小升初数学几何专项练习

合集下载

小升初几何经典难题55道含答案

小升初几何经典难题55道含答案

D
C
审题要点:要求边扫过的面积,只需分别看一边旋转所得图形。
25.求圆中阴影部分与大圆的面积之比和周长之比。
26.如图,半圆半径=40CM,BM=CN=DP=22,每个阴影部分的弧长为半圆弧长的 1 , 3
求阴影部分面积?( p =3)
27.如图,哨所门前的两个正三角形哨台拴了两条狼狗,拴狼狗的铁链子长为 10 米,每个哨台的面积为 42.5 平方米现在要绿化哨所所在地(哨所面积忽略不计, 把其看做一点,在其周围 20 米范围内铺上草地)为了防止狼狗践踏,则绿化的
47.将 NNN(N 是正整数)正方体的一些面涂上颜色以后,再将它切割成 111 的小 正方体。已知至少有一面涂色的小正方体恰好占总数的 52%,N 是多少?
48.小红的生日舞会,做了一顶圆锥形帽子,要将帽子涂成红色和蓝色,O 点为 顶点,BC 为底面圆直径 30cm,A 点是 OB 的下三分之一处,OB=30cm,从 A 点出 发,CA 之间最短的距离之上涂成红色,下边涂成蓝色。那么小红的帽子有多大
F 是 AC 的中点,若△ABC 的面积是 2,则△DEF 的面积是多少?
A F E
B C
D
16.如图,长方形 ABCD 中,E 为 AD 中点,AF 与 BE、 BD 分别交于 G、H,已知 AH=5cm,HF=3cm,求 AG。
A
E
D
G
O
H F
B
C
17.在边长为 1 的正方形 ABCD 中,BE=2EC,DF=2FC; 求四边形 ABGD 的面积。
21.如图,ABCG 是 4×7 的长方形,DEFG 是 2×10 的长方形,那么,三角形 BCM 的面积与三角形 DCM 的面积之差是多少? 审题要点:要求两个三角形的面积之差,题目没有给出可以直接求出两个三角形 面积的条件,那么我们只能考虑应用差不变原理。

【小升初手册】30道小升初几何问题(答案)

【小升初手册】30道小升初几何问题(答案)
11.【周长与面积】有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形的面积是45平方厘米,求这个大长方形的周长.
【解析】从图上可以知道,小长方形的长的4倍等于宽的5倍,所以长是宽的541.25倍.每个小长方形的面积为4595平方厘米,所以1.25宽宽5,所以宽为2厘米,长为2.5厘米.大长方形的周长为(2.5422.5)229厘米.
积为:4461146120平方厘米.
16.【共高模型】如图,把四边形ABCD的各边都延长2倍,得到一个新四边形EFGH如果ABCD的面积是5平方厘米,则EFGH的面积是多少平方厘米?
【解析】如下图,连接BD,ED,BG,
有EAD、ADB同高,所以面积比为底的比,有S
EA
S
2S

EAD
ABD
ABD
AB
5 05 02 5 0(0块).
8. 【化整为零】正方形ABCD与等腰直角三角形BEF放在一起(如图),M、N点为正方形的边的中点,阴影部分的面积是 14cm2,三角形 BEF 的面积是多少平方厘米?
【解析】因为M、N是中点,故我们可以将该图形进行分割,所得图形如下
F
F
A
M
D
A
M
D
N
N
B
E
B
E
C
C
图形中的三角形面积都相等,阴影部分由7个三角形组成,且其面积为14平方厘米,故一个三角形的面积为2平方厘米,那么三角形BEF的面积是18平方厘米。
123(22212)(322212)(322212)39141440(平方厘米),
所以,所得到的多面体的表面积为:23440194(平方厘米).
(法2)三视图法.从前后面观察到的面积为52322238平方厘米,从左右两个面观察到的面积为523234平方厘米,从上下能观察到的面积为5225平方厘米.

小升初几何专项练习题

小升初几何专项练习题

小升初专项训练几何篇典型例题解析1 与圆和扇形有关的题型【例1】(★★)如下图,等腰直角三角形ABC的腰为10厘米;以A为圆心,EF为圆弧,组成扇形AEF;阴影部分甲与乙的面积相等。

求扇形所在的圆面积。

【例2】(★★★)草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见左下图)。

问:这只羊能够活动的范围有多大?【例3】(★★)在右图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差。

【例4】(★★★)如图,ABCD是正方形,且FA=AD=DE=1,求阴影部分的面积。

(取π=3)【例5】(★★★)如下图,AB与CD是两条垂直的直径,圆O的半径为15厘米,与立体几何有关的题型小学阶段,我们除了学习平面图形外,还认识了一些简单的立体图形,如长方体、正方体(立方体)、直圆柱体,直圆锥体、球体等,并且知道了它们的体积、表面积的计算公式,归纳如下。

见下图。

2 求不规则立体图形的表面积与体积【例6】(★★)用棱长是1厘米的正方块拼成如下图所示的立体图形,问该图形的表面积是多少平方厘米?【例7】(★★★)在边长为4厘米的正方体木块的每个面中心打一个边与正方体的边平行的洞.洞口是边长为1厘米的正方形,洞深1厘米(如下图).求挖洞后木块的表面积和体积.【例8】(★★★)如图是一个边长为2厘米的正方体。

在正方体的上面的正中向下挖一个边长为1厘米的正方体小洞;接着在小洞的底面正中再向下挖一个边长为1/2厘米的小洞;第三个小洞的挖法与前两个相同,边长为1/4厘米。

那么最后得到的立体图形的表面积是多少平方厘米?[总 结]:立体图形中一定要学会想象,特别是这种面积分开时,我们仍可以看成相连的,这就要求学生必须学会如何看待面积的变化。

3 水位问题【例9】(★★)一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如下图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米.瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【例10】(★★)一个高为30厘米,底面为边长是10厘米的正方形的长方体水桶,其中装有21容积的水,现在向桶中投入边长为2厘米⨯2厘米⨯3厘米的长方体石块,问需要投入多少块这种石块才能使水面恰与桶高相齐?4 计数问题【例11】(★★★★)右图是由22个小正方体组成的立体图形,其中共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?【例12】有甲、乙、丙3种大小的正方体,棱长比是1:2:3。

最新小升初数学衔接训练--几何知识

最新小升初数学衔接训练--几何知识

精品文档小升初数学衔接训练几何初步知识一、平面图形与空间图形1、正方形(C:周长S:面积a:边长)周长=边长× 4C=4a面积 =边长×边长S=a×a2、正方体(V:体积a:棱长)表面积 =棱长×棱长× 6S表=a×a×6体积 =棱长×棱长×棱长V=a×a×a3、长方形( C :周长S:面积a:边长)周长 =( 长 +宽) ×2C=2(a+b)面积 =长×宽S=ab4、长方体(V:体积s:面积a:长b:宽 h: 高)(1)表面积 ( 长×宽 +长×高 +宽×高 ) ×2S=2(ab+ah+bh)(2) 体积 =长×宽×高V=abh或v=sh5、三角形(s:面积a:底h:高)面积 =底×高÷ 2s=ah÷2三角形高 =面积×2÷底三角形底 =面积×2÷高6、平行四边形(s:面积a:底h:高)面积 =底×高s=ah7、梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2s=(a+b) × h ÷28、圆形( S:面积 C :周长л d=直径r=半径)(1)周长 =直径×л =2× л ×半径 C= лd=2л r(2) 面积 =半径×半径×лs=л r29、扇形(半径用r 表示, n 表示圆心角的度数,面积用 s 表示)s= nл r2/36010、环形(1)特征由两个半径不相等的同心圆组成,有无数条对称轴。

(2)计算公式 s=л (R2-r2)精品文档11、圆锥体(v:体积h:高s:底面积r:底面半径)体积 =底面积×高÷ 3v=sh/312、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积 =底面周长×高 =ch(2 л r 或л d)(2)表面积 =侧面积 +底面积×2 = s 侧 +2 s 底(3)体积 =底面积×高 = sh(4)体积=侧面积÷ 2×半径巩固练习:1、一个长方形的周长是30 分米,长与宽的比是3: 2,这个长方形的面积是()2、在下图中,平行四边形的面积是20 平方厘米,图中甲、乙、丙三个三角形的面积比是(),阴影部分的面积是()平方厘米。

小升初30道典型几何题 学生版(试题)

小升初30道典型几何题 学生版(试题)

A F B
G
D E C
5
学习改变命运,思考成就未来!
6 年级
23.如图,大长方形的面积是小于 200 的整数,内部有三个边长为整数的正方形 A、B、 C,正方形 B 的边长是长方形长的 7/16,正方形 C 的边长是长方形宽的 1/4,那么剩余黑 色区域的面积是多少?
24 . 如图所示, BD 、 CF 将长方形 ABCD 分成 4 块, DEF 的面积是 5 平方厘米, CED 的面积是 10 平方厘米.问:四边形 ABEF 的面积是多少平方厘米?
F A M D N B C E
9.如图所示的四边形的面积等于多少?
2
学习改变命运,思考成就未来!
6 年级
C 13 12
13 D
13
10.下图中的阴影部分 BCGF 是正方形,线段 FH 长 18 厘米,线段 AC 长 24 厘米,则长方 形 ADHE 的周长是 厘米.
E F G H
12
1
A
B
C
D
11.有 9 个小长方形,它们的长和宽分别相等,用这 9 个小长方形拼成的大长方形的面积 是 45 平方厘米,求这个大长方形的周长.
A B
F D
E C
6.如图所示,直角三角形 ABC 的斜边 AB 长为 10 厘米, ABC 60 ,此时 BC 长 5 厘 米.以点 B 为中心,将 ABC 顺时针旋转 120 ,点 A 、 C 分别到达点 E 、 D 的位置.求 AC 边扫过的图形即图中阴影部分的面积.( π 取 3)
A F 5 E 10 D
B
C
25.奥运会的会徽是五环图,一个五环图是由内圆直径为 6 厘米,外圆直径为 8 厘米的五 个环组成,其中两两相交的小曲边四边形 (阴影部分)的面积都相等,已知五个圆环盖住的 面积是 77.1 平方厘米,求每个小曲边四边形的面积.( π 3.14 )

小升初数学精选几何题30题(含答案和解析)

小升初数学精选几何题30题(含答案和解析)

小升初数学精选几何题30题(1)一.选择题;;(共30小题)1.如图,阴影部分的面积相等,那么半圆的面积与三角形的面积比较,( )3.右边的两个物体是用相同的小正方体摆成的,( )物体的表面积大些.4.如图阴影部分面积( )长方形面积的.5.如图两个完全相同的平行四边形中,甲的面积( )乙的面积..BCD7.比较如图长方形内阴影部分面积的大小甲( )乙.8.(2012•泉州)下列各图中的正方形面积相等,图( )的阴影面积与另外三图不同..BCD9.如图中的涂色部分是连接梯形的顶点和边的中点形成的.涂色部分的面积不等于所在梯形面积的是( ) .BCD10.如图所示,比较A 和B 的面积大小,其结果是( )11.右面方格图中有A 、B 两个三角形,那么( )13.一个长方形的长增加,宽缩短,这个长方形的面积与原来面积相比( )增加了减少14.如图所示的正方形的边长都是2厘米,阴影部分的面积相等的有( )15.如图:两个相同的圆锥容器,水深都是圆锥高的一半,那么甲容器中水的体积是乙容器中水的体积的()倍.平方分米17.如图中,两个小圆面积之和占大圆面积的()(最小圆半径为1,最大的圆的半径为3).B C D..19.如图,平行四边形ABCD的底BC长是12厘米,线段FE长是4厘米,那么平行四边形中的阴影部分面积是()平方厘米.20.如图.一个平行四边形相邻两条边长度分别是4厘米和8厘米,其中一条底边上的高是6厘米,这个平行四边形的面积是()21.一个周长为20cm的长方形,如果把它的长减少1cm,宽增加1cm,那么它变成一个正方形,则原长方形的面积是222.如图所示,四边形ABCD是长方形,图中甲、乙也是长方形,已知甲的面积是10平方厘米,乙的面积是()24.如图,有两枚硬币A和B,硬币A的半径是硬币B半径的2倍,将硬币A固定在桌面上,硬币B绕硬币A无滑动地滚动一周,则硬币B自转的圈数是()26.(2012•恩施州)图中共有()个长方形.27.(2009•旅顺口区)将棱长2厘米的小正方体按如图方式摆放在地上,露在外面的面的面积是()厘米2.28.(2007•甘州区)一个棱长3分米的正方体的表面涂满了红色,将它切成棱长1分米的小正方体.三面涂色的小正29.在图中一共有()个三角形.30.图中共有()个三角形.小升初几何卷2参考答案与试题解析一.选择题(共30小题)1.如图,阴影部分的面积相等,那么半圆的面积与三角形的面积比较,()3.右边的两个物体是用相同的小正方体摆成的,()物体的表面积大些.4.如图阴影部分面积()长方形面积的.ACD=S>S;5.如图两个完全相同的平行四边形中,甲的面积()乙的面积.,.B C D图形面积的,B少,D多.7.比较如图长方形内阴影部分面积的大小甲()乙..B C D9.如图中的涂色部分是连接梯形的顶点和边的中点形成的.涂色部分的面积不等于所在梯形面积的是().B C D,上面两个三角形的底是梯形上底的,高是梯形的高的积和为:××ah;下面两个三角形的底是梯形下底的,积和为:×b×h2=;空白部分的面积为:ah+bh=(;梯形的面积为:(故涂色部分的面积为:(;ah,下面两个三角形面积和为:bh, ah+bh=(;梯形的面积为:(色部分的面积为:是梯形面积的;空白部分左面的三角形面积为:ah,右面两个三角形的面积和为:ah+bh,空白部分的面积为:ah+ah+bh,不是梯形面积的;a,下底是b,(.是否等于梯形面积的,10.如图所示,比较A和B的面积大小,其结果是()×﹣×﹣11.右面方格图中有A、B两个三角形,那么()13.一个长方形的长增加,宽缩短,这个长方形的面积与原来面积相比()增加了减少1+))200=;14.如图所示的正方形的边长都是2厘米,阴影部分的面积相等的有()厘米的圆厘米的圆15.如图:两个相同的圆锥容器,水深都是圆锥高的一半,那么甲容器中水的体积是乙容器中水的体积的()倍.πππππ÷π平方分米除以高÷17.如图中,两个小圆面积之和占大圆面积的()(最小圆半径为1,最大的圆的半径为3).B C D,答:两个小圆的面积之和占大圆面积的...××××19.如图,平行四边形ABCD的底BC长是12厘米,线段FE长是4厘米,那么平行四边形中的阴影部分面积是()平方厘米.20.如图.一个平行四边形相邻两条边长度分别是4厘米和8厘米,其中一条底边上的高是6厘米,这个平行四边形的面积是()21.一个周长为20cm的长方形,如果把它的长减少1cm,宽增加1cm,那么它变成一个正方形,则原长方形的面积是222.如图所示,四边形ABCD是长方形,图中甲、乙也是长方形,已知甲的面积是10平方厘米,乙的面积是()则正方形的边长是,,则正方形的边长是,,××π;正方形的面积为:×==:24.如图,有两枚硬币A和B,硬币A的半径是硬币B半径的2倍,将硬币A固定在桌面上,硬币B绕硬币A无滑动地滚动一周,则硬币B自转的圈数是()26.(2012•恩施州)图中共有()个长方形.27.(2009•旅顺口区)将棱长2厘米的小正方体按如图方式摆放在地上,露在外面的面的面积是()厘米2.28.(2007•甘州区)一个棱长3分米的正方体的表面涂满了红色,将它切成棱长1分米的小正方体.三面涂色的小正29.在图中一共有()个三角形.30.图中共有()个三角形.。

小升初数学专项训练——几何图形及其面积(含详细解析)

小升初数学专项训练——几何图形及其面积(含详细解析)

小升初数学专项训练——几何图形及其面积一、单选题1.求这个图形的面积,可把它分为长方形和()。

A. 梯形B. 三角形C. 平行四边形D. 正方形2.在下图中你可以找到()种简单的基本图形。

A. 1B. 2C. 3D. 43.把一个圆分成若干等份,剪开后拼成近似的长方形,那么这两个图形的()A. 面积、周长都相等B. 面积、周长都不相等C. 面积相等,周长不相等D. 面积不相等,周长相等4.如图中,阴影部分(甲)与空白部分(乙)的周长相比()A. 甲长B. 乙长C. 一样长5.如图所示,图中三角形的个数为()A. 9个B. 10个C. 7个D. 4个6.如图中共有()个三角形.A. 5B. 20C. 157.一个5边形的三个内角是直角,另外两个角相等,那么这两个角的度数是()。

A. 100°B. 120°C. 135°二、判断题8.105厘米>1米.9.100厘米比1米长.10. 1米的线段比100厘米的线段长。

11.梯形的内角和是180°。

()12.任意四边形的内角和都是360°.三、填空题13.如图,CD=15厘米,AE=16厘米.AB﹣BC=1厘米,则三角形ABC的面积是________ 平方厘米.14.把棱长为1分米的正方体表面涂上红色后,再把它分成棱长为1厘米的小正方体.小正方体中只有一面涂色的有________ 个.15.如图,已知三角形ABC中,BD:DC=3:2,E是AD的中点,阴影部分的面积是13.5平方分米,三角形ABC的面积是________ 平方分米16.把这个物体放到地面上,观察并填空。

是由________个小正方体拼成的。

如果把这个图形的表面涂上绿色,不涂色的有________个小正方体;一个面涂绿色的有________个小正方体;有2个面涂绿色的有________个小正方体;有3个面涂绿色的有________个小正方体;有4个面涂绿色的有________个小正方体;有5个面涂红色的有________个小正方体。

小学数学-有答案-小升初数学专项复习:几何的初步知识

小学数学-有答案-小升初数学专项复习:几何的初步知识

小升初数学专项复习:几何的初步知识一、例题:1. 通过放大10倍的放大镜来看一个60∘的角,这个角是多少度?2. 王小明家把一块长15米,宽12米5分米的长方形草场围上篱笆,求篱笆有多长?3. 有一块正方形实验田,周长24米,它的面积是多少平方米?4. 用10.28厘米的铁丝围成一个半圆形,半圆形的面积是多少平方厘米?5. 一个长方形和一个三角形等底等高,已知三角形的面积是30平方厘米,长方形的面积是多少?6. 一块梯形棉田,上底长85米,下底长160米,高70米;在这块棉田里共收籽棉1845千克,每平方米产籽棉多少千克?二、填空题在同一平面内不相交的两条直线叫________.12个正方形可以摆成________种不同形式的长方形。

在等腰三角形中,如果顶角为124∘,底角各是________,这个三角形是________角三角形。

把两个边长都是2厘米的正方形拼成一个长方形,这个长方形的周长是________,面积是________.一个平行四边形,底是24厘米,高2分米,面积是________.一个等边三角形,周长是12.6厘米,它的边长是________厘米。

周长是28厘米的长方形,长是10厘米,面积是________.一个梯形的面积是10平方分米,高是4分米,上底是2.2分米,下底是________分米。

一个圆,周长是6.28分米,它的面积是________.圆心角是1∘的扇形的面积是________.三、判断小明画了一条25厘米长的直线。

________.(判断对错)等边三角形和等腰三角形都是锐角三角形。

________.两个面积相等的三角形一定能拼成平行四边形。

________(判断对错)平行四边形和长方形的周长相等,它们的面积也相等。

________.(判断对错)半径是2厘米的圆,它的周长和面积相等。

________.(判断对错)半圆的周长是和它相等半径的圆周长的一半。

________.(判断对错)平行四边形不是对称图形,没有对称轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学几何专项练习1、(★★)如图,已知四边形ABCD 中,AB=13,BC=3,CD=4,DA=12,并且BD 与AD 垂直,则四边形的面积等于多少?[思 路]:显然四边形ABCD 的面积将由三角形ABD 与三角形BCD 的面积求和得到.三角形ABD 是直角三角形,底AD 已知,高BD 是未知的,但可以通过勾股定理求出,进而可以判定三角形BCD 的形状,然后求其面积.这样看来,BD 的长度是求解本题的关键.解:由于BD 垂直于AD ,所以三角形ABD 是直角三角形.而AB=13,DA=12,由勾股定理,BD =AB -AD =13—12=25=5,所以BD=5.三角形BCD 中BD=5,BC=3,CD=4,又3十4=5,故三角形BCD 是以BD 为斜边的直角三角形,BC 与CD 垂直.那么:=+=12×5÷2+4×3÷2=36.. 即四边形ABCD 的面积是36.2、(★★)如图四边形土地的总面积是48平方米,三条线把它分成了4个小三角形,其中2个小三角形的面积分别是7平方米和9平方米.那么最大的一个三角形的面积是________平方米;222222222ABCD S 四边形ABD S ∆BCD S ∆7 9[分析]:剩下两个三角形的面积和是 48-7-9=32 ,是右侧两个三角形面积和的2 倍,故左侧三角形面积是右侧对应三角形面积的2倍,最大三角形面积是 9×2=18。

3.(★★)将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为2:3。

已知右图中3个阴影的三角形面积之和为1,那么重叠部分的面积为多少?[思路]:小升初中常把分数,百分数,比例问题处理成份数问题,这个思想一定要养成。

解:粗线面积:黄面积=2:3绿色面积是折叠后的重叠部分,减少的部分就是因为重叠才变少的,这样可以设总共3份,后来粗线变2份,减少的绿色部分为1份,所以阴影部分为2-1=1份,4、(★★)求下图中阴影部分的面积:【解】如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

可以看出,原题图的阴影部分等于右下图中AB 弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。

所以阴影面积:π×4×4÷4-4×4÷2=4.56。

5、(★★)下图中阴影部分的面积是多少厘米2?分析与解:本题可以采用一般方法,也就是分别计算两块阴影部分面积,再加起来,但不如整体考虑好。

我们可以运用翻折的方法,将左上角一块阴影部分(弓形)翻折到半圆的右上角(以下图中虚线为折痕),把两块阴影部分合在一起,组成一个梯形(如下图所示),这样计算就很容易。

本题也可看做将左上角的弓形绕圆心旋转90°,到达右上角,得到同样的一个梯形。

6、(★★)如图6-1,每一个小方格的面积都是l平方厘米,那么用粗线围成的图形的面积是多少平方厘米?-1)×单位【分析与解】方法一:正方形格点阵中多边形面积公式:(N+L2正方形面积,其中N为图形内格点数,L为图形周界上格点数.有N=4,L=7,则用粗线围成图形的面积为:(4+7-1)×1=6.5(平方厘米)2方法二:如下图,先求出粗实线外格点内的图形的面积,有①=3÷2=1.5,②=2÷2=1,③=2÷2=1,④=2÷2=1,⑤=2÷2=l,⑥=2÷2=1,还有三个小正方形,所以粗实线外格点内的图形面积为1.5+l+1+1+1+1+3=9.5,而整个格点阵所围成的图形的面积为16,所以粗线围成的图形的面积为:16-9.5=6.5平方厘米.7(★★),已知四边形ABCD 和CEFG 都是正方形,且正方形ABCD 的边长为10厘米,那么图中阴影三角形BFD 的面积为多少平方厘米?【分析与解】 方法一:因为CEFG 的边长题中未给出,显然阴影部分的面积与其有关.设正方形CEFG 的边长为x ,有:=1010=100,ABCD S ⨯正方形2=x ,S 正方形CEFG 21110x-x =DG GF=(10-x)x=,222DGF S ∆⨯又1=1010=50,2ABD S ∆⨯⨯2110x+x =(10+x)x=.22BEF S ∆阴影部分的面积为:DGF ABD BEF ABCD CEFG S S S S S ∆∆∆++--正方形正方形2221010100505022x x x x x -+=++--=(平方厘米).方法二:连接FC ,有FC 平行与DB ,则四边形BCFD 为梯形.有△DFB、△DBC共底DB,等高,所以这两个三角形的面积相等,显然,△DBC 的面积1101050⨯⨯=(平方厘米).2阴影部分△DFB的面积为50平方厘米.8、(★★)用棱长是1厘米的正方块拼成如下图所示的立体图形,问该图形的表面积是多少平方厘米?[方法一]:[思路]:整体看待面积问题。

解:不管叠多高,上下两面的表面积总是3×3;再看上下左右四个面,都是2×3+1,所以,总计9×2+7×4=18+28=46。

[方法二]:[思路]:所有正方体表面积减去粘合的表面积解:从图中我们可以发现,总共有14个正方体,这样我们知道总共的表面积是:6×14=64,但总共粘合了18个面,这样就减少了18×1=18,所以剩下的表面积是64-18=46。

[方法三]:直接数数。

[思路]:通过图形,我们可以直接数出总共有46个面,每个面面积为1,这样总共的表面积就是46。

9、(★★)一个圆柱形的玻璃杯中盛有水,水面高2.5cm,玻璃杯内侧的底面积是72cm2,在这个杯中放进棱长6cm的正方体铁块后,水面没有淹没铁块,这时水面高多少厘米?解:水的体积为72×2.5=180(cm3),放入铁块后可以将水看做是底面积为72-6×6=32(cm2)的柱体,所以它的高为180÷32=5(cm)。

10、(★★)有一个棱长为1米的立方体,沿长、宽、高分别切二刀、三刀、四刀后,成为60个小长方体(见左下图).这60个小长方体的表面积总和是______平方米. (06年三帆中学考试题)【解】原正方体表面积:1×1×6=6(平方米),一共切了2+3+4=9(次),每切一次增加2个面:2平方米。

所以表面积: 6+2×9=24(平方米)二:提高题11、(★★★)图是由正方形和半圆形组成的图形。

其中P点为半圆周的中点,Q点为正方形一边的中点。

已知正方形的边长为10,那么阴影部分面积是多少?(π取3.14.)[方法一]:阴影面积的“加减法”。

[思路]:因为阴影部分面积不是正规图形,所以通过整个面积减去空白部分面积来求解。

解:过P点向AB作垂线,这样空白部分面积分成上面的三角形和下面的梯形,这样阴影面积=整个面积-空白面积=(正方形ABCD+半圆)—(三角形+梯形)=(10×10+π×5×5÷2)-[15×5÷2+(5+15)×5÷2]=51.75[总结]:这种方法是小升初中最常用的方法,一定要学会这种处理思路。

[方法二]:面积的“加减法”和“切割法”综合运用[思路]:出现正方形,出现弧线时,注意两个考点:1.半叶形 2。

1/4圆,所以我们可以先把面积补上再减去补上的面积解:S1=正方形-1/4圆=5×5-1/4×π×5×5上面阴影面积=三角形APE-S1=15×5÷2-5×5-1/4×π×5×5下面阴影面积=三角形QPF-S2=所以阴影面积=(15×5÷2-5×5-1/4×π×5×5)+(10×5÷2-5×5-1/4×π×5×5)=51.75[方法三]:面积的“切割法”[思路]:出现正方形,出现弧线时,注意两个考点:1.半叶形 2。

1/4圆,这样可以考虑把阴影面积切成几个我们会算的规则图形解:半叶形S1=正方形-1/4圆=5×5-1/4×π×5×5上面阴影面积=三角形ADP+S1=10×5÷2+5×5—1/4×π×5×5下面阴影面积=三角形QPC+S2=5×5÷2+5×5—1/4×π×5×5阴影面积=(10×5÷2+5×5—1/4×π×5×5)+(5×5÷2+5×5—1/4×π×5×5)=51.7512、(★★★)如图,ABCG是4×7的长方形,DEFG是2×10的长方形,那么,三角形BCM的面积与三角形DCM的面积之差是多少?[方法一]:[思路]:公共部分的运用,这是小升初的常用方法,熟练找出公共部分是解题的关键。

解: GC=7,GD=10推出HE=3;BC=4,DE=2阴影BCM面积-阴影MDE面积=(BCM面积+空白面积)-(MDE面积+空白面积)=三角形BHE面积-长方形CDEH面积=3×6÷2-3×2=3[总结]:对于公共部分要大胆的进行处理,这样可以把原来无关的面积联系起来,达到解题的目的.[拓展]:如图,已知圆的直径为20,S1-S2=12,求BD的长度?[方法二]:[思 路]:画阴影的两个三角形都是直角三角形,而BC 和DE 均为已知的,所以关键问题在于求CM 和DM .这两条线段之和CD 的长是易求的,所以只要知道它们的长度比就可以了,这恰好可以利用平行线BC 与DE 截成的比例线段求得. 解: GC=7,GD=10 知道CD=3;BC=4, DE=2 知道BC:DE=CM:DM 所以CM=2,MD=1。

阴影面积差为:4×2÷2-1×2÷2=3[方法三]:连接BDS —S =S —S =(3×4—2×3)÷2=3.13.(★★★)如图所示,在三角形ABC 中,DC =3BD ,DE =EA 。

若三角形ABC 的面积是1,则阴影部分的面积是多少?[方法一]:[思 路]:阴影面积是两个不在一起的图形,我们先要通过等量代换,把两个图形拼成一个整体解:连接FD ,因为AE=DE ,所以S1=S3,S2=S4,S1+S2=S3+S4,即三角形AFC=三角形FCD ,阴影面积等于S3+S4的面积。

相关文档
最新文档