楞次定律中“阻碍”的表现形式:阻碍磁通量的变化(增反减同),阻碍相对运动(来拒去留),阻碍线圈面积变化(增缩减扩),阻碍本身电流的变化(自感现象).知识点三、电磁感应与电路的综合电磁感应与电路的综合是高考的一个热点内容,两者的核心内容与联系主线如图4-12-1所示:1.产生电磁感应现象的电路通常是一个闭合电路,产生电动势的那一部分电路相当于电源,产生的感应电动势就是电源的电动势,在“电源”内部电流的流向是从“电源”的负极流向正极,该部分电路两端的电压即路端电压,U =R R +rE .2.在电磁感应现象中,电路产生的电功率等于内外电路消耗的功率之和.若为纯电阻电路,则产生的电能将全部转化为内能;若为非纯电阻电路,则产生的电能除了一部分转化为内能,还有一部分能量转化为其他能,但整个过程能量守恒.能量转化与守恒往往是电磁感应与电路问题的命题主线,抓住这条主线也就是抓住了解题的关键.在闭合电路的部分导体切割磁感线产生感应电流的问题中,机械能转化为电能,导体棒克服安培力做的功等于电路中产生的电能.说明:求解部分导体切割磁感线产生的感应电动势时,要区别平均电动势和瞬时电动势,切割磁感线的等效长度等于导线两端点的连线在运动方向上的投影.高频考点一对楞次定律和电磁感应图像问题的考查例1、(多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图4(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内()图4A.圆环所受安培力的方向始终不变B.圆环中的感应电流始终沿顺时针方向C.圆环中的感应电流大小为B0rS4t0ρD.圆环中的感应电动势大小为B0πr24t0【举一反三】(2018年全国II卷)如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省哈尔滨市木兰高级中学高中物理 经典复习资料 电磁感应与电路规律的综合应用教学目标:1.熟练运用右手定则和楞次定律判断感应电流及感应电动势的方向。
2.熟练掌握法拉第电磁感应定律,及各种情况下感应电动势的计算方法。
3.掌握电磁感应与电路规律的综合应用教学重点:电磁感应与电路规律的综合应用教学难点:电磁感应与电路规律的综合应用教学方法:讲练结合,计算机辅助教学教学过程:一、电路问题1、确定电源:首先判断产生电磁感应现象的那一部分导体(电源),其次利用t n E ∆∆Φ=或θsin BLv E =求感应电动势的大小,利用右手定则或楞次定律判断电流方向。
2、分析电路结构,画等效电路图3、利用电路规律求解,主要有欧姆定律,串并联规律等二、图象问题1、定性或定量地表示出所研究问题的函数关系2、在图象中E 、I 、B 等物理量的方向是通过正负值来反映3、画图象时要注意横、纵坐标的单位长度定义或表达【例1】如图所示,平行导轨置于磁感应强度为B 的匀强磁场中(方向向里),间距为L ,左端电阻为R ,其余电阻不计,导轨右端接一电容为C 的电容器。
现有一长2L 的金属棒ab 放在导轨上,ab 以a 为轴顺时针转过90°的过程中,通过R 的电量为多少?解析:(1)由ab 棒以a 为轴旋转到b 端脱离导轨的过程中,产生的感应电动势一直增大,对C 不断充电,同时又与R 构成闭合回路。
ab 产生感应电动势的平均值 t S B t E ∆∆=∆∆Φ= ① S ∆表示a b 扫过的三角形的面积,即223321L L L S =⋅=∆ ②在这一过程中电容器充电的总电量Q =CU m ⑤U m 为ab 棒在转动过程中产生的感应电动势的最大值。
即ωω22)221(2BL L L B U m =⨯⨯⨯= ⑥ 联立⑤⑥得:C BL Q ω222=(2)当ab 棒脱离导轨后(对R 放电,通过R 的电量为 Q 2,所以整个过程中通过 R 的总电量为:Q =Q 1+Q 2=)223(2C RBL ω+ 电磁感应中“双杆问题”分类解析【例2】匀强磁场磁感应强度 B=0.2 T ,磁场宽度L=3rn ,一正方形金属框边长ab=l =1m ,每边电阻r=0.2Ω,金属框以v =10m/s 的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图所示,求:(1)画出金属框穿过磁场区的过程中,金属框内感应电流的I-t 图线(2)画出ab 两端电压的U-t 图线解析:线框进人磁场区时E 1=B l v =2 V ,r E I 411==2.5 A 方向沿逆时针,如图(1)实线abcd 所示,感电流持续的时间t 1=v l =0.1 s 线框在磁场中运动时:E 2=0,I 2=0无电流的持续时间:t 2=vl L -=0.2 s , 线框穿出磁场区时:E 3= B l v =2 V ,r E I 433==2.5 A 此电流的方向为顺时针,如图(1)虚线abcd 所示,规定电流方向逆时针为正,得I-t 图线如图(2)所示(2)线框进人磁场区ab 两端电压U 1=I 1 r =2.5×0.2=0.5V线框在磁场中运动时;b 两端电压等于感应电动势U 2=B l v=2V线框出磁场时ab 两端电压:U 3=E - I 2 r =1.5V由此得U-t 图线如图(3)所示点评:将线框的运动过程分为三个阶段,第一阶段ab 为外图(1) 图(2)电路,第二阶段ab相当于开路时的电源,第三阶段ab是接上外电路的电源三、综合例析电磁感应电路的分析与计算以其覆盖知识点多,综合性强,思维含量高,充分体现考生能力和素质等特点,成为历届高考命题的特点.1、命题特点对电磁感应电路的考查命题,常以学科内综合题目呈现,涉及电磁感应定律、直流电路、功、动能定理、能量转化与守恒等多个知识点,突出考查考生理解能力、分析综合能力,尤其从实际问题中抽象概括构建物理模型的创新能力.2、求解策略变换物理模型,是将陌生的物理模型与熟悉的物理模型相比较,分析异同并从中挖掘其内在联系,从而建立起熟悉模型与未知现象之间相互关系的一种特殊解题方法.巧妙地运用“类同”变换,“类似”变换,“类异”变换,可使复杂、陌生、抽象的问题变成简单、熟悉、具体的题型,从而使问题大为简化.解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路,把产生感应电动势的那部分导体等效为内电路.感应电动势的大小相当于电源电动势.其余部分相当于外电路,并画出等效电路图.此时,处理问题的方法与闭合电路求解基本一致,惟一要注意的是电磁感应现象中,有时导体两端有电压,但没有电流流过,这类似电源两端有电势差但没有接入电路时,电流为零.【例3】据报道,1992年7月,美国“阿特兰蒂斯”号航天飞机进行了一项卫星悬绳发电实验,实验取得了部分成功.航天飞机在地球赤道上空离地面约3000 km处由东向西飞行,相对地面速度大约6.5×103 m/s,从航天飞机上向地心方向发射一颗卫星,携带一根长20 km,电阻为800 Ω的金属悬绳,使这根悬绳与地磁场垂直,做切割磁感线运动.假定这一范围内的地磁场是均匀的.磁感应强度为4×10-5T,且认为悬绳上各点的切割速度和航天飞机的速度相同.根据理论设计,通过电离层(由等离子体组成)的作用,悬绳可以产生约3 A的感应电流,试求:(1)金属悬绳中产生的感应电动势;(2)悬绳两端的电压;(3)航天飞机绕地球运行一圈悬绳输出的电能(已知地球半径为6400 km).命题意图:考查考生信息摄取、提炼、加工能力及构建物理模型的抽象概括能力.错解分析:考生缺乏知识迁移运用能力和抽象概括能力,不能于现实情景中构建模型(切割磁感线的导体棒模型)并进行模型转换(转换为电源模型及直流电路模型),无法顺利运用直流电路相关知识突破.解题方法与技巧:将飞机下金属悬绳切割磁感线产生感应电动势看作电源模型,当它通过电离层放电可看作直流电路模型.如图所示.t =v R π2=333105.6)103000106400(14.32⨯⨯+⨯⨯⨯s=9.1×103 s 则飞机绕地运行一圈输出电能:E =UIt =2800×3×9.1×103 J=7.6×107 J【例4】如图所示,竖直向上的匀强磁场,磁感应强度B =0.5 T ,并且以tB ∆∆=0.1 T/s 在变化,水平轨道电阻不计,且不计摩擦阻力,宽0.5 m 的导轨上放一电阻R 0=0.1 Ω的导体棒,并用水平线通过定滑轮吊着质量M =0.2 kg 的重物,轨道左端连接的电阻R =0.4 Ω,图中的l =0.8 m ,求至少经过多长时间才能吊起重物.命题意图:考查理解能力、推理能力及分析综合能力错解分析:(1)不善于逆向思维,采取执果索因的有效途径探寻解题思路;(2)实际运算过程忽视了B 的变化,将B 代入F 安=BIl ab ,导致错解.解题方法与技巧:由法拉第电磁感应定律可求出回路感应电动势:E =t B S t ∆∆=∆∆Φ ① 由闭合电路欧姆定律可求出回路中电流 I =R R E +0 ②由于安培力方向向左,应用左手定则可判断出电流方向为顺时针方向(由上往下看).再根据楞次定律可知磁场增加,在t 时磁感应强度为: B ′ =(B +t B ∆∆·t ) ③ 此时安培力为 F 安=B ′Il ab④ 由受力分析可知 F 安=mg⑤ 由①②③④⑤式并代入数据:t =495 s【例5】(2001年上海卷)半径为a 的圆形区域内有均匀磁场,磁感强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均为R =2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径OO ′ 的瞬时(如图所示)MN 中的电动势和流过灯L 1的电流。
(2)撤去中间的金属棒MN ,将右面的半圆环OL 2O ′ 以OO ′ 为轴向上翻转90º,若此时磁场随时间均匀变化,其变化率为ΔB /Δt =4T/s ,求L 1的功率。
解析:(1)棒滑过圆环直径OO ′ 的瞬时,MN 中的电动势E 1=B 2a v =0.2×0.8×5=0.8V ①等效电路如图(1)所示,流过灯L 1的电流I 1=E 1/R =0.8/2=0.4A ②(2)撤去中间的金属棒MN ,将右面的半圆环OL 2O ′ 以OO ′ 为轴向上翻转90º,半圆环OL 1O ′中产生感应电动势,相当于电源,灯L 2为外电路,等效电路如图(2)所示,感应电动势图(1)E2=ΔФ/Δt=0.5×πa2×ΔB/Δt=0.32V ③L1的功率P1=(E2/2)2/R=1.28×102W四、针对练习1.(1999年广东)如图所示,MN、PQ为两平行金属导轨,M、P间连有一阻值为R的电阻,导轨处于匀强磁场中,磁感应强度为B,磁场方向与导轨所在平面垂直,图中磁场垂直纸面向里.有一金属圆环沿两导轨滑动,速度为v,与导轨接触良好,圆环的直径d与两导轨间的距离相等.设金属环与导轨的电阻均可忽略,当金属环向右做匀速运动时D.没有感应电流通过电阻R2.在方向水平的、磁感应强度为0.5 T的匀强磁场中,有两根竖直放置的导体轨道cd、e f,其宽度为1 m,其下端与电动势为12 V、内电阻为1 Ω的电源相接,质量为0.1 kg的金属棒MN的两端套在导轨上可沿导轨无摩擦地滑动,如图所示,除电源内阻外,其他一切电阻不计,g=10 m/s2,从S闭合直到金属棒做匀速直线运动的过程中A.电源所做的功等于金属棒重力势能的增加B.电源所做的功等于电源内阻产生的焦耳热C.匀速运动时速度为20 m/sD.匀速运动时电路中的电流强度大小是2 A3.两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的左端接有电阻R,导轨自身的电阻可忽略不计.斜面处在匀强磁场中,磁场方向垂直于斜面向上.质量为m、电阻可不计的金属棒ab,在沿着斜面与棒垂直的恒力F作用下沿导轨匀速上滑,并上升h高度.如图所示,在这过程中A.作用于金属棒上的各个力的合力所做的功等于零B.作用于金属棒上的各个力的合力所做的功等于mgh与电阻R上发出的焦耳热之和C.恒力F与安培力的合力所做的功等于零D.恒力F与重力的合力所做的功等于电阻R上发出的焦耳热4.如图所示,空间存在垂直于纸面的均匀磁场,在半径为a的圆形区域内、外,磁场方向相反,磁感应强度的大小均为B.一半径为b,电阻为R的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合.在内、外磁场同时由B均匀地减小到零的过程中,通过导线截面的电量Q=_________.5.两根相距d=0.20 m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.20 T,导轨上面横放着两条金属细杆,构成矩形闭合回路.每条金属细杆的电阻为r=0.25 Ω,回路中其余部分的电阻可不计,已知两金属细杆在平行导轨的拉力作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0 m/s,如图所示,不计导轨上的摩擦.(1)求作用于每条金属细杆的拉力的大小.(2)求两金属细杆在间距增加0.40 m的滑动过程中共产生的热量.6.(1999年上海)如图所示,长为L、电阻r=0.3 Ω、质量m=0.1 kg的金属棒CD垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是L,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R=0.5 Ω的电阻,量程为0~3.0 A的电流表串接在一条导轨上,量程为0~1.0 V的电压表接在电阻R的两端,垂直导轨平面的匀强磁场向下穿过平面.现以向右恒定外力F使金属棒右移.当金属棒以v=2 m/s的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏.问:(1)此满偏的电表是什么表?说明理由.(2)拉动金属棒的外力F多大?(3)此时撤去外力F,金属棒将逐渐慢下来,最终停止在导轨上.求从撤去外力到金属棒停止运动的过程中通过电阻R 的电量.7.如图所示,AB 和CD 是足够长的平行光滑导轨,其间距为l ,导轨平面与水平面的夹角为θ.整个装置处在磁感应强度为B 的,方向垂直于导轨平面向上的匀强磁场中.AC 端连有电阻值为R 的电阻.若将一质量M ,垂直于导轨的金属棒EF 在距BD 端s 处由静止释放,在EF 棒滑至底端前会有加速和匀速两个运动阶段.今用大小为F ,方向沿斜面向上的恒力把EF 棒从BD 位置由静止推至距BD 端s 处,突然撤去恒力F ,棒EF 最后又回到BD 端.求:(1)EF 棒下滑过程中的最大速度.(2)EF 棒自BD 端出发又回到BD 端的整个过程中,有多少电能转化成了内能(金属棒、导轨的电阻均不计)?8.在磁感应强度为B =0.4 T 的匀强磁场中放一个半径r 0=50cm 的圆形导轨,上面搁有互相垂直的两根导体棒,一起以角速度ω=103 rad/s 逆时针匀速转动.圆导轨边缘和两棒中央通过电刷与外电路连接,若每根导体棒的有效电阻为R 0=0.8 Ω,外接电阻R =3.9 Ω,如所示,求:(1)每半根导体棒产生的感应电动势.(2)当电键S 接通和断开时两电表示数(假定R V →∞,R A →0).参考答案:1.B.提示:将圆环转换为并联电源模型,如图2.CD3.AD4.Q =I Δt =R b a B )2(22-π或Q =Ra b B )2(22-π5.(1)3.2×10-2 N (2)1.28×10-2J 提示:将电路转换为直流电路模型如图.6.(1)电压表 理由略 (2)F =1.6 N (3)Q =0.25 C7.(1)如图所示,当EF 从距BD 端s 处由静止开始滑至BD 的过程中,受力情况如图所示.安培力:F 安=BIl =B l R Blv根据牛顿第二定律:a =M L R Blv BMg -sin θ ① 所以,EF 由静止开始做加速度减小的变加速运动.当a =0时速度达到最大值v m . 由①式中a =0有:Mg sin θ-B 2l 2v m /R =0 ② v m =22sin l B MgR θ (2)由恒力F 推至距BD 端s 处,棒先减速至零,然后从静止下滑,在滑回BD 之前已达最大速度v m 开始匀速.设EF 棒由BD 从静止出发到再返回BD 过程中,转化成的内能为ΔE .根据能的转化与守恒定律:F s-ΔE =21Mv m 2 ③ ΔE =F s-21M (22sin l B MgR θ)2 ④8.(1)每半根导体棒产生的感应电动势为文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.11 E 1=Bl v =21Bl 2ω=21×0.4×103×(0.5)2 V=50 V. (2)两根棒一起转动时,每半根棒中产生的感应电动势大小相同、方向相同(从边缘指向中心),相当于四个电动势和内阻相同的电池并联,得总的电动势和内电阻为E =E 1=50 V ,r =2141⨯R 0=0.1 Ω 当电键S 断开时,外电路开路,电流表示数为零,电压表示数等于电源电动势,为50 V. 当电键S ′接通时,全电路总电阻为R ′=r +R =(0.1+3.9)Ω=4Ω.由全电路欧姆定律得电流强度(即电流表示数)为I =450='+R r E A=12.5 A.。