中考专题复习《方程应用题》一答案版
中考数学专题训练(一):列方程解应用题(一元一次方程不等式)

列方程解应用题(一元一次方程不等式)1、(2013•资阳)在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人11<122、(2013•宜昌)地球正面临第六次生物大灭绝,据科学家预测,到2050年,目前的四分之一到一半的物种将会灭绝或濒临灭绝,2012年底,长江江豚数量仅剩约1000头,其数量年平均下降的百分率在13%﹣15%范围内,由此预测,2013年底剩下江豚的数量可能为()头.3、(2013•呼和浩特)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?4、(2013•黔西南州)义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?,5、(2013•莱芜)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?由题意得:.所以长跳绳单价是由题意得:6、(2013年临沂)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B 两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B 型学习用品多少件?解析:(1)设购买A 型学习用品x 件,则B 型学习用品为(1000)x -. ……(1分)根据题意,得2030(1000)26000x x +-=………………(2分)解方程,得x =400.则10001000400600x -=-=.答:购买A 型学习用品400件,购买B 型学习用品600件. ………………………(4分)(2)设最多购买B 型学习用品x 件,则购买A 型学习用品为(1000)x -件. 根据题意,得20(1000)+3028000x x -≤……………………(6分)解不等式,得800x ≤.答:最多购买B 型学习用品800件. ……………………(7分)7、(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?)依题意得,=,8、(2013•恩施州)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?x=,.29329、(2013•黄冈)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准10、(2013•益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.,解之得:11、(2013•德州)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值列a,12、(2013•温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?=;由题意,得≥≥.13、(2013•泸州)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?由题意,得,14、(2013•眉山)2013年4月20日,雅安发生7.0级地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?﹣×15、(2013•攀枝花)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?,16、(2013•自贡)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?,17、(2013•遵义)2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?,18、(2013•牡丹江)某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过105700元购进40台电脑,其中A型电脑每台进价2500元,B型电脑每台进价2800元,A 型每台售价3000元,B型每台售价3200元,预计销售额不低于123200元.设A型电脑购进x台、商场的总利润为y(元).(1)请你设计出进货方案;(2)求出总利润y(元)与购进A型电脑x(台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?(3)商场准备拿出(2)中的最大利润的一部分再次购进A型和B型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.在钱用尽三样都购买的前提下请直接写出购买A型电脑、B型电脑和帐篷的方案..19、(2013年南京)某商场促销方案规定:商场内所有商品案标价的80%出售,同时,当顾注:300~400表示消费金额大于300元且小于或等于400元,其他类同。
中考数学总复习《方程(组)及其应用》专项提升练习题(附答案)

中考数学总复习《方程(组)及其应用》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________命题点1一次方程(组)的解法及解的应用 1(2022百色)方程3x=2x+7的解是( )A.x=4B.x=-4C.x=7D.x=-72(2022株洲)对于二元一次方程组{y =x -1,①x +2y =7,②将①式代入②式,消去y 可以得到( )A.x+2x-1=7B.x+2x-2=7C.x+x-1=7D.x+2x+2=73(2022随州)已知二元一次方程组{x +2y =4,2x +y =5,则x-y 的值为 .4(2022呼和浩特)解方程组{4x +y =5,x -12+y 3=2.5(2022荆州)已知方程组{x +y =3,①x -y =1②的解满足2kx-3y<5,求k 的取值范围.命题点2解分式方程6(2022北京)方程2x+5=1x 的解为 .7(2022成都)分式方程3−xx -4+14−x =1的解是 . 8(2022常德)方程 2x +1x (x -2)=52x的解为 .9(2022苏州)解方程:xx+1+3x =1.10(2022青海)解方程:x x -2-1=4x 2-4x+4.命题点3分式方程的解的应用 11(2022德阳)如果关于x 的方程2x+m x -1=1的解是正数,那么m 的取值范围是 ( )A.m>-1B.m>-1且m ≠0C.m<-1D.m<-1且m ≠-2 12(2021达州)若分式方程2x -ax -1-4=-2x+a x+1的解为整数,则整数a= .命题点4一元二次方程的解法及解的应用 13(2022天津)方程x 2+4x+3=0的两个根为 ( ) A.x 1=1,x 2=3 B.x 1=-1,x 2=3 C.x 1=1,x 2=-3 D.x 1=-1,x 2=-314(2022临沂)方程x 2-2x-24=0的根是( )A.x 1=6,x 2=4B.x 1=6,x 2=-4C.x 1=-6,x 2=4D.x 1=-6,x 2=-415(2022宜宾)已知m ,n 是一元二次方程x 2+2x-5=0的两个根,则m 2+mn+2m 的值为( )A.0B.-10C.3D.1016(2022广东)若x=1是方程x 2-2x+a=0的根,则a= .17(2022黄冈)若一元二次方程x 2-4x+3=0的两个根是x 1,x 2,则x 1·x 2的值是 .18(2022鄂州)若实数a ,b 分别满足a 2-4a+3=0, b 2-4b+3=0,且a ≠b ,则1a +1b 的值为 .19(2022无锡)解方程:x 2-2x-5=0.20(2022齐齐哈尔)解方程:(2x+3)2=(3x+2)2.命题点5一元二次方程根的判别式21(2022北京)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m 的值为()A.-4B.-14C.14D.422(2022抚顺)下列一元二次方程无实数根的是() A.x2+x-2=0 B.x2-2x=0 C.x2+x+5=0 D.x2-2x+1=023(2022滨州)一元二次方程2x2-5x+6=0的根的情况为()A.无实数根B.有两个不等的实数根C.有两个相等的实数根D.不能判定24(2022随州)已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等的实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.25(2022南充)已知关于x的一元二次方程x2+3x+k-2=0有实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1,x2,若(x1+1)(x2+1)=-1,求k的值.命题点6方程的实际应用角度1变化率问题26(2022重庆A卷)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是() A.200(1+x)2=242 B.200(1-x)2=242C.200(1+2x)=242D.200(1-2x)=24227(2022哈尔滨)某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x,根据题意,所列方程正确的是() A.150(1-x2)=96 B.150(1-x)=96C.150(1-x)2=96D.150(1-2x)=96角度2购买、销售问题28(2022牡丹江)某商品的进价为每件10元,若按标价打八折售出后,每件可获利2元,则该商品的标价为每件元.29(2022重庆A卷)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5∶6∶7,需香樟数量之比为4∶3∶9,并且甲、乙两山需红枫数量之比为2∶3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为.30(2022广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价分别是多少.角度3分配问题31(2021北京)某企业有A,B两条加工相同原材料的生产线.在一天内,A生产线共加工a吨原材料,加工时间为(4a+1)小时;在一天内,B生产线共加工b吨原材料,加工时间为(2b+3)小时.第一天,该企业将5吨原材料分配到A,B两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A生产线的原材料的质量与分配到B生产线的原材料的质量的比为.第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则mn 的值为 . 角度4生产、工程问题32(2022云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需的时间与原计划植树300棵所需的时间相同.设实际每天植树x 棵,则下列方程正确的是 ( )A .400x -50=300x B .300x -50=400xC .400x+50=300xD .300x+50=400x33(2022宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨. (1)求4月份再生纸的产量.(2)若4月份每吨再生纸的利润为1 000元,5月份再生纸产量比上月增加m%,5月份每吨再生纸的利润比上月增加m2%,则5月份再生纸项目月利润达到66万元,求m 的值.(3)若4月份每吨再生纸的利润为1 200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元.角度5行程问题34(2022济宁)一辆汽车开往距出发地420 km 的目的地,若这辆汽车比原计划每小时多行10 km,则提前1 h 到达目的地.设这辆汽车原计划的速度是x km/h,根据题意所列方程是 ( )A.420x =420x -10+1B.420x +1=420x+10 C.420x=420x+10+1 D.420x+1=420x -1035(2022重庆A 卷)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A 地30千米的B 地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A 地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A 地出发,则甲、乙恰好同时到达B 地,求甲骑行的速度.角度6几何问题36(2022泰州)如图,在长为50 m 、宽为38 m 的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1 260 m 2,道路的宽应为多少?角度7其他问题37(2022宜昌)五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为 ( )A.30B.26C.24D.2238(2022安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020 x y5202021 1.25x1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元.分类训练4方程(组)及其应用1.C2.B【解析】将①代入②,得x+2(x-1)=7,去括号,得x+2x-2=7.3.1【解析】{x+2y=4,①2x+y=5,②②-①,得x-y=5-4=1.4.【参考答案】{4x+y=5,①x-12+y3=2,②由②,得3x+2y=15,③①×2-③,得5x=-5解得x=-1.把x=-1代入①,得y=9故方程组的解为{x=−1, y=9.5.【参考答案】①+②,得2x=4,∴x=2.①-②,得2y=2,∴y=1.将x=2,y=1代入2kx-3y<5,得4k-3<5解得k<2.6.x=5 【解析】 方程两边同时乘x (x+5),得2x=x+5,解得x=5.检验:当x=5时,x (x+5)≠0.故x=5是原分式方程的解.7.x=3 【解析】 去分母,得3-x-1=x-4,移项、合并同类项,得-2x=-6,系数化为1,得x=3.经检验,x=3是分式方程的解.8.x=4 【解析】 方程两边同乘2x (x-2),得2×2(x-2)+2=5(x-2),解得x=4.检验:当x=4时,2x (x-2)=16≠0,∴x=4是原方程的解.9.【参考答案】 方程两边同乘以x (x+1),得x 2+3(x+1)=x (x+1). 解方程,得x=-32.经检验,x=-32是原方程的解. 10.【参考答案】 x x -2-1=4(x -2)2x (x-2)-(x-2)2=4 解得x=4检验:当x=4时,(x-2)2≠0 故x=4是原方程的解.11.D 【解析】 方程两边同时乘(x-1),得2x+m=x-1,解得x=-1-m.∵方程的解是正数,∴x>0,且x ≠1,∴-1-m>0,且-1-m ≠1,∴m<-1且m ≠-2. 12.±1 【解析】2x -a x -1-4=-2x+a x+1可变形为2x -2+2-a x -1-4=-2x -2+2+a x+1,即2+2−a x -1-4=-2+2+a x+1,∴2−a x -1=2+ax+1,∴(2-a )(x+1)=(2+a )(x-1),∴x=2a .又∵x 为整数,且x ≠±1,∴整数a=±1. 13.D 【解析】 方法一:∵x 2+4x+3=0,∴x 2+4x=-3,∴x 2+4x+4=-3+4,∴(x+2)2=1,∴x+2=±1,∴x 1=-1,x 2=-3.方法二:x 2+4x+3=0可化为(x+1)(x+3)=0,∴x 1=-1,x 2=-3. 14.B 【解析】 移项,得x 2-2x=24,配方,得x 2-2x+1=25,即(x-1)2=25,∴x-1=±5,∴x 1=6,x 2=-4.15.A 【解析】 ∵m ,n 是一元二次方程x 2+2x-5=0的两个根,∴m 2+2m-5=0,mn=-5,∴m 2+2m=5,∴m 2+mn+2m=m 2+2m+mn=5-5=0.故选A . 16.1 【解析】 将x=1代入x 2-2x+a=0,得1-2+a=0,∴a=1.17.3 【解析】 ∵x 1,x 2是一元二次方程x 2-4x+3=0的两个根,∴x 1·x 2=c a =31=3. 18.43 【解析】 由题意得a ,b 是方程x 2-4x+3=0的两个不相等的实数根,∴a+b=4,ab=3,∴1a +1b =a+b ab =43. 19.【参考答案】 移项,得x 2-2x=5 配方,得x 2-2x+1=5+1,即(x-1)2=6开方,得x-1=±√6解得x1=1+√6,x2=1-√6.20.【参考答案】等号两边同时开方,得2x+3=3x+2或2x+3=-3x-2 解得x=1或x=-1.21.C【解析】由题意可知Δ=1-4m=0,解得m=14.22.C【解析】逐项分析如下:选项分析是否符合题意A Δ=1+8=9>0,方程有两个不相等的实数根.否B Δ=4>0,方程有两个不相等的实数根.否C Δ=1-20=-19<0,方程没有实数根.是D Δ=4-4=0,方程有两个相等的实数根.否23.A【解析】∵Δ=(-5)2-4×2×6=25-48=-23<0,∴一元二次方程2x2-5x+6=0无实数根.24.【参考答案】(1)依题意可得Δ=(2k+1)2-4(k2+1)>0化简,得4k-3>0解得k>34.(2)依题意得x1x2=k2+1=5解得k1=2,k2=-2.由(1)知k>34,故k=2.25.【参考答案】(1)∵一元二次方程x2+3x+k-2=0有实数根,∴Δ≥0即32-4(k-2)=-4k+17≥0解得k≤174.(2)∵方程的两个实数根分别为x1,x2∴x1+x2=-3,x1x2=k-2.∵(x 1+1)(x 2+1)=x 1x 2+(x 1+x 2)+1 ∴k-2-3+1=-1,解得k=3.26.A 【解析】 根据题意,得第二天揽件200(1+x )件,第三天揽件200(1+x )(1+x )=200(1+x )2(件),故200(1+x )2=242,故选A .27.C 【解析】 第一次降价后,该种商品每件售价为150(1-x )元,第二次降价后,该种商品每件售价为150(1-x )2元,故150(1-x )2=96.28.15 【解析】 设该商品的标价为每件x 元,由题意得80%x-10=2,解得x=15. 29.3∶5 【解析】 根据题意设未知数,列表如表(1)所示.由“甲、乙两山需红枫数量之比为2∶3”,可列方程5a -4b 6a -3b =23,∴a=2b ,可得表(2).设香樟原价为每棵m 元,红枫原价为每棵n 元,则16b (1-6.25%)·m (1-20%)+20b ·n (1+25%)=16bm+20bn ,∴12bm+25bn=16bm+20bn ,∴m=54n ,∴12bm 25bn =12×54n 25n =15n 25n =35.表(1) 甲 乙 丙 香樟 4b 3b 9b 红枫 5a-4b 6a-3b合计5a6a7a表(2)甲 乙 丙 合计 香樟 4b 3b 9b 16b 红枫6b9b 5b 20b 合计 10b12b 14b30.【参考答案】 设学生人数为x 根据题意,得8x-3=7x+4 解得x=7∴7x+4=53.答:学生人数为7,该书单价为53元.31.2∶3 12 【解析】 设第一天分配到A,B 两条生产线的原材料分别为x 吨、y 吨,根据题意,得{x +y =5,4x +1=2y +3,解得{x =2,y =3,故分配到A 生产线的原材料的质量与分配到B 生产线的原材料的质量的比为2∶3.由题意得4(2+m )+1=2(3+n )+3,整理,得2m=n ,故m n =12.32.B 【解析】 由实际每天植树x 棵,可知原计划每天植树(x-50)棵,根据“实际植树400棵所需的时间与原计划植树300棵所需的时间相同”,可列方程为400x =300x -50.33.【参考答案】 (1)设3月份再生纸产量为x 吨,则4月份再生纸产量为(2x-100)吨.由题意,得x+(2x-100)=800解得x=300∴2x-100=500.答:4月份再生纸的产量为500吨.(2)由题意,得500(1+m%)·1 000(1+m 2%)=660 000解得m 1=20,m 2=-320(不合题意,舍去) ∴m=20.(3)设4至6月每吨再生纸利润的月平均增长率为y , 5月份再生纸的产量为a 吨,根据题意得1 200(1+y )2·a (1+y )=(1+25%)×1 200(1+y )·a∴1 200(1+y )2=1 500.答:6月份每吨再生纸的利润是1 500元.34.C 【解析】 这辆汽车原计划的速度是 x km/h,则实际的速度是(x+10)km/h,原计划用时420x h,实际用时420x+10 h.由实际比原计划提前1 h 到达目的地,可列方程为420x =420x+10+1.35.【参考答案】 (1)设乙骑行的速度是x 千米/时,则甲骑行的速度是1.2x 千米/时由题意,得12×1.2x=12x+2 解得x=20则1.2x=24.答:甲骑行的速度是24千米/时.(2)设乙骑行的速度是y 千米/时,则甲骑行的速度是1.2y 千米/时.由题意,得301.2y +2060=30y解得y=15.经检验,y=15是原方程的解,且符合题意.则1.2y=18.答:甲骑行的速度为18千米/时. 名师点拨由实际问题抽象出一次方程(组)的主要步骤:(1)弄清题意;(2)找准题中的等量关系;(3)设未知数;(4)根据找到的等量关系列出方程(组).36.【参考答案】 设道路的宽应为x 米由题意,得(50-2x )(38-2x )=1 260解得x 1=4,x 2=40(舍去).答:道路的宽应为4米.37.B 【解析】 设1艘大船可满载x 人,1艘小船可满载y 人,根据题意,得{x +2y =32①,2x +y =46②,由①+②,得3x+3y=78,∴x+y=26,即1艘大船与1艘小船一次共可以满载游客的人数为26.38.【参考答案】 (1)1.25x+1.3y(2)由题意得{x +y =520,1.25x +1.3y =520+140,解得{x =320,y =200,∴1.25x=400,1.3y=260.答:2021年进口额为400亿元,出口额为260亿元.。
2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(一)

2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(一)1.为加快复工复产,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?2.某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x为整数),求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.3.七年级1班计划购买若干本课外读物奖励在数学竞赛中获奖的同学.若每人送4本,则还余5本;若每人送6本,则最后一人得到的课外读物不足3本,求该班级需购买课外读物的本数.4.在近几年的两会中,有多位委员不断提出应在中小学开展编程教育,2019年3月教育部公布的《2019年教育信息化和网络安全工作要点》中也提出将推广编程教育.某学校的编程课上,一位同学设计了一个运算程序,如图所示.按上述程序进行运算,程序运行到“判断结果是否大于23”为一次运行.(1)若x=5,直接写出该程序需要运行多少次才停止;(2)若该程序只运行了2次就停止了,求x的取值范围.5.某校在校园艺术节期间举行学生书画大赛活动,准备购买甲、乙两种文具,奖励在活动中表现优秀的学生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,问有多少种购买方案?6.为报答当年5.12汶川地震各地的驰援深情,四川某农产品公司决定将本公司农业基地生产的蔬菜水果全部运到湖北武汉,支援武汉人民抗击新冠疫情.为了运输的方便,将蔬菜和水果分别打包成件,蔬菜和水果共260件,蔬菜比水果多40件.(1)求打包成件的蔬菜和水果各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批物资全部运往武汉.已知甲种货车最多可装蔬菜30件和水果13件,乙种货车最多可装蔬菜和水果各15件.如果甲种货车每辆需付运输费3000元,乙种货车每辆需付运输费2400元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.列方程(组)或不等式(组)解应用题:(1)甲工人接到240个零件的任务,工作1小时后,因要提前完成任务,调来乙和甲合作,合做了5小时完成.已知甲每小时比乙少做4个,那么甲、乙每小时各做多少个?(2)某工厂准备购进A、B两种机器共20台用于生产零件,经调查2台A型机器和1台B型机器价格为18万元,1台A型机器和2台B型机器价格为21万元.①求一台A型机器和一台B型机器价格分别是多少万元?②已知1台A型机器每月可加工零件400个,1台B型机器每月可加工零件800个,经预算购买两种机器的价格不超过140万元,每月两种机器加工零件总数不低于12400个,那么有哪几种购买方案,哪种方案最省钱?8.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件400元,乙种奖品每件300元.(1)如果购买甲、乙两种奖品共花费了6500元,求甲、乙两种奖品各购买了多少件;(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过6800元,求该公司有哪几种不同的购买方案.9.某学校在疫情期间利用网络组织了一次防“新冠病毒”知识竞赛,评出特等奖10人,优秀奖20人.学校决定给所有获奖学生各发一份奖品,同一等次的奖品相同.(1)(列方程组解应用题)若特等奖和优秀奖的奖品分别是口罩和温度计,口罩单价的2倍与温度计单价的3倍相等,购买这两种奖品一共花费700元,求口罩和温度计的单价各是多少元?(2)(利用不等式或不等式组解应用题)若两种奖品的单价都是整数,且要求特等奖单价比优秀奖单价多20元.在总费用不少于440元而少于500元的前提下,购买这两种奖品时它们的单价有几种情况,请分别求出每种情况特等奖和优秀奖奖品的单价.10.A市准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的提示牌和垃圾箱,若购买2个提示牌和3个垃圾箱共需550元,且垃圾箱的单价是提示牌单价的3倍.(1)求提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案.参考答案1.解:(1)设1辆大货车一次运输x箱物资,1辆小货车一次运输y箱物资,由题意可得:,解得:,答:1辆大货车一次运输150箱物资,1辆小货车一次运输100箱物资,(2)设有a辆大货车,(12﹣a)辆小货车,由题意可得:,∴6≤a<9,∴整数a=6,7,8;当有6辆大货车,6辆小货车时,费用=5000×6+3000×6=48000元,当有7辆大货车,5辆小货车时,费用=5000×7+3000×5=50000元,当有8辆大货车,4辆小货车时,费用=5000×8+3000×4=52000元,∵48000<50000<52000,∴当有6辆大货车,6辆小货车时,费用最小,最小费用为48000元.2.解:(1)依题意,得:,解得:.答:m的值为10,n的值为14.(2)设购买甲种蔬菜x千克,则购买乙种蔬菜(100﹣x)千克,依题意,得:,解得:58≤x≤60.∵x为正整数,∴x=58,59,60,∴有3种购买方案,方案1:购买甲种蔬菜58千克,乙种蔬菜42千克;方案2:购买甲种蔬菜59千克,乙种蔬菜41千克;方案3:购买甲种蔬菜60千克,乙种蔬菜40千克.(3)设超市获得的利润为y元,则y=(16﹣10)x+(18﹣14)(100﹣x)=2x+400.∵k=2>0,∴y随x的增大而增大,∴当x=60时,y取得最大值,最大值为2×60+400=520.依题意,得:(16﹣10﹣2a)×60+(18﹣14﹣a)×40≥(10×60+14×40)×20%,解得:a≤1.8.答:a的最大值为1.8.3.解:设该班在数学竞赛中获奖的有x人,则该班级需购买课外读物(4x+5)本,依题意,得:,解得:4<x≤.又∵x为正整数,∴x=5,∴4x+5=25.答:该班级需购买课外读物25本.4.解:(1)5×2﹣3=7,7×2﹣3=11,11×2﹣3=19,19×2﹣3=35,∵19<23,35>23,∴若x=5,该程序需要运行4次才停止.(2)依题意,得:,解得:8<x≤13.答:若该程序只运行了2次就停止了,x的取值范围为8<x≤13.5.解:(1)设购买一个甲种文具需要x元,购买一个乙种文具需要y元,依题意,得:,解得:.答:购买一个甲种文具需要15元,购买一个乙种文具需要5元.(2)设购买m个甲种文具,则购买(120﹣m)个乙种文具,依题意,得:,解得:35.5≤m≤40.∵m是整数,∴m=36,37,38,39,40,∴有5种购买方案.6.解:(1)设打包成件的蔬菜有x件,水果有y件,依题意,得:,解得:.答:打包成件的蔬菜有150件,水果有110件.(2)设租用甲种货车a辆,则租用乙种货车(8﹣a)辆,依题意,得:,解得:2≤a≤5.∵a为正整数,∴a的可能值为2,3,4,5,∴该公司有4种安排方案,方案1:租用2辆甲种货车,6辆乙种货车,总运费=3000×2+2400×6=20400(元);方案2:租用3辆甲种货车,5辆乙种货车,总运费=3000×3+2400×5=21000(元);方案3:租用4辆甲种货车,4辆乙种货车,总运费=3000×4+2400×4=21600(元);方案4:租用5辆甲种货车,3辆乙种货车,总运费=3000×5+2400×3=22200(元).∵20400<21000<21600<22200,∴选择租用2辆甲种货车,6辆乙种货车总运费最少.7.解:(1)设甲每小时做x个零件,则乙每小时做(x+4)个零件,依题意,得:(1+5)x+5(x+4)=240,解得:x=20,∴x+4=24.答:甲每小时做20个零件,乙每小时做24个零件.(2)①设一台A型机器的价格是a万元,一台B型机器的价格是b万元,依题意,得:,解得:.答:一台A型机器的价格是5万元,一台B型机器的价格是8万元.②设购买m台A型机器,则购买(20﹣m)台B型机器,依题意,得:,解得:≤m≤9.∵m为正整数,∴m的可以为7,8,9,∴共有三种购买方案,方案1:购买7台A型机器、13台B型机器;方案2:购买8台A型机器、12台B型机器;方案3:购买9台A型机器、11台B型机器.方案1所需费用为5×7+8×13=139(万元),方案2所需费用为5×8+8×12=136(万元),方案3所需费用为5×9+8×11=133(万元).∵139>136>133,∴方案3购买9台A型机器、11台B型机器,总费用最少.8.解:(1)设甲种奖品购买了a件,乙种奖品购买了(20﹣a)件,根据题意得400a+300(20﹣a)=6500,解得a=5,则20﹣a=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.9.解:(1)设口罩的单价是y元,温度计的单价是z元,根据题意得,解得.答:口罩的单价是30元,温度计的单价是20元.(2)设优秀奖单价为x元,则特等奖的单价为(x+20)元.根据题意得440≤20x+10(x+20)<500,解得8≤x<10.因为两种奖品的单价都是整数,所以x=8或x=9.当x=8时,x+20=28;当x=9时,x+20=29.答:购买两种奖品时它们的单价有它们的单价有两种情况:第一种情况中:优秀奖单价为8元,特等奖的单价为28元;第二种情况中:优秀奖单价为9元,则特等奖的单价为29元.10.解:(1)设提示牌单价是x元,垃圾箱单价y元,由题意得:,解得:,答:提示牌单价是50元,垃圾箱单价150元;(2)设购买提示牌m个,则购买垃圾箱(100﹣m)个,由题意得:,解得:50≤m≤52,∵m为非负整数,∴m=50或51或52,答:购买方案有3种,①购买提示牌50个,则购买垃圾箱50个;②购买提示牌51个,则购买垃圾箱49个;③购买提示牌52个,则购买垃圾箱48个.。
中考复习分式方程应用题专题(含答案)

分式方程应用题专题1、我国“八纵八横〞铁路骨干网的第八纵通道——温〔州〕福〔州〕铁路全长298千米.将于2021年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间〔结果精确到0.01小时〕.2、某商店在“端午节〞到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.3、南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,假设2007年每天的污水处理率比2006年每天的污水处理率提高40%〔污水处理率 污水处理量〕.污水排放量〔1〕求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?〔结果保存整数〕〔2〕预计我市2021年平均每天的污水排放量比2007年平均每天污水排放量增加20%,按照国家要求“2021年省会城市的污水处理率不低于...70%〞,那么我市2021年每天污水处理量在2007年每天污还需要增加多少万吨,才能符合国家规定的要求?水处理量的根底上至少..4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要〔 〕A.6天B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的选项是〔 〕A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 6、张明与李强共同清点一批图书,张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程〔 〕A .9001500300x x=+ B .9001500300x x =- C .9001500300x x =+ D .9001500300x x =- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在方案每天加固的长度比原方案增加了20m ,因而完成河堤加固工程所需天数将比原方案缩短2天,假设设现在方案每天加固河堤x m ,那么得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?〔利润=售价-进价,利润率100%=⨯利润进价〕12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原方案提高了20%,结果提前8小时完成任务.求原方案每小时修路的长度.假设设原方案每小时修x m ,那么根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购置某种图书.第一次用1200元购书假设干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了〔不考虑其它因素〕?假设赔钱,赔多少?假设赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐〞号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程工程,现在甲、乙两个工程队有能力承包这个工程.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,那么轮船在静水中的速度是千米/时.。
2022年中考复习《列方程解应用题(分式方程)》专项练习附答案

列方程解应用题〔分式方程〕1、〔2021泰安〕某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也参加该电子元件的生产,假设乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为〔〕A.B.C.D.考点:由实际问题抽象出分式方程.分析:首先设甲车间每天能加工x个,那么乙车间每天能加工1.3x个,由题意可得等量关系:甲乙两车间生产2300件所用的时间+乙车间生产2300件所用的时间=33天,根据等量关系可列出方程.解答:解:设甲车间每天能加工x个,那么乙车间每天能加工1.3x个,根据题意可得:+=33,应选:B.点评:题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.2、〔2021•铁岭〕某工厂生产一种零件,方案在20天内完成,假设每天多生产4个,那么15天完成且还多生产10个.设原方案每天生产x个,根据题意可列分式方程为〔〕A.B.C.D.考点:由实际问题抽象出分式方程.分析:设原方案每天生产x个,那么实际每天生产〔x+4〕个,根据题意可得等量关系:〔原方案20天生产的零件个数+10个〕÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.解答:解:设原方案每天生产x个,那么实际每天生产〔x+4〕个,根据题意得:=15,应选:A.点评:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.3、〔2021•钦州〕甲、乙两个工程队共同承包某一城市美化工程,甲队单独完成这项工程需要30天,假设由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?假设设乙队单独完成这项工程需要x天.那么可列方程为〔〕A.+=1 B.10+8+x=30 C.+8〔+〕=1D.〔1﹣〕+x=8考点:由实际问题抽象出分式方程.分析:设乙工程队单独完成这项工程需要x 天,由题意可得等量关系:甲10天的工作量+甲与乙8天的工作量=1,再根据等量关系可得方程10×+〔+〕×8=1即可. 解答:解:设乙工程队单独完成这项工程需要x 天,由题意得: 10×+〔+〕×8=1.应选:C .点评:此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,找出题目中的等量关系,再列出方程,此题用到的公式是:工作效率×工作时间=工作量.4、(2021年深圳市)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他。
2020年中考数学复习-第13讲-《方程类应用题专项》(含答案)

2020年中考数学复习-第13讲-《方程类应用题专项》(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2020年数学中考复习每日一练第十三讲《方程类应用题专项》1.为实施乡村振兴战略,解决某山区老百娃出行难的问题,当地政府决定修建一条高速公路,其中一段长为146米的山体隧道贯穿工程由甲、乙两个工程队负责施工,甲工程队独立工作2天后,乙工程队加入,两个工程队又联合工作了1天,这3天共掘进26米,已知甲工程队平均每天比乙工程队多掘进2米.(1)求甲、乙两个工程队平均每天分别掘进多少米?(2)若甲、乙两个工程队按此施工速度进行隧道贯穿工程,剩余工程由这两个工程队联合施工,求完成这项隧道贯穿工程一共需要多少天?2.某市居民使用自来水,每户每月水费按如下标准收费:月用水量不超过8立方米,按每立方米a元收取;月用水量超过8立方米但不超过14立方米的部分,按每立方米b元收取;月用水量超过14立方米的部分,按每立方米c 元收取.下表是某月部分居民的用水量及缴纳水费的数据.用水量(立方米) 2.51561210.3 4.791716水费(元)533.41225.621.529.418.439.436.4(1)①a=,b=,c=;②若小明家七月份需缴水费31元,则小明家七月份用水米3;(2)该市某用户两个月共用水30立方米,设该用户在其中一个月用水x立方米,请列式表示这两个月该用户应缴纳的水费.3.七年级学生小聪和小明完成了数学实验《钟面上的数学》后,制作了一个模拟钟面,如图所示,点O为模拟钟面的圆心,M、O、N在一条直线上,指针OA、OB分别从OM、ON出发绕点O转动,OA顺时针转动,OB逆时针转动,OA 运动速度为每秒转动15°,OB运动速度为每秒转动5°,设转动的时间为t 秒(t>0),请你试着解决他们提出的下列问题:(1)当t=3秒时,求∠AOB的度数;(2)当OA与OB第三次重合时,求∠BOM的度数;(3)在OA与OB第四次重合前,当t=时,直线MN平分∠AOB.4.为加快“智慧校园”建设,某市准备为试点学校采购一批A,B两种型号的一体机,经过市场调查发现,每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)列二元一次方程组解决问题:求每套A型和B型一体机的价格各是多少万元?(2)由于需要,决定再次采购A型和B型一体机共1100套,此时每套A型体机的价格比原来上涨25%,每套B型一体机的价格不变.设再次采购A型一体机m(m≤600)套,那么该市至少还需要投入多少万元?5.某水果店2400元购进一批葡萄,很快售完;又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)求第一批葡萄每件进价多少元?(2)若以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价至少打几折(利润=售价﹣进价)6.数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:记录天平左边天平右边状态14个一次性纸杯平衡记录一6个乒乓球,1个10克的砝码平衡记录二8个乒乓球7个一次性纸杯,1个10克的砝码请算一算,一个乒乓球的质量是多少克一个这种一次性纸杯的质量是多少克解:(1)设一个乒乓球的质量是x克,则一个这种一次性纸杯的质量是克;(用含x的代数式表示)(2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量.7.一列火车匀速行驶,经过一条长300m的隧道需要20s的时间,隧道的项上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,假设这列火车的长度为am.(1)设从车头经过灯下到车尾经过灯下火车所走的这段时间内火车的平均速度为Pm/s,从车头进入隧道到车尾离开隧道火车所走的这段时间内火车的平均速度为Qm/s,计算:5P﹣2Q(结果用含a的式子表示).(2)求式子:8a﹣380的值.8.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD9.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,同时也给自行车商家带来商机.某自行车行销售A型,B型两种自行车,经统计,2019年此车行销售这两种自行车情况如下:A自行车销售总额为8万元.每辆B型自行车的售价比每辆A型自行车的售价少200元,B型自行车销售数量是A自行车的1.25倍,B自行车销售总额比A型自行车销售总额多12.5%.(1)求每辆B型自行车的售价多少元.(2)若每辆A型自行车进价1400元,每辆B型自行车进价1300元,求此自行车行2019年销售A,B型自行车的总利润.10.某服装店购进一批甲、乙两种款型时尚的T恤衫,其中甲种款型共用7800元,乙种款型共用6000元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少8元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)若甲种款型T恤衫每件售价比乙种款型T恤衫的每件售价少10元,且这批T恤衫全部售出后,商店获利不少于6700元,则甲种T恤衫每件售价至少多少元?11.列一元一次方程解应用题目前节能灯在城市已基本普及,某商场计划购进甲、乙两种节能灯共1200只,甲型节灯进价25元/只,售价30元/只;乙型节能灯进价45元/只,售价60元/只.(1)如何进货,进货款恰好为46000元?(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?12.在数轴上有三个点A,B,C,O为原点,点A表示数a,点B表示数b,点C表示数c.且a、c满足|a+6|+(c﹣3)2=0.(1)填空:a=;c=.(2)点O把线段AB分成两条线段,其中一条是另一条线段的3倍,则b的值为:.(3)若b为2,动点P从点A出发,以每秒2个单位长度速度沿数轴负方向运动,同时,动点Q从点C出发,以每秒3个单位长度速度沿数轴正方向运动,求运动多少秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍?13.“十一”期间,小聪跟爸爸一起去A市旅游,出发前小聪从网上了解到A 市出租车收费标准如下:行程(千米)3千米以内满3千米但不超过8千米的部分8千米以上的部分收费标准(元)10元 2.4元/千米3元/千米(1)若甲、乙两地相距8千米,乘出租车从甲地到乙地需要付款多少元?(2)小聪和爸爸从火车站乘出租车到旅馆,下车时计费表显示17.2元,请你帮小聪算一算从火车站到旅馆的距离有多远?(3)小聪的妈妈乘飞机来到A市,小聪和爸爸从旅馆乘出租车到机场去接妈妈,到达机场时计费表显示70元,接完妈妈,立即沿原路返回旅馆(接人时间忽略不计),请帮小聪算一下乘原车返回和换乘另外的出租车,哪种更便宜?14.2019年度双十一在九龙坡区杨家坪的各大知名商场举行“国产家用电器惠民抢购日”优惠促销大行动,许多家用电器经销商都利用这个契机进行打折促销活动.商社电器某国产品牌经销商的某款超高清大屏幕Led液晶电视机每套成本为4000元,在标价6000元的基础上打9折销售.(1)现在该经销商欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于30%(2)据媒体爆料,有一些经销商先提高商品价格后再降价促销,存在欺诈行为.重百电器另一个该品牌的经销商也销售相同的超高清大屏幕Led液晶电视机,其成本、标价与商社电器的经销商一致,以前每周可售出20台,现重百的经销商先将标价提高(2m﹣12)%,再大幅降价150m元,使得这款电视机在2019年11月11日那一天卖出的数量就比原来一周卖出的数量增加了m%,这样一天的利润达到22400元,求m的值.(利润=售价﹣成本)15.某地区两类专车的打车方式:华夏专车神州专车里程费 1.8元/千米2元/千米时长费0.3元/分钟0.6元/分钟无远途费0.8元千米(超过7千米部分)起步价无10元华夏专车:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7千米以内(含7千米)不收远途费,超过7千米的,超出部分每千加收0.8元.神州专车:车费由里程费、时长费、起步价三部分构成,其中里程费按行车的实际里程计算;时长按行车的实际时间计算;起步价与行车距离无关.解决问题:(假设行车过程没有停车等时,且平均车速为0.5千米/分钟)(1)小明在该地区出差,乘车距离为10千米,如果小明使用华夏专车,需要支付的打车费用为元;(2)小强在该地区从甲地采坐神州专车到乙地,一共花费42元,求甲乙两地距离是多少千米?(3)神州专车为了和华夏专车竞争客户,分别推出了优惠方式,华夏专车对于乘车路程在7千米以上(含7千米)的客户每次收费立减9元;神州打车车费5折优惠.对采用哪一种打车方式更合算提出你的建议.16.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?17.某商场用25000元购进A、B两种新型护眼台灯共50盏,这两种台灯的进价、标价如下表所示:A型B型类型价格进价(元/盏)400650标价(元/盏)600m(1)A、B两种新型护眼台灯分别购进多少盏?(2)若A型护眼灯按标价的9折出售,B型护眼灯按标价的8折出售,那么这批台灯全部售完后,商场共获利7200元,请求出表格中m的值.18.随着经济水平的不断提高,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.电影《我和我的祖国》从网上平台购买1张电影票的价格比在现场购买一张电影票的价格少10元,从网上平台购买4张电影票的价格和现场购买2张电影票的价格共为200元.(1)请问《我和我的祖国》的电影票在网上平台和现场购票单价各为多少元?(2)“国庆”当天,某电影院仍然以这两种方式销售电影票,它们的单价都不变,当天网上平台和现场售出电影票数为500张,经统计,当天售出电影票总票数中有a%通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为17000元,求a的值.19.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH 型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)工厂补充40名新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置,则补充新工人后每天能配套生产多少产品补充新工人后20天内能完成总任务吗20.某糕点厂生产大小两种月饼,下表是A型、B型、C型三种月饼礼盒中装有大小两种月饼数量和需要消耗的面粉总重量的统计表面粉总重量(g)大月饼数量(个)小月饼数量(个)A型月饼礼盒58086B型月饼礼盒48066C型月饼礼盒420a b(1)直接写出制作1个大月饼要用g面粉,制作1个小月饼要用g面粉;(2)直接写出a=,b=.(3)经市场调研,该糕点厂要制作一批C型月饼礼盒,现共有面粉63000g,问制作大小两种月各用多少面粉,才能生产最多的C型月饼礼盒?参考答案1.解:(1)设乙工程队平均每天掘进x米,则甲工程队平均每天掘进(x+2)米,依题意有2(x+2)+(x+x+2)×1=26解得:x=5,x+2=5+2=7.故甲工程队平均每天掘进7米,乙工程队平均每天掘进5米;(2)设完成这项隧道贯穿工程一共需要y天,依题意有(7+5)y=146﹣26,解得y=10.答:完成这项隧道贯穿工程一共需要10天.2.解:(1)①根据表格可知:a==2,b==2.4,c==3,②由表格可知小明家七月份用水超过14立方米,设七月份用水x立方米,3(x﹣14)+(14﹣8)×2.4+8×2=31,解得:x=14.2,(2)若0<x≤8,则22≤30﹣x<30,所缴纳的水费为:2x+30.4+3(30﹣x﹣14)=(﹣x+78.4)元,若8<x≤14,则16≤30﹣x<22,所缴纳的水费为:16+2.4(x﹣8)+30.4+3(30﹣x﹣14)=(﹣0.6x+75.2)元,若14<x<16,则14<30﹣x<16,所缴纳的水费为:30.4+3(x﹣14)+30.4+3(30﹣x﹣14)=66.8元.若16≤x<22,则8<30﹣x<14,所缴纳的水费为:30.4+3(x﹣14)+16+2.4(x﹣30﹣8)=(0.6x+57.2)元,若22≤x<30,则0<30﹣x≤8,所缴纳的水费为:30.4+3(x﹣14)+2(30﹣x)=(x+48.4)元,综上所述,若0<x≤8,所缴纳的水费为(﹣x+78.4)元,若8<x≤14,所缴纳的水费为(﹣0.6x+75.2)元,若14<x<16,所缴纳的水费为66.8元.若16≤x<22,所缴纳的水费为(0.6x+57.2)元,若22≤x<30,所缴纳的水费为(x+48.4)元,故答案为:(1)①2,2.4,3.②14.23.解:(1)当t=3秒时,∴∠AOM=15°×3=45°,∠BON=5°×3=15°,∴∠AOB=180°﹣45°﹣15°=120°;(2)设t秒后第三次重合,由题意得15t+5t=360×2+180,解得t=45,5×45°﹣180°=45°.答:∠BOM的度数为45°;(3)在OA与OB第一次重合前,直线MN不可能平分∠AOB;在OA与OB第一次重合后第二次重合前,∠BON=5t,∠AON=15t﹣180,依题意有5t=15t﹣180,解得t=18;在OA与OB第二次重合后第三次重合前,直线MN不可能平分∠AOB;在OA与OB第三次重合后第四次重合前,∠BON=360﹣5t,∠AON=15t﹣720,依题意有360﹣5t=15t﹣720,解得t=54.故当t=18或54秒时,直线MN平分∠AOB.故答案为:18或54秒.4.解:(1)设每套A型一体机的价格为x万元,每套B型一体机的价格为y 万元.由题意可得:,解得:,答:每套A型一体机的价格是1.2万元,B型一体机的价格是1.8万元;(2)设该市还需要投入W万元,由题意得:W=1.2×(1+25%)m+1.8×(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小.∵m≤600,∴当m=600时,W有最小值,W最小=﹣0.3×600+1980=1800,答:该市至少还需要投入1800万元.5.解:(1)设第一批葡萄每件进价x元,根据题意,得:×2=,解得x=120.经检验,x=120是原方程的解且符合题意.答:第一批葡萄每件进价为120元.(2)设剩余的葡萄每件售价打y折.根据题意,得:×150×80%+×150×(1﹣80%)×0.1y﹣5000≥640,解得:y≥7.答:剩余的葡萄每件售价最少打7折.6.解:(1)根据题意知,这种一次性纸杯的质量是或.故答案是:或;(2)根据题意得,6x+10=16x﹣206x﹣16x=﹣20﹣10﹣10x=﹣30x=3.当x=3时,(克).答:一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克.7.解:(1)依题意,得:P=,Q=,∴5P﹣2Q=﹣=.(2)∵火车匀速行驶,∴P=Q,即=,∴a=300,∴8a﹣380=2020.8.解:(1)设运动时间为x秒时,MN=56.依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.9.解:(1)设每辆B型自行车的售价为x元,则每辆A型自行车的售价为(x+200)元.依题意,得方程两边乘x(x+200),得80000×1.25x=80000×(1+12.5%)(x+200)解得x=1800经检验,x=1800是原分式方程的解,且符合实际意义.答:每辆B型自行车的售价为1800元.(2)每辆A型自行车的售价为1800+200=2000元,销售数量为80000÷2000=40辆;B型自行车的总销售额为80000×(1+12.5%)=90000元,销售数量为40×1.25=50辆.总利润为(80000+90000)﹣(1400×40+1300×50)=49000元.答:此自行车行2019年销售A,B型自行车的总利润为.49000元10.解:(1)设购进乙x件,则购进甲1.5x件,,解得,x=100,经检验x=100是原方程的解,∴1.5x=1.5×100=150,答:甲购进150件,乙购进100件.(2)设甲每件售价m元,则150m+100(m+10)﹣7800﹣6000≥6700,解得:m≥78,答:甲每件售价至少78元.11.解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得25x+45(1200﹣x)=46000解得:x=400购进乙型节能灯1200﹣x=1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元.(2)设乙型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:乙型节能灯需打9折.12.解:(1)∵|a+6|+(c﹣3)2=0,∴a+6=0,c﹣3=0,解得:a=﹣6,c=3.故答案为:﹣6;3;(2)由a=6可知OA=6,∴b=6×3=18或b=6÷3=2;故b=18或2;故答案为:18或2;(3)设运动t秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍,根据题意得2t+6+2=3(3t+1),解得t=.即运动秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍.13.解:(1)10+2.4×(8﹣3)=22(元);答:乘出租车从甲地到乙地需要付款22元;(2)设火车站到旅馆的距离为x千米.∵10<17.2<22,∴3≤x≤8.10+2.4(x﹣3)=17.2∴x=6.答:从火车站到旅馆的距离有6千米;(3)设旅馆到机场的距离为x千米,∵70>22,∴x>8.10+2.4(8﹣3)+3(x﹣8)=70∴x=24.所以乘原车返回的费用为:10+2.4×(8﹣3)+3×(24×2﹣8)=142(元);换乘另外车辆的费用为:70×2=140(元)所以换乘另外出租车更便宜.14.解:(1)设降价x元,列不等式(6000×0.9﹣x)≥4000(1+30%)解得:x≤200答:最多降价200元,才能使得利润不低于30%;(2)根据题意得:整理得:3m2﹣8m﹣640=0解得:m1=16,m2=﹣(舍去)∴m=16答:m的值为16.15.解:(1)使用华夏专车,乘车距离为10千米,需要支付的打车费用为:1.8×10+0.8×(10﹣7)+10÷0.5×0.3=18+2.4+6=26.4(元)故答案为:26.4;(2)设甲乙两地距离是x千米,则10+2x+×0.6=42整理得:3.2x=32x=10∴甲乙两地距离是10千米.(3)设行驶x千米,打车费用为W元当0<x≤7时,华夏专车车费W1=1.8x+×0.3=2.4x当x>7时,华夏专车车费W2=1.8x+×0.3+0.8(x﹣7)﹣9=3.2x﹣14.6神州专车车费W3=(2x+×0.6+10)×0.5=1.6x+5①W1=W3时,2.4x=1.6x+5,解得:x=6.25;W=W3时,3.2x﹣14.6=1.6x+5,解得:x=12.25.2②W1>W3时,2.4x>1.6x+5,解得:x>6.25;W>W3时,3.2x﹣14.6>1.6x+5,解得:x>12.25.2③W1<W3时,2.4x<1.6x+5,解得:x<6.25;W<W3时,3.2x﹣14.6<1.6x+5,解得:x<12.25.2综上所述,当x=6.25或12.25时,两者都可选;当6.25<x<7或x>12.25时,选神州专车;当0<x<6.25或7<x<12.25时,选华夏专车.16.解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=25,经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25×2=50(m2),答:甲、乙两工程队每天能完成绿化的面积分别是50m2、25m2;(2)设应安排甲队工作y天,根据题意得:0.35y+×0.25≤8,解得:y≥20,答:至少应安排甲队工作20天.17.解:(1)设A型台灯购进x盏,B型台灯购进(50﹣y)盏.根据题意得:400x+600(50﹣x)=25000.解得:x=25.则50﹣x=25,答:A型台灯购进25盏,B型台灯购进25盏;(2)25×(600×90%﹣400)+25×(m×80%﹣650)=7200.解得m=997.5.18.解:(1)设在网上平台购票单价为x元,则在现场购票单价为(x+10)元.根据题意得:4x+2(x+10)=200,解得:x=30,∴x+10=40.答:在网上平台购票单价为30元,在现场购票单价为40元.(2)根据题意得:500×a%×30+500×(1﹣a%)×40=17000,解得:a=60.答:a的值为60.19.解:(1)设安排x名工人生产G型装置,则安排(80﹣x)名工人生产H 型装置,依题意,得:,解得:x=32,∴=48.答:按照这样的生产方式,工厂每天能配套组成48套GH型电子产品.(2)设安排y名工人生产H型装置,则安排(80﹣y)名工人及40名新工人生产G型装置,依题意,得:,解得:y=72,∴=y=72.∵72×20=1440>1200,∴补充新工人后20天内能完成总任务.答:补充新工人后每天能配套生产72套产品,补充新工人后20天内能完成总任务.20.解:(1)制作1个大月饼要用的面粉数量为:(580﹣480)÷(8﹣6)=50(g);制作1个小月饼要用的面粉数量为:(480﹣50×6)÷6=30(g),故答案为:50;30;(2)根据题意得50a+30b=420,∵a,b为整数,∴a=6,b=4.故答案为:6;4(3)设用xg面粉制作大月饼,则利用(63000﹣x)g制作小月饼,根据题意得出,解得:x=45000,则63000﹣4500=18000(g).答:用45000g面粉制作大月饼,18000g制作小月饼,才能生产最多的盒装月饼.。
中考数学复习分式方程应用题(含答案)

13讲分式方程应用题一、解答题(共26题;共130分)1.(2014•丹东)某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?2.(2017•大连)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?3.(2017•遵义)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.4.(2017•贺州)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.5.(2017•扬州)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.6.(2016•曲靖)甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.7.(2017•通辽)一汽车从甲地出发开往相距240km的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快,比原计划提前24min到达乙地,求汽车出发后第1小时内的行驶速度.8.(2015•丹东)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?9.(2015•随州)端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,求粽子与咸鸭蛋的价格各多少?10.(2017•长春)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.11.(2014•营口)为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?12.(2017•黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?13.(2017•宜宾)用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.14.(2015•沈阳)高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.15.(2015•贵港)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?16.(2015•雅安)某车间按计划要生产450个零件,由于改进了生产设备,该车间实际每天生产的零件数比原计划每天多生产20%,结果提前5天完成任务,求该车间原计划每天生产的零件个数?17.(2015•宜宾)列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?18.(2015•大连)甲、乙两人制作某种机械零件,已知甲每小时比乙多做3个,甲做96个所用的时间与乙做84个所用的时间相等,求甲、乙两人每小时各做多少个零件?19.(2016•呼和浩特)某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?20.(2011•本溪)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?21.(2015•长春)为了美化环境,某地政府计划对辖区内60km2的土地进行绿化.为了尽快完成任务.实际平均每月的绿化面积是原计划的1.5倍.结果提前2个月完成任务,求原计划平均每月的绿化面积.22.(2011•葫芦岛)某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.23.(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?24.(2015•郴州)自2014年12月启动“绿茵行动,青春聚力”郴州共青林植树活动以来,某单位筹集7000元购买了桂花树和樱花树共30棵,其中购买桂花树花费3000元.已知桂花树比樱花树的单价高50%,求樱花树的单价及棵树.25.(2014•朝阳)某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.26.(2014•辽阳)某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.答案解析部分一、解答题1.【答案】【解答】解:该服装厂原计划每天加工x件服装,则实际每天加工1.5x件服装,根据题意,得解这个方程得x=100经检验,x=100是所列方程的根.答:该服装厂原计划每天加工100件服装.【解析】【分析】设原计划每天加工x件衣服,则实际每天加工1.5x件服装,以时间做为等量关系可列方程求解.2.【答案】解:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得:=,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件【解析】【分析】设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.3.【答案】解:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,×1000+ ×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15【解析】【分析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可.4.【答案】解:设乙工程队单独完成这项工程需要x天,依题意有(+ )×10=1﹣,解得x=20,经检验,x=20是原方程的解.答:乙工程队单独完成这项工程需要20天【解析】【分析】先根据已知条件由等量关系列出方程,再解分式方程即可得到所求的结论.5.【答案】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.【解析】【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.6.【答案】解:设货车速度是x千米/小时,根据题意得:﹣=2,解得:x=60,经检验x=60是分式方程的解,且符合题意,答:货车的速度是60千米/小时.【解析】【分析】设货车的速度是x千米/小时,根据一辆小轿车的速度是货车速度的2倍列出方程,求出方程的解即可得到结果.此题考查了分式方程的应用,找出题中的等量关系是解本题的关键.7.【答案】解:设汽车出发后第1小时内的行驶速度是x千米/小时,根据题意可得:=1+ + ,解得:x=80,经检验得:x=80是原方程的根,答:汽车出发后第1小时内的行驶速度是80千米/小时【解析】【分析】根据题意结合行驶的时间的变化得出等式进而求出答案.8.【答案】解:设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意得,=2,解得:x=90,经检验,x=90是所列方程的根,则3x=3×90=270.答:高速列车平均速度为每小时270千米.【解析】【分析】设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意可得,坐高铁走180千米比坐普通车240千米少用2小时,据此列方程求解.9.【答案】解:设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据题意得:=,去分母得:30x=12x+21.6,解得:x=1.2,经检验x=1.2是分式方程的解,且符合题意,1.8+x=1.8+1.2=3(元),故咸鸭蛋的价格为1.2元,粽子的价格为3元.【解析】【分析】设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,列出分式方程,求出方程的解得到x的值,即可得到结果.10.【答案】解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:﹣=30,解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15元.【解析】【分析】由"买跳绳的数量比购买排球的数量多30个“可构建方程,用跳绳的单价x表示两个数量,然后二者相减即可.11.【答案】解:(1)设签字笔的单价为x元,笔记本的单价为y元.则可列方程组,解得.答:签字笔的单价为1.5元,笔记本的单价为3.5元.(2)设学校获奖的同学有z人.则可列方程,解得z=48.经检验,z=48符合题意.答:学校获奖的同学有48人.【解析】【分析】(1)由题意可知此题存在两个等量关系,即买1支签字笔价钱+买2个笔记本的价钱=8.5元,买2支签字笔价钱+买3个笔记本的价钱=13.5元,根据这两个等量关系,可列出方程组,再求解;(2)设学校获奖的同学有z人,根据等量关系:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同,可列出方程,再求解.12.【答案】解:设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元.根据题意,得= .解得x= .经检验,x= 是原方程的解,且符合题意,则科普类图书平均每本的价格为+5= 元,答:文学类图书平均每本的价格为元,科普类图书平均每本的价格为元.【解析】【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元,根据题意可得等量关系:用12000元购进的科普类图书的本数=用5000元购买的文学类图书的本数,根据等量关系列出方程,再解即可.13.【答案】解:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:= ,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【解析】【分析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间= ,B型机器人所用时间= ,由所用时间相等,建立等量关系.14.【答案】解:设高速铁路列车的平均速度为xkm/h,根据题意,得:,去分母,得:690×3=690+4.6x,解这个方程,得:x=300,经检验,x=300是所列方程的解,因此高速铁路列车的平均速度为300km/h.【解析】【分析】设高速铁路列车的平均速度为xkm/h,根据高速铁路列车比普通铁路列车少运行了4.6h 列出分式方程,解分式方程即可,注意检验.15.【答案】【解答】解:设去年月平均生产效率为1,则今年一月份的生产效率为(1+m%),二月份的生产效率为1+m%+.根据题意得:,解得:m%=.经检验可知m%=是原方程的解.∴m=25.∴第一季度的总产量=120×1.25+120×1.25+50+120×2=590.答:今年第一季度生产总量是590台,m的值是25.【解析】【分析】今年一月份生产量为:120(1+m%);二月份生产量:120(1+m%)+50;根据“二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍”列出方程并解答.16.【答案】【解答】解:设该车间原计划每天生产的零件为x个,由题意得,﹣=5,解得x=15,经检验,x=15是原方程的解.答:该车间原计划每天生产的零件为15个.【解析】【分析】设该车间原计划每天生产的零件为x个,然后根据计划用的天数比实际用的天数多5列出方程,再求解即可.17.【答案】解:设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据题意得:,去分母得:15x=10x+2,解得:x=0.4,经检验x=0.4是分式方程的解,且符合题意,∴x+0.2=0.4+0.2=0.6(万元),答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元.【解析】【分析】设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元列出方程,求出方程的解即可得到结果.18.【答案】【解答】解:设乙每小时做的零件数量为x个,甲每小时做的零件数量是x+3,由题意得=解得x=21,经检验x=21是原分式方程的解,则x+3=24.答:甲每小时做24个零件,乙每小时做21个零件.【解析】【分析】由题意可知:设乙每小时做的零件数量为x个,甲每小:时做的零件数量是x+3;根据甲做90个所用的时间=乙做60个所用的时间列出方程求解.19.【答案】解:设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天.依据题意可列方程:+ = ,解得:x1=10,x2=﹣3(舍去).经检验:x=10是原方程的解.设甲队每天的工程费为y元.依据题意可列方程:6y+6(y﹣4000)=385200,解得:y=34100.甲队完成此项工程费用为34100×10=341000元.乙队完成此项工程费用为30100×15=451500元.答:从节省资金的角度考虑,应该选择甲工程队【解析】【分析】设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天,然后依据6天可以完成,列出关于x的方程,从而可求得甲、乙两队单独完成需要的天数,然后设甲队每天的工程费为y元,则可表示出乙队每天的工程费,接下来,根据两队合作6天的工程费用为385200元列方程求解,于是可得到两队独做一天各自的工程费,然后可求得完成此项工程的工程费,从而可得出问题的答案.本题主要考查的是分式方程的应用、一元一次方程的应用,根据题意列出关于x的方程是解题的关键.20.【答案】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,=x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<24.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.【解析】【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.21.【答案】解:设原计划平均每月的绿化面积为x km2,实际平均每月的绿化面积是1.5x km2,由题意得﹣=2解得:x=10经检验x=10是原方程的解答:原计划平均每月的绿化面积为10 km2.【解析】【分析】设原计划平均每月的绿化面积为x km2,实际平均每月的绿化面积是1.5x km2,根据结果提前2个月完成任务列出方程解答即可.22.【答案】(1)设甲队单独完成需x天,则乙队单独完成需1.5x天.根据题意,得+=1.解得x=200.经检验,x=200是原分式方程的解.答:甲队单独完成需200天,乙队单独完成需300天.(2)设甲队每天的施工费为y元.根据题意,得200y+200×150×2≤300×10 000+300×150×2,解得y≤15150.答:甲队每天施工费最多为15150元.【解析】【分析】(1)假设甲队单独完成需x天,则乙队单独完成需1.5x天,根据总工作量为1得出等式方程求出即可;(2)分别表示出甲、乙两队单独施工所需费用,得出不等式,求出即可.23.【答案】解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元【解析】【分析】设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.24.【答案】【解答】解:设樱花树的单价为x元,则桂花树的单价为(1+50%)x元,由题意得+=30解得:x=200经检验x=200是原方程的解.则(1+50%)x=300=20(棵)答:樱花树的单价为200元,有20棵.【解析】【分析】设樱花树的单价为x元,则桂花树的单价为(1+50%)x元,根据购买了桂花树和樱花树共30棵列方程解答即可.25.【答案】解:设甲队单独完成这项工程需x天,由题意得:×6+(+)×16=1,解得:x=30,经检验:x=30是原分式方程的解,2x=60,答:甲队单独完成这项工程需30天,乙队单独完成这项工程需60天.【解析】【分析】首先设甲队单独完成这项工程需x天,则乙队单独完成这项工程需2x天,根据题意可得等量关系:甲队6天的工作量+甲、乙合作16天的工作量=1,根据等量关系,列出方程,再解即可.初三复习13讲26.【答案】解:(1)设乙工程队单独完成此项工程需要x天,由题意得:+=,解得:x=30,经检验:x=30是原分式方程的解,2x=60.答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)甲工程队单独做a天后,再由甲、乙两工程队合作:(1﹣a×)÷(+)=(天),由题意可得:1•a+(1+2.5)•≤64,解得:a≥36,答:甲工程队要单独施工36天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.故答案为:天.【解析】【分析】(1)根据题意结合总工作量为1,进而表示出两队每天完成的工作情况,进而得出答案;(2)首先表示出甲、乙两工程队合作的天数,进而利用两队施工费用得出不等式求出即可.- 11 -。
2020中考数学三轮复习专题训练:方程应用题(含解析)

2020中考数学三轮复习专题训练:方程应用题1.某单位在疫情期间用3000元购进A、B两种口罩1100个,购买A种口罩与购买B种口罩的费用相同,且A种口罩的单价是B种口罩单价的1.2倍;(1)求A,B两种口罩的单价各是多少元?(2)若计划用不超过7000元的资金再次购进A、B两种口罩共2600个,已知A、B两种口罩的进价不变,求A种口罩最多能购进多少个?解:(1)设B口罩的单价为x元/个,则A口罩单价为1.2x元/个,根据题意,得:+=1100,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,则1.2x=3.答:A口罩单价为3元/个,B口罩单价为2.5元/个.(2)设购进A口罩m个,则购进B口罩(2600﹣m)个,依题意,得:3m+2.5(2600﹣m)≤7000,解得:m≤1000.答:A种口罩最多能购进1000个.2.为美化校园,某校需补栽甲、乙两种花苗.经咨询,每株甲种花苗比每株乙种花苗贵5元.已知购买相同数量的甲、乙两种花苗,所用费用分别是100元、50元.求甲、乙两种花苗的单价.解:设乙种花苗的单价为x元,则甲种花苗的单价为(x+5)元.由题意可列方程,解得x=5.经检验,x=5是原分式方程的解,x+5=10.答:甲种花苗的单价为10元、乙种花苗的单价为5元.3.某手机店老板到电子批发市场选购A、B两种型号的手机,A型手机比B型手机每套进价高200元,同样用6000元采购A型、B型手机时,B型手机比A型手机多1台.(1)求A、B两种手机进价分别为多少元?(2)该A型手机每台售价为1800元,B型手机每台售价为1500元,手机店老板决定,购进B型手机的数量比购进A型手机的数量的2倍少3台,两种手机全部售完后,总获利超过12800元,问最少购进A型手机多少台?解:(1)设A型手机进价为x元,则B型手机进价为(x﹣200)元,由题意得:+1=解得:x1=1200,x2=﹣1000(不合题意,舍去),经检验:x=1200是原分式方程的解,x﹣200=1200﹣200=1000,答:A、B两种手机进价分别为1200元、1000元;(2)设购进A型手机a台,则购进B型手机(2a﹣3)台,由题意得:(1800﹣1200)a+(1500﹣1000)(2a﹣3)>12800,解得:a>10,答:至少购进A型手机的数量是11台.4.某工程队接到任务通知,需要修建一段长1800米的道路,按原计划完成总任务的后,为了让道路尽快投入使用,工程队将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已修建道路多少米?(2)求原计划每小时修建道路多少米?解:(1)按原计划完成总任务的时,已抢修道路为1800×=600(米),答:按原计划完成总任务的时,已修建道路600米;(2)设原计划每小时抢修道路x米,根据题意得:+=10,解得:x=140,经检验:x=140是原方程的解.答:原计划每小时抢修道路140米.5.随着云南旅游业的飞速发展,西双版纳原生态的村寨生活、节日活动、民俗仪式深深吸引了很多游客前来观赏.小明和小张假期从昆明去西双版纳游玩,昆明到西双版纳的乘车距离约为540km,小明开小轿车自驾游,小张乘坐大巴车,小明比小张晚出发3小时,最后两车同时到达西双版纳.已知小轿车的速度是大巴车速度的1.5倍.那么小轿车和大巴车的速度各是多少?解:设大巴车的速度为x千米/小时,则小轿车的速度为1.5x千米/小时,依题意,得:﹣=3,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴1.5x=90.答:小轿车的速度为90千米/小时,大巴车的速度为60千米/小时.6.《九章算术》是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.解:设买鹅的人数有x人,则这头鹅价格为(9x﹣11)文,根据题意得:9x﹣11=6x+16,解得:x=9,价格为:9×9﹣11=70(文),答:买鹅的人数有9人,鹅的价格为70文.7.新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?解:(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x﹣50)元,由题意得:=,解得:x=30,经检验,x=30是原方程的解且符合实际意义,3x﹣5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)设购买甲种品牌的消毒剂y瓶,则购买乙种品牌的消毒剂(40﹣y)瓶,由题意得:30y+40(40﹣y)=1400,解得:y=20,∴40﹣y=40﹣20=20,答:购买了20瓶乙品牌消毒剂.8.滴滴快车是一种便捷的出行工具,计价规则如表:计费项目里程费时长费远途费单价1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里加收0.8元.小明与小亮各自乘坐滴滴快车,到同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里.设小明乘车时间为x分钟,小亮乘车时间为y 分钟.(1)则小明乘车费为(0.3x+10.8)元(用含x的代数式表示),小亮乘车费为(0.3y+16.5)元(用含y的代数式表示);(2)若小明比小亮少支付3元钱,问小明与小亮的乘车时间哪个多?多几分钟?(3)在(2)的条件下,已知乘车时间较少的人先到达约见地点等候,等候时间是他自己乘车时间的一半,且比另一人乘车时间的少2分钟,问他俩谁先出发?先出发多少分钟?解:(1)小明乘车费为(0.3x+10.8)元(用含x的代数式表示),小亮乘车费为(0.3y+16.5)元.故答案为(0.3x+10.8),(0.3y+16.5).(2)由题意:10.8+0.3x+3=16.5+0.3y,∴x﹣y=9,∴小明比小亮的乘车时间多,多9分钟.(3)由(2)可知:小亮乘车时间为y分钟,小明乘车时间为(y+9)分钟.由题意:=﹣2,解得y=6.∴小明的乘车时间为6+9=15(分钟),小亮等候的时间为=3(分钟),∴小明比小亮先出发,先出发的时间=15﹣6﹣3=6(分钟),答:明比小亮先出发,先出发6分钟.9.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题:(1)求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?解:(1)设小明原计划购买文具袋x个,则实际购买了(x+1)个,由题意得:10(x+1)×0.85=10x﹣17.解得:x=17;答:小明原计划购买文具袋17个;(2)设小明可购买钢笔y支,则购买签字笔(50﹣y)支,由题意得:[8y+6(50﹣y)]×80%=272,解得:y=20,则:50﹣x=30.答:小明购买了钢笔20支,签字笔30支.10.某工地有72m2的墙面需要粉刷.若安排4名一级技工粉刷若干天,结果还剩12m2墙面未能刷完;同样时间内安排6名二级技工去粉刷,则刚好全部刷完.已知每名一级技工比二级技工一天多粉刷3m2墙面.设每一名一级技工一天粉刷墙面xm2.(1)每名二级技工一天粉刷墙面(x﹣3)m2(用含x的式子表示);(2)求每名一级技工、二级技工一天分别能粉刷多少m2墙面?(3)每名一级技工一天的施工费是300元,每名二级技工一天的施工费是200元.若另一工地有540m2的墙面需要粉刷,要求一天完工且施工总费用不超过10600元,则至少需要 5 名二级技工(直接写出结果).解:(1)由题意得,每名二级技工一天粉刷墙面(x﹣3)m2;故答案为:(x﹣3)(2)依题意列方程:=;解得x=15,经检验x=15是原方程的解,即每名一级技工和二级技工一天分别能粉刷15m2、12m2墙面;(3)设需要m名一级技工,需要n名二级技工,根据题意得,,解得:n≥5,答:至少需要5名二级技工,故答案为:5.11.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)解:(1)设第一批仙桃每件进价x元,则,解得x=180.经检验,x=180是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.可得×0.1y﹣3700≥440,解得y≥6.答:剩余的仙桃每件售价至少打6折.12.某周日,珂铭和小雪从新天地小区门口同时出发,沿同一条路线去离该小区1800米的少年宫参加活动,为响应节能环保,绿色出行的号召,两人步行,已知珂铭的速度是小雪的速度的1.2倍,结果珂铭比小雪早6分钟到达.(1)求小雪的速度;(2)活动结東后返回,珂铭与小雪的速度均与原来相同,若小雪计划比珂铭至少提前6分钟回到小区,则小雪至少要比珂铭提前多长时间出发?解:设小雪的速度是x米/分钟,则珂铭速度是1.2x米/分钟,依题意得:,解得:x=50,经检验x=50是原方程的解,答:小雪的速度是50米/分钟.(2)1.2×50=60(米/分钟),1800÷50=36(分钟),1800÷60=30(分钟),设小雪比珂铭提前a分钟出发,根据题意得,a+30﹣36≥6,解得a≥12,答:小雪至少要比珂铭提前出发12分钟.13.进人冬季,空调再次迎来销售旺季,某商场用75000元购进一批空调,该空调供不应求,商家又用135000元购进第二批这种空调,所购数量比第一批购进数量多15台,但单价是第一批的1.2倍.(1)该商场购进第一批空调的单价多少元?(2)若两批空调按相同的标价出售,春节将近,还剩下15台空调未出售,为减少库存回笼资金,商家决定最后的15台空调按九折出售,如果两批空调全部售完利润率不低于40%(不考虑其他因素),那么每件空调的标价至少多少元?解:(1)设商场购进第一批空调的单价是x元,根据题意得:1.2x(+15)=135000,解得:x=2500,经检验,x=2500是原方程的解,答:商场购进第一批空调的单价是2500元,(2)设每件空调的标价y元,第一批空调的数量为:=30(台),第二批空调的数量为:30+15=45(台),这两批空调的数量为:30+45=75(台),根据题意得:(75﹣15)y+15×90%y﹣75000﹣135000≥(75000+135000)×40%,解得:y≥4000,答:每件空调的标价至少4000元.14.为支援困山区,某学校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品与用120元购买A型学习用品的件数相同.(1)求A,B两种学习用品的单价各是多少元;(2)若购买A、B两种学习用品共1000件,且总费用不超过28000元,则最多购买B型学习用品多少件?解:(1)设A型学习用品的单价为x元,则B型学习用品的单价为(x+10)元,由题意得:=,解得:x=20,经检验x=20是原分式方程的根,且符合实际,则x+10=30.答:A型学习用品的单价为20元,B型学习用品的单价为30元.(2)设购买B型学习用品y件,则购买A型学习用品(1000﹣y)件,由题意得:20(1000﹣y)+30y≤28000,解得:y≤800.答:最多购买B型学习用品800件.15.为准备趣味跳绳比赛,王老师花100元买了若干条跳绳,已知商店里的跳绳规格与价格如下表:规格A型B型C型跳绳长度(米) 4 8 12价格(元/条) 4 6 9(1)若购买了三种跳绳,其中B型跳绳和C型跳绳的条数同样多,且所有跳绳的总长度为120米,求购买A型跳绳的条数;(2)若购买的A型跳绳有13条,则购买的所有跳绳的总长度为多少米?解:(1)设购买的A型跳绳x条,B型跳绳和C型跳绳的条数为y条,可得:,可得:,答:购买A型跳绳的条数为10条;(2)当购买的A型跳绳有13条,设B型跳绳和C型跳绳的条数为a条,可得:,解得:a≤3.2,∵a>0,且为整数,∴a=3最大,所以购买的所有跳绳的总长度为13×4+8×3+12×3=112.答:购买的所有跳绳的总长度为112米.16.一个两位自然数,其个位数字大于十位数字.现将其个位数字与十位数字调换位置,得到一个新数,且原数与新数的平均数为33.(1)求原数的最小值;(2)若原数的平方与新数的差为534,求原数与新数之积.解:(1)设原两位数的个位数字为x,十位数字为y,(x>y),则原两位数是(10y+x),新两位数为(10x+y),根据题意得,(10y+x)+(10x+y)=33×2,∴x+y=6,∵x、y均为正整数,x>y,∴x=5,y=1或x=4,y=2,∴原数的最小值15;(2)由(1)知,原数与新数可能为15与51,或24与42,∵242﹣42=534,∴24×42=1008.17.小叶爸爸开了一家茶叶专卖店,包装设计专业华业的小叶为他爸设计了一款用长方形厚纸片(厚度不计)做长方体茶叶包装盒(如图),阴影部分是栽剪掉的部分,沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处长方形形状的“接口”用来折叠后粘贴或封盖.(1)若小叶用长40cm,宽34cm的长方形厚纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的2.5倍,三处“接口”的宽度相等.则该茶叶盒的容积是多少?((2)小叶爸爸的茶叶专卖店以每盒150元购进批茶叶,按进价增加20%作为售价,第一个月由于包装粗糙,只售出不到一半但超过三分之一的量;第二个月采用了小叶的包装后,马上售完了余下的茶叶,但成不增如了每盒5元,售价仍不变,已知在整个买卖过程中共盈利1500元,求这批茶叶共进了多少盒?解:(1)设“接口”宽度为xcm,盒底边长为ycm,由题意得:,解得.∴8×2.5=20cm,20×8×8=1280cm3答:该茶叶盒的容积是1280cm3.(2)设第一个月销售了m盒茶叶,第二个月销售了n盒茶叶,由题意得:150×20%×m+(150×20%﹣5)n=1500,化简得:6m+5n=300.∵m、n为正整数,由上式知m为5的倍数,且m<n<2m,∴或,∴m+n=56或55盒.答:这批茶叶共进了56或55盒.18.美术小组共有30名同学,准备到文具店购买铅笔和橡皮.如果全组每人各买2枝铅笔和1块橡皮,那么需按零售价购买,共支付60元;如果全组每人各买3枝铅笔和2块橡皮,那么可按批发价购买,共支付81元.已知1枝铅笔的批发价比零售价低0.1元,1块橡皮的批发价比零售价低0.2元.这家文具店的铅笔和橡皮的批发价各是多少?解:设铅笔批发价是x元,橡皮的批发价是y元,则铅笔零售价是(x+0.1)元,橡皮的零售价是(y+0.2)元,由题意可得:解得:答:铅笔批发价是0.5元,橡皮的批发价是0.6元.19.期中考试即将结束,为了表彰优秀,李老师用W元钱购买奖品,若以3支钢笔和4本笔记本为一份奖品,则可买60份奖品;若以4支钢笔和7本笔记本为一份奖品,则可以买40份奖品.设钢笔单价为x元/支,笔记本单价为y元/本.(1)请用y的代数式表示x;(2)若用这W元钱全部购买笔记本,总共可以买几本?(3)若李老师用这钱恰好买75份同样的奖品,可以选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有),请求出所有可能的a,b的值.解:(1)依题意,得:60×(3x+4y)=40×(4x+7y),∴x=2y.(2)60×(3x+4y)÷y=60×(3×2y+4y)÷y=600.答:总共可以买600本.(3)依题意,得:75×(ax+by)=60×(3x+4y),∴b=8﹣2a.∵a,b均为正整数,∴,,.20.为了“迎国庆,向祖国母亲献礼”,某建筑公司承建了修筑一段公路的任务,指派甲、乙两队合作,18天可以完成,共需施工费126000元;如果甲、乙两队单独完成此项工程,乙队所用时间是甲队的1.5倍,乙队每天的施工费比甲队每天的施工费少1000元.(1)甲、乙两队单独完成此项工程,各需多少天?(2)为了尽快完成这项工程任务,甲、乙两队通过技术革新提高了速度,同时,甲队每天的施工费提高了a%,乙队每天的施工费提高了2a%,已知两队合作12天后,由甲队再单独做2天就完成了这项工程任务,且所需施工费比计划少了21200元.①分别求出甲、乙两队每天的施工费用;②求a的值.解:(1)设甲公司单独完成此项工程需x天,根据题意可得:,解得:x=30,检验,知x=30符合题意,∴1.5x=45,答:甲公司单独完成此项工程需30天,乙公司单独完成此项工程需45天;(2)①设甲公司技术革新前每天的施工费用是y元,那么乙公司技术革新前每天的施工费用是(y﹣1000)元,则由题意可得:(y+y﹣1000)×18=126000,解得:y=4000,∴y﹣1000=3000,答:技术革新前,甲公司每天的施工费用是4000元,乙公司每天的施工费用是3000元;②4000×14×(1+a%)+3000×12×(1+2a%)=126000﹣21200,解得:a=10.答:a的值是10.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20XX 届中考专题复习《方程、不等式应用题》湖北省竹溪县城关中学 明道银中考数学方程应用题是近几年来中考的必考题,需要敏一定的阅读理解能力、分析解决问题的能力和计算能力,合理利用已知条件,构建方程,从而解决问题。
一 单一的方程应用题例1、(2012湖北十堰8分)一辆汽车开往距离出发地180千米的目的地,按原计划的速度匀速行驶60千米后,再以原来速度的1.5倍匀速行驶,结果比原计划提前40分钟到达目的地,求原计划的行驶速度.解:设原计划的行驶速度为x 千米/时,则:180601806040=x 1.5x 60---, 解得x=60, 经检验:x=60是原方程的解,且符合题意。
所以x=60。
答:原计划的行驶速度为60千米/时。
二 方程不等式应用题例2、(2012湖北十堰10分)某工厂计划生产A 、B 两种产品共50件,需购买甲、乙两种材料.生产一件A 产品需甲种材料30千克、乙种材料10千克;生产一件B 产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元. (1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B 产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A 产品需加工费200元,生产一件B 产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)解:(1)设甲材料每千克x 元,乙材料每千克y 元,则 x+y=402x+3y=105⎧⎨⎩,解得x=15y=25⎧⎨⎩。
答:甲材料每千克15元,乙材料每千克25元;(2)设生产A 产品m 件,生产B 产品(50-m )件,则生产这50件产品的材料费为 15×30m +25×10m +15×20×(50-m )+25×20×(50-m )=-100m +40000,由题意:100m 400003800050m 28-+≤⎧⎨-≥⎩,解得20≤m≤22。
又∵m 是整数,∴m 的值为20, 21,22。
∴共有三种方案,如下表:(3)设总生产成本为W 元,加工费为:200m +300(50-m ), 则W=-100m +40000+200m +300(50-m )=-200m +55000,∵-200<0,∴W 随m 的增大而减小。
而m=20,21,22, ∴当m=22时,总成本最低,此时W=-200×22+55000=50600(元)。
三、练习一、填空题和选择题(每小题5分,共15分)1、(2012湖北天门、仙桃、潜江、江汉油田)学校举行“大家唱大家跳”文艺汇演,设置了歌唱与舞蹈两类节目,全校师生一共表演了30个节目,其中歌唱类节目比舞蹈类节目的3倍少2个,则全校师生表演的歌唱类节目有 22 个.2、(2012湖北咸宁3分)某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需 1100 元.3、(2013•雅安)甲、乙二人在一环形场地上从A 点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,则环形场地的周长有900米.二、解答题(10+10+10+10+15+15+15=85分)4. (2013聊城)夏季来临,天气逐渐炎热起来,某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料个一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每瓶各多少元?解:设这两种饮料在调价前每瓶各x 元、y 元,根据题意得:, 解得:.答:调价前这种碳酸饮料每瓶的价格为3元,这种果汁饮料每瓶的价格为4元.5、(2013•淮安)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?解:设购买了x 件这种服装,根据题意得出:[80﹣2(x ﹣10)]x=1200, 整理得:x 2 -50x +600 = 0 解得:x 1=20,x 2=30,当x=30时,80﹣2(30﹣10)=40(元)<50不合题意舍去;答:她购买了30件这种服装6. (2012湖北黄冈)某服装厂设计了一款新式夏装,想尽快制作8800 件投入市场,服 装厂有A 、B 两个制衣车间,A 车间每天加工的数量是B 车间的1.2 倍,A 、B 两车间共同完成一半后,A 车间出现故障停产,剩下全部由B 车间单独完成,结果前后共用20 天完成,求A 、B 两车间每天分别能加工多少件.解:设B 车间每天能加工x 件,则A 车间每天能加工1.2x 件,由题意得:A (件) 20 21 22B (件)302928第23题(人)a 305208640 (分钟) xy O4400440020x 1.2x x+=+,解得:x=320。
经检验:x=320是原分式方程的解。
1.2×320=384。
答:A 车间每天能加工384件,B 车间每天能加工320件。
7.(20XX 年北京市)列方程或方程组解应用题:某园林队计划由6名工人对180平方米 的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务。
若每人每 小时绿化面积相同,求每人每小时的绿化面积。
解:设每人每小时的绿化面积x 平方米,由题意,得, 解得:x=2.5.经检验,x=2.5是原方程的解,且符合题意. 答:每人每小时的绿化面积2.5平方米 8、(20XX 年重庆市)随着铁路运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站从去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍。
(1)求甲、乙队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元,在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程。
在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)解:(1)设甲队单独完成这项工程需要x 个月,则乙队单独完成这项工程需要()5-x 个月, 由题意得: ()()565-+=-x x x x 整理得030172=+-x x解得21=x ,152=x ,21=x 不符合题意,应舍去,故15=x ,105=-x 答:甲队单独完成这项工程需要15个月,乙队单独完成这项工程需要10个月。
(2)设在完成这项工程中,甲队做了m 个月,则乙队做了m 21个月,根据题意得: m m 21150100⨯+≤1500 解得m ≤748∵m 为整数 ∴m 的最大整数值为8 答:完成这项工程,甲队最多施工8个月。
9. (2013•自贡)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案? 解:(1)设该校的大寝室每间住x 人,小寝室每间住y 人,由题意得:, 解得:,答:该校的大寝室每间住8人,小寝室每间住6人;(2)设大寝室a 间,则小寝室(80﹣a )间,由题意得:, 解得:75≤a ≤80 ,①a=75时,80﹣75=5,②a=76时,80﹣a=4,③a=77时,80﹣a=3,≤④a=78时,80﹣a=2, ⑤a=79时,80﹣a=1,⑥a=80时,80﹣a=0. 故共有6种安排住宿的方案. 10、(2013• 衢州)”五·一” 假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a 分钟只开放了两个检票口.某一天候车室排队等候检票的人数y (人)与检票时间x (分钟)的关系如图所示.(1)求a 的值.(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?解:(1)由图象知,64016214520a a +-⨯=,∴10a =;(2)由图象可知,从检票开始后第10分钟到第30分钟,候车室排队检票人数每分钟减少26人,所以检票到第20分钟时,候车室排队等候检票的旅客有520-26×10=260人.(3)设需同时开放n 个检票口,则由题意知141501615n ⨯+⨯≥64, 解得4421n ≥, ∵n 为整数,∴5n =,答:至少需要同时开放5个检票口.。