红外线发射与接收电路图

合集下载

红外遥控器的基本原理

红外遥控器的基本原理

红外遥控器的基本原理•红外线的特点人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,红光的波长范围为0.62μm~0.7μm,比红光波长还长的光叫红外线。

红外线遥控器就是利用波长0.76μm~1.5μm 之间的近红外线来传送控制信号的。

红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。

电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。

红外线发射和接收人们见到的红外遥控系统分为发射和接收两部分。

发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光。

常用的红外发光二极管发出的红外线波长为 940nm 左右,外形与普通φ5mm 发光二极管相同,只是颜色不同。

一般有透明、黑色和深蓝等三种。

判断红外发光二极管的好坏与判断普通二极管一样的方法。

单只红外发光二极管的发射功率约100mW。

红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。

接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。

红外接收二极管一般有圆形和方形两种。

由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。

然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头。

红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。

所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。

红外遥控器的协议•鉴于家用电器的品种多样化和用户的使用特点,生产厂家对红外遥控器进行了严格的规范编码,这些编码各不相同,从而形成不同的编码方式,统一称为红外遥控器编码传输协议。

了解这些编码协议的原理,不仅对学习和应用红外遥控器是必备的知识,同时也对学习射频(一般大于300MHz)无线遥控器的工作原理有很大的帮助。

[教材]38kHz红外发射与接收

[教材]38kHz红外发射与接收

38kHz 红外发射与接收红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。

1.红外线的特点人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。

由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。

红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。

红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。

电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。

2.红外线发射和接收人们见到的红外遥控系统分为发射和接收两部分。

发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。

常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5 mm发光二极管相同,只是颜色不同。

一般有透明、黑色和深蓝色等三种。

判断红外发光二极管的好坏与判断普通二极管一样的方法。

单只红外发光二极管的发射功率约100mW。

红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。

接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。

红外接收二极管一般有圆形和方形两种。

由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。

然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。

红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。

所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。

图3是常用两种红外接收头的外形,均有三只引脚,即电源正VDD、电源负(GND)和数据输出(Out)。

接收头的引脚排列因型号不同而不尽相同,图3列出了因接收头的外形不同而引脚的区别。

红外探测法简介.

红外探测法简介.

红外探测法简介简介:红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,不断地向外发射红外光,当红外光遇到白色障碍物时发生漫反射,反射光被与之相对的接收管接收;如果遇到黑色物体则红外光被吸收,接收管接收不到红外光。

将接收管的结果送给单片机。

单片机就是否收到反射回来的红外光为依据来进行相应的处理。

根据它的特性可以用于智能小车的寻迹或避障。

红外对管白色为发射管,长引脚为正极,接高电位。

黑色为接收管,长引脚接地,短引脚接高电位。

电路:红外对管的电路如下图所示:电阻R2为限流电阻,防止通过发射管的电流过大。

调节电位器R3可改变红外对管的感应距离。

当有光反射回来时,光电对管中的三极管导通,此时VT1饱和导通,三极管集电极输出低电平。

当没有光反射回来时,光电对管中的三极管不导通,VT1截至,其集电极输出高电平。

集电极接比较器,可调电阻R1可以调节比较器的门限电压。

经示波器观察,输出波形相当规则,可以直接供单片机查询使用。

技术参数:发射管:电流Ia<50mA工作电压V<5v接收管:正向电阻:2.5M反向电阻:7.1K导通时电阻约为53k感应距离:经实验,最大可达1米。

但容易受干扰,实际上寻迹中一般只用在0.8cm~1.5cm。

避障也在20cm 以内。

测试方案:设定基准电压2V。

改变R3的阻值,使无反射时接收管集电极电压V改变,测试红外对管的感应距离D。

测量值如下:注:也可通过适当调节基准电压改变红外测量距离。

扩展:1 为了减小环境干扰,可在接收管上套一短黑色皮管。

2 为使红外对管感应性能更好,可将红外发射管接在三极管集电极,用单片机或555定时器产生一高频方波控制三极管通断来产生红外光。

发射电路如下:实验证明,高频触发的红外光比加直流工作电压性能更强,检测距离更远,可用在小车避障模块中。

3 也可以采用集成红外探测器件。

ST系列集成红外探头价格便宜、体积小、使用方便、性能可靠、用途广泛,例如ST168,其内部结构和外接电路均较为简单,如图2所示:ST168采用高发射功率红外光、电二极管和高灵敏光电晶体管组成,采用非接触式检测方式。

单片机实例--通过实例学习单片机(红外线遥控)

单片机实例--通过实例学习单片机(红外线遥控)
17 LOOP:
32 ;
37 ;38 ; 避开低电平,待直接判断高电平 39 L5: 40 41 42 L6: 43 JNB ACALL JMP JB ACALL IRIN, L6 DEL L5 IRIN, DEL L7 ; 等 IR 变为高电平 ; 调用 0.093ms 延时程序 ; 等 IR 变为低电平 ; 调用 0.093ms 延时程序
. . .
12MHz 30P SWR
X1 X2
. . . . . . .
+5V
R1k
. . .
+ 10μF 10 kΩ
。 。
P3.2 RST
SPK
+5V
1 2 3 VSS
S 0 S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 0 S 1 S 2 S 3 S 4 S 5 S 6 S 7 D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7
引导码
用户码
用户码
图 C.6
红外线接收电路图
C.1.3
程序设计
程序中,主程序通过调用解码子程序,将接收到的红外线遥控器信号进行解码,再调 用遥控执行子程序,将解码后的按键值由 LED 显示出来。所以,解码子程序是程序中的主 要部分。 1.主要标号说明 ? ? ? ? ? ? ?
实例 C
红外线遥控应用实例
27║
成信号,再经红外线发射二极管,将红外线信号发射出去。
发射端部分 键盘 编码和调制 模块 红外线发射 LED
图 ห้องสมุดไป่ตู้.1
红外线发射端工作方框图 接收端部分

51单片机设计的红外线遥控器电路图及工作原理

51单片机设计的红外线遥控器电路图及工作原理

51单片机设计的红外线遥控器电路图及工作原理你家里是否有一个电视机遥控器或者空调机遥控器呢?你是否也想让它遥控其他的电器甚至让它遥控您的电脑呢?那好,跟我一起做这个“红外遥控解码器”。

该小制作所需要的元件很少:单片机TA89C2051一只,RS232接口电平与TTL电平转换心片MAX232CPE 一只,红外接收管一只,晶振11.0592MHz,电解电容10uF4只,10uF 一只,电阻1K1个,300欧姆左右1个,瓷片电容30P2个。

发光二极管8个。

价钱不足20元。

电路图及原理:主控制单元是单片机AT89C2051,中断口INT0跟红外接受管U1相连,接收红外信号的脉冲,8个发光二极管作为显示解码输出(也可以用来扩展接其他控制电路),U3是跟电脑串行口RS232相连时的电平转换心片,9、10脚分别与单片机的1、2脚相连,(1脚为串行接收,2脚为串行发送),MAX232CPE的7、8脚分别接电脑串行口的2(接收)脚、3(发送脚)。

晶振采用11.0592MHz,这样才能使得通讯的波特率达到9600b/s,电脑一般默认值是9600b/s、8位数据位、1位停止位、无校验位。

电路就这么简单了,现在分析具体的编程过程吧。

如图所示,panasonic遥控器的波形是这样的(经过反复测试的结果)。

开始位是以3.6ms低电平然后是3.6ms高电平,然后数据表示形式是0.9ms低电平0.9ms 高电平周期为1.8ms表示“0”,0.9ms低电平2.4ms高电平周期为3.3ms表示“1”,编写程序时,以大于3.4ms小于3.8ms高电平为起始位,以大于2.2ms小于2.7ms高电平表示“1”,大于0.84ms小于1.11ms高电平表示“0”。

因此,我们主要用单片机测量高电平的长短来确定是“1”还是“0”即可。

定时器0的工作方式设置为方式1:mov tmod,#09h,这样设置定时器0即是把GATE置1,16位计数器,最大计数值为2的16次方个机器周期,此方式由外中断INT0控制,即INT0为高时才允许计数器计数。

红外遥控的发射和接收

红外遥控的发射和接收

红外遥控的发射和接收Donna 发表于2006-5-12 10:08:00光谱位于红色光之外,波长为0.76~1.5μm,比红色光的波长还长,这样的光被称为红外线。

红外遥控是利用红外线进行传递信息的一种控制系统,红外遥控具有抗干扰,电路简单,编码及解码容易,功耗小,成本低的优点,目前几乎所有的视频和音频设备都支持这种控制方式。

一、红外遥控系统结构红外遥控系统主要分为调制、发射和接收三部分,如图1 所示:图1 红外遥控系统1.调制红外遥控发射数据时采用调制的方式,即把数据和一定频率的载波进行“与”操作,这样可以提高发射效率和降低电源功耗。

调制载波频率一般在30khz到60khz之间,大多数使用的是38kHz,占空比1/3的方波,如图2所示,这是由发射端所使用的455kHz晶振决定的。

在发射端要对晶振进行整数分频,分频系数一般取12,所以455kHz÷12≈37.9 kHz≈38kHz。

图2 载波波形1.发射系统目前有很多种芯片可以实现红外发射,可以根据选择发出不同种类的编码。

由于发射系统一般用电池供电,这就要求芯片的功耗要很低,芯片大多都设计成可以处于休眠状态,当有按键按下时才工作,这样可以降低功耗芯片所用的晶振应该有足够的耐物理撞击能力,不能选用普通的石英晶体,一般是选用陶瓷共鸣器,陶瓷共鸣器准确性没有石英晶体高,但通常一点误差可以忽略不计。

红外线通过红外发光二极管(LED)发射出去,红外发光二极管内部材料和普通发光二极管不同,在其两端施加一定电压时,它发出的是红外线而不是可见光。

图3a 简单驱动电路图3b 射击输出驱动电路如图3a和图3b是LED的驱动电路,图3a是最简单电路,选用元件时要注意三极管的开关速度要快,还要考虑到LED的正向电流和反向漏电流,一般流过LED的最大正向电流为100mA,电流越大,其发射的波形强度越大。

图3a电路有一点缺陷,当电池电压下降时,流过LED的电流会降低,发射波形强度降低,遥控距离就会变小。

红外红外传感器电路图及工作原理

红外红外传感器电路图及工作原理

红外红外传感器电路图及⼯作原理红外红外传感器电路图及⼯作原理Infrared IR Sensor Circuit Diagram and Working Principle红外传感器是⼀种电⼦设备,它发射是为了感知周围环境的某些⽅⾯。

红外传感器既能测量物体的热量,⼜能检测物体的运动。

这些类型的传感器只测量红外辐射,⽽不是发射被称为被动红外传感器。

通常,在红外光谱中,所有物体都会发出某种形式的热辐射。

这些类型的辐射对我们的眼睛是看不见的,可以通过红外传感器探测到。

发射器只是⼀个红外发光⼆极管(发光⼆极管),探测器只是⼀个红外光电⼆极管,对红外发光⼆极管发出的相同波长的红外光敏感。

当红外光照射到光电⼆极管上时,电阻和输出电压将随接收到的红外光的⼤⼩⽽成⽐例变化。

红外传感器电路图及⼯作原理红外传感器电路是电⼦设备中最基本、最常⽤的传感器模块之⼀。

这种传感器类似于⼈类的视觉感官,可以⽤来检测障碍物,是实时检测中常⽤的应⽤之⼀。

该电路由以下部件组成· 2 IR transmitter and receiver pair· Resistors of the range of kilo-ohms.· Variable resistors.· LED (Light Emitting Diode).LM358 IC2红外收发对千欧姆范围内的电阻器。

可变电阻器。

LED(发光⼆极管)。

IR Sensor Circuit在本项⽬中,发射器部分包括红外传感器,其发射连续的红外射线以供红外接收器模块接收。

接收器的红外输出端根据其接收到的红外光线⽽变化。

由于这种变化不能这样分析,因此可以将该输出馈送到⽐较器电路。

这⾥使⽤LM 339的运算放⼤器(运放)作为⽐较器电路。

当红外接收器不接收信号时,反转输⼊处的电势⾼于⽐较器IC的⾮反转输⼊(LM339)。

因此⽐较器的输出变低,但LED不发光。

TX-05C 红外线对射检测电路

TX-05C 红外线对射检测电路

TX-05C 红外线对射检测电路TX-05C 红外线对射检测电路对射式红外传感器:TX05C-1是一种对射式的红外线检测电路,人眼不能直接观察到光线的传输路径。

其光路含有产品特定的密码,如在外部强制干涉或用其他光源解密,只能导致检测电路报警。

本电路已经被广泛用于门窗及各种人行通道的报警系统:流水线的自动控制,量值的统计上。

TX05C-1分发射电路和接收电路两部分,可以采用集中或分散供电方式。

TX05C-1发射电路:外形见图一、内部电路见图二、工作参数见表一、以供参考:图一图二表一发射电路的作用距离与工作电压有关,以下是4档电压的作用距离,供参考:当电压为5V时,TX05C-1的作用距离大约是3米,当电压为6V时,TX05C-1的作用距离大约是4米,当电压为9V时,TX05C-1的作用距离大约是6米,当电压为12V时,TX05C-1的作用距离大约是7米,(以上测试是在接收电路工作电压12V,室温为25oC的情况下完成的。

)工作电压5-12VDC工作电流5V时16mA6V时25mA9V时50mA 12V时70mA工作指示有外形尺寸32X46X17mm在TX05C-1安装时,发射和接收管的方向一定要正对,电路的指示灯闪动时,说明方向没有对正或发射功率不够。

可以通过调整接收、发射管的方向和提高发射电路的工作电压来解决。

在TX05C-1的作用距离足够大的前提下,应尽量降低发射电路的工作电压,一是有效的降低功耗。

二是减少内部47Ω限流电阻的发热量。

注意:发射电路的工作电源尽量使用稳压电路供电,以免瞬间超过12V时,烧毁内部电路。

TX05C-1的接收电路采用进口的微功耗稳压电路和解码电路,有着很小的电流功耗,在能接收到发射信号且解码有效时的电流仅为1mA,解码错误,发光二极管点亮时电流为3.5mA。

接收电路的工作电压为7-12V.DC。

接收电路引出一条线缆,以便引入电源和输出信号。

其中铜网接地(负极),红线接电源(正极),白线为输出(正常有信号时为低电平,小于0.1V,无信号时为高电平,大于3.5V&lt;不带载&gt;,此时发光管亮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外线发射与接收电路图
由455KHZ的晶振CRY,反相器74HC04及电阻、电容构成的振荡器产生455KHZ的方波信号。

经脉冲分频器74LS92,六分频成为75.83KHZ的脉冲信号。

再经过D触发器构成的2分频/整形电路变成38KHZ的方波信号。

由单片机的异步串行口TX输出的串行数据信号,送到与非门74HC00的输入端。

与非门的另一输入端接38KHZ的载波信号。

与非门的输出信号用来控制三极管的开通或关断,从而控制红外发射管发送信息。

这样就达到了用串行口TX输出的串行数据信号直接调制载波,进行红外数据传输的目的。

发射电路的调制采用的是时分制幅度键控调制方式。

因单片机在复位后,TXD脚为高电平,为满足同步的要求,采用低电平同步脉冲,经与非门(U3)后变成高电平同步脉冲。

所以单片机TXD 发送的编码应是反码。

据说,发送数据"0"的载波脉冲个数不少于14个,这样发送速率不高于1200b
设计中采用一种高效能的红外接收器——德律风根TFMS5380。

德律风根所开发的微型接收器TFMS5380是近期市场上最高效能的红外接收器。

同一组件内已装上了接收二级管和前置放大器。

TFMS5380特点:(1)单一的接收器和前置放大器的组合。

(2)超敏感度和传送距离。

(3)内置PCM频率过滤器。

(4)无外置组件需要。

(5)特强光及电场干扰屏蔽。

(6) TTL及CMOS兼容,适用于微处理器操作控制。

(7)可选频率由30KHZ至56KHZ。

(8)低功耗。

(9)ISO9000认可。

TFMS5380适用于数据传送、电视机、录像机、组合音响及
卫星接收器等。

TFMS5380的内部框图及构成的接收电路。

如图3所示。

红外二极管就和普通的发光二极管原理一样,就是在半导体PN结区域电子和空穴复合发光。

发光的波长和半导体的禁带宽度有关。

光敏红外二极管和普通的光敏二极管也是一样的。

在PN结附近由于光照产生的激子被结电场拉开成为电子-空穴对,分别流向不同的电极。

一般光敏管反向偏置,有光时反向电阻会变化。

一般红外管用来通信,比如电视机的遥控器。

或者测距,比如自动冲水马桶。

相关文档
最新文档