ARM汇编指令集
ARM汇编语言指令总结

ARM汇编语⾔指令总结ARM处理器有9种寻址⽅式:1、寄存器寻址,2、⽴即寻址,3、寄存器器移位寻址,4、寄存器间接寻址,5、基址寻址,6、多寄存器寻址,7、堆栈寻址,8、块拷贝寻址,9、相对寻址。
ARM指令集:ARM指令基本格式如下:{}{S} ,{,}其中<>的内容是必须的,{}的内容是可选的。
OPCODE指令助记符,COND执⾏条件,S是否影响CPSR中的值,Rd⽬标寄存器,Rn 第⼀个操作数的寄存器,OPERAND2第⼆个操作数。
灵活的使⽤第2个操作数“operand2”能够提⾼代码效率。
它有如下的形式:1)#immed_8r ——常数表达式;2)Rm——寄存器⽅式;3)Rm,shift——寄存器移位⽅式(ASR算术右移,LSL逻辑左移,LSR 逻辑右移,ROR循环右移,RRX带扩展的右移1位)。
COND执⾏条件:下⾯介绍ARM指令:1、存储器访问指令。
存储器访问指令分为单寄存器操作指令和多寄存器操作指令。
单寄存器操作指令LDR/STR指令⽤于对内存变量的访问、内存缓冲区数据的访问、查表、外围部件的控制操作等。
LDR:从内存到寄存器,加载数据。
STR:将寄存器的数据存储到内存。
LDRB操作字节,LDRH操作半字,LDRSH操作有符号半字。
多寄存器操作指令LDM为加载多个寄存器;STM为存储多个寄存器。
允许⼀条指令传送16个寄存器的任何⼦集或所有寄存器。
它们主要⽤于现场保护、数据复制、常数传递等。
进⾏数据复制时,先设置好源数据指针和⽬标指针,然后使⽤块拷贝寻址指令LDMIA/STMIA(传送后地址加4)、LDMIB/STMIB(传送前地址加4)、LDMDA/STMDA(传送后地址减4)、LDMDB/STMDB(传送前地址减4)进⾏读取和存储。
进⾏堆栈操作操作时,要先设置堆栈指针(SP),然后使⽤堆栈寻址指令STMFD/LDMFD(满递减堆栈)、STMED/LDMED(空递减堆栈)、STMFA/LDMFA(满递增堆栈)和STMEA/LDMEA(空递增堆栈)实现堆栈操作。
ARM中的汇编指令

ARM中的汇编指令Arm指令,32位的指令集,⼀共有16条的基本指令,每条指令都可以按条件执⾏, 指令都是32bit的,⾼四位是条件码[31:28],Thumb指令,16位的指令集,执⾏效率⽐arm指令集要低,但是节省了系统的存储空间,兼容了16位的数据总线宽度的应⽤体系。
thumb指令,相⽐较与arm代码,储存器的功耗也较低。
thumb指令,基本都是⽆条件的,⼀共有18条基本指令,全部指令都是16bit。
Thumb-2指令,由16bit、32bit的指令混合组成,⼀共有16条基本指令,BIC:ARM指令,对某些位,清零。
先取反再相与。
asm("BIC r2, r2, #0x1f"); ##对R2的低5位清零。
ORR:ARM指令,逻辑或asm("ORR r2, r2, #0x10"); ##R2逻辑与0x10。
MRS:asm("MRS r2, CPSR"); ##将CPSR的值加载到R2中。
MSR:asm("MSR CPSR, r2"); ##将R2的值加载到CPSR中。
asm(" SWI 0x0"); ##跳转到软件中断函数,并转换为SVC模式。
LDR:{条件}⽬的寄存器存储器寄存器。
将存储地址所指的4个字节数据传送到寄存器,其中寻址⽅式会有很多种。
asm("ldr r0,=0xddeeaabb"); ##在这⾥ldr是⼀个伪指令,相当于move指令。
asm("ldr r0, [r1]"); ##将存储器地址为r1的⼀个字的数据加载到r0中。
MRC与MCR:在处理器寄存器与协处理器寄存器之间交换数据。
MRC {cond} coproc, opcode1, Rd, CRn, CRm {,opcode2}asm("mrc p15,0,r0,c1,c1,0"); ##在CRn, CRm均为c1, opcode均为0时,表⽰SCR(Secure Configuration Register),表⽰将c1的值赋值给r0.asm("mcr p15,0,r0,c1,c1,0"); ##将r0的值赋值给c1.asm("mcr p15,0,r0,c12,c0,0"); ##将r0的值赋值给c12,此时c12表⽰VBAR,Vector Base Address Register,存放异常时的⼊⼝地址。
ARM中常用的汇编指令

ARM 中常⽤的汇编指令1 处理器内部数据传输指令MSR & MRS⽤于在状态寄存器和通⽤寄存器之间传送数据MRS: 状态寄存器到通⽤寄存器的传送指令。
({R0-R12} <== CPSR,SPSR)MSR: 通⽤寄存器到状态寄存器的传送指令。
MRS:(CPSR,SPSR==>{R0-R12})MOVMOV 指令⽤于将数据从⼀个寄存器拷贝到另外⼀个寄存器,或者将⼀个⽴即数传递到寄存器⾥⾯,使⽤⽰例如下:2 存储器访问指令ARM 不能直接访问存储器,⽐如 RAM 中的数据,⼀般先将要配置的值写⼊到 Rx(x=0~12)寄存器中,然后借助存储器访问指令将 Rx 中的数据写⼊到寄存器中。
指令描述LDR Rd, [Rn , #offset]从存储器 Rn+offset 的位置读取数据存放到 Rd 中STR Rd, [Rn, #offset]将 Rd 中的数据写⼊到存储器中的 Rn+offset 位置LDR 指令LDR 主要⽤于从存储加载数据到寄存器 Rx 中, LDR 也可以将⼀个⽴即数加载到寄存器 Rx中, LDR 加载⽴即数的时候要使⽤“=”,⽽不是“#”。
在嵌⼊式开发中, LDR 最常⽤的就是读取 CPU 的寄存器值。
上述代码就是读取寄存器中的值,读取到的寄存器值保存在 R1 寄存器中,上⾯代码中 offset 是 0,也就是没有⽤到 offset。
STR 指令LDR 是从存储器读取数据, STR 就是将数据写⼊到存储器中LDR 和 STR 都是按照字进⾏读取和写⼊的,也就是操作的 32 位数据,如果要按照字节、半字进⾏操作的话可以在指令“LDR”后⾯加上B 或 H,⽐如按字节操作的指令就是 LDRB 和STRB,按半字操作的指令就是 LDRH 和 STRH。
MRS R0, CPSR @ 将特殊寄存器 CPSR ⾥⾯的数据传递给 R0,即R0=CPSR1MSR CPSR , R0 @ 将 R0 中的数据复制到 CPSR 中,即 CPSR =R01MOV R0, R1 @ 将寄存器 R1 中的数据传递给 R0,即 R0=R1MOV R0, #0X12 @ 将⽴即数 0X12 传递给 R0 寄存器,即 R0=0X1212LDR R0, =0X0209C004 @ 将寄存器地址 0X0209C004 加载到 R0 中,即 R0=0X0209C004LDR R1, [R0] @ 读取地址 0X0209C004 中的数据到 R1 寄存器中12LDR R0, =0X0209C004 @ 将寄存器地址 0X0209C004 加载到 R0 中,即 R0=0X0209C004LDR R1, =0X20000002 @ R1 保存要写⼊到寄存器的值,即R1=0X20000002STR R1, [R0] @ 将 R1 中的值写⼊到 R0 中所保存的地址中1233 压栈和出栈指令我们通常会在 A 函数中调⽤ B 函数,当 B 函数执⾏完以后再回到 A 函数继续执⾏。
ARM汇编指令集

ARM汇编指令集汇编指令集的介绍,包括指令和伪指令。
指令和概念指令指令指的是CPU机器指令的助记符,是由CPU的指令集提供的,经过编译之后,会以机器码的形式由CPU读取执⾏伪指令伪指令本质上不是指令,和CPU的机器指令没有任何关系,只是和指令⼀起写在代码中⽽已,是由环境提供的,其⽬的是⽤于指导编译过程,伪指令经过编译后不会⽣成⼆进制机器码,仅仅在编译阶段有效果指令编程风格ARM官⽅风格官⽅风格指令⼀般使⽤⼤写,例如:LDR R0,[R1],Windows中常使⽤这种风格GUN Linux风格指令⼀般使⽤⼩写字母,例如:ldr r0,[r1],Linux环境中常⽤这种风格ARM汇编特点LDR/STR架构1. 采⽤RISC架构,CPU本⾝不能直接读取内存,⽽需要把内存中的数据加载到CPU的通⽤寄存器中,才能被CPU处理2. ldr(load register)将内存中的数据加载到通⽤寄存器3. str(store register)将寄存器内容存⼊内存空间4. ldr和str组合,可以实现ARM CPU和内存的数据交换8种寻址⽅式1. 寄存器寻址:move r1,r2:把r2的值赋值到r1寄存器中2. ⽴即寻址:move r0,#0xFF00:把⽴即数0xFF00赋值给r0寄存器3. 寄存器移位寻址:move r0,r1,lsl #3:把r1左移三位(*8)之后的值赋值给r0寄存器4. 寄存器间接寻址:ldr r1,[r2]:寄存器有中括号,表⽰内存地址对应的数据,所以这⾥r2表⽰⼀个内存地址,[]表⽰取r2指针对应的数据,这句代码的意思是把r2对应的内存中的数据赋值给r15. 基址变址寻址:ldr r1,[r2,#4]:将指针r2的值(内存地址)+4之后指向的数据赋值给r16. 多寄存器寻址:ldmia r1!,{r2 - r7,r12}:这种情况下,r1是⼀个指针,⾥边存放的内存地址,然后以r1⾥边的内存地址为基地址,向后以此加1得到{}⾥的寄存器数量个内存地址,然后将刚才得到的这些内存地址指向的变量的值赋值给{}⾥的对应位置的寄存器,类似从内存中读取数组,然后把数组的元素依次赋值给这些寄存器7. 堆栈寻址:stmfd sp!,{r2 - r7,lr}:和多寄存器类似,区别是将栈SP中连续访问{}数量个字节,然后依次赋值给{}⾥的寄存器8. 相对寻址:beq flag::flag:标号⽤于标记标号后⾯那句指令的地址,常⽤来表⽰⼊⼝点,函数名就是⼀个标号,C语⾔中的goto就可以跳转到⼀个标号,在ARM汇编中⽤指令b flag:就可以跳转到flag:对应的标号处执⾏,和beq flag:是⼀样的,其原理是相对于PC程序位置寄存器做⼀个偏移指令后缀1. ARM中的指令可以带后缀,从⽽丰富该指令的功能,这种形式叫做指令族,常⽤的后缀有:2. B(byte):功能不变,操作长度变为8位(依赖CPU位数,以下相同)3. H(Halfword):功能不变,操作长度变为16位3. H(Halfword):功能不变,操作长度变为16位4. S(signed):功能不变,操作数变为有符号数5. S(S标识):影响CPSR⾥的NZCV标识位,6. 举例:1. ldr指令族:ldrb,ldrh,ldrsb ldrsh,从内存中加载指定长度的数据2. mov指令族:movs r0,#0,结果是0,赋值会影响CPSR的NZCV标识,将Z位置为1条件执⾏后缀1. 条件执⾏后缀⽤于限制该执⾏执⾏的,只有在符合条件之后才能够执⾏该指令2.3. 举例:moveq r0,r1,如果eq成⽴,执⾏mov r0,r1,不成⽴则该条不执⾏,和C语⾔中的条件判断类似4. 条件后缀成⽴与否,不是取决于本条指令,⽽是取决于之前指令运⾏后的结果5. 条件后缀决定了本条指令是否执⾏,不会影响之前和之后指令6. 条件后缀和CPSR的NZCV位相关,例如,如果上⼀句代码执⾏的结果将Z置为1,下⼀句带有eq条件后缀的语句就会被执⾏多级指令流⽔线1. 多级流⽔线⽤于增加处理器处理指令的速度,2. 允许CPU同时异步的执⾏多条指令,⽽⾮上⼀条指令全部执⾏完毕之后才会执⾏下⼀条指令3. 多级可以简单那理解为把⼀条指令分为多个步骤来异步执⾏,例如:1. CPU把⼀条指令分为[取址,解码,执⾏]3个步骤,则为3级指令流⽔线2. 第⼀条指令进⾏取值操作3. 第⼀条指令取值完毕,进⼊解码操作,第⼆条指令紧随其后就开始执⾏取值操作4. 第⼀条指令解码完毕,进⼊执⾏操作,第⼆条指令紧接着进⼊解码操作,同时第三条指令进⼊取值操作5. 第⼀条指令执⾏完毕,第⼆条指令进⼊执⾏操作,第三条指令进⼊解码操作,第四条指令进⼊取值操作,依次类推4. 可见,多级流⽔线可以提⾼同时执⾏指令的数量,从⽽加速指令执⾏5. 需要注意的是,PC指向的是正在取值的指令,⽽⾮正在执⾏的指令,之间的差值就是流⽔线级数和单字节长度的乘积,在中断返回到PC的时候需要注意这个问题ARM指令数据处理指令数据传输指令mov:move,在两个寄存器之间或者⽴即数和寄存器之间传递数据,将后⼀个寄存器上的值或者⽴即数赋值给前⼀个寄存器 例如:mov r1,r0mov r1,#0xFF:将⽴即数0xFF赋值给寄存器r1mvn:和mov⽤法⼀致,区别是mvn会把后⼀个寄存器的值或者⽴即数按位取反后赋值给前⼀个寄存器 例如:mvn r0,#0xFF,则r0的值为0xffffff00(32位数据)算术运算指令add:加法运算sub:减法运算rsb:反减运算adc: 带进位的加法运算sbc: 带进位的减法运算rsc:带进位的反减指令逻辑指令and:与操作orr:或操作eor:异或操作bic:位清除操作⽐较指令cmp:⽐较⼤⼩cmn:取反⽐较tst:按位与运算teq:按位异或运算乘法指令mvl: mla: umull: umlal: smull: smlal:前导0计数clz:统计⼀个数的⼆进制位前⾯有⼏个0CPSR访问指令mrs⽤于读取CPSR和SPSRmsr⽤于写CPSR和SPSRCPSR和SPSRCPSR是程序状态寄存器,整个Soc只有⼀个SPSR在五种异常模式下各有⼀个,⽤于从普通模式进⼊异常模式的时候,保存普通模式下的CPSR,在返回普通模式时可以恢复原来的CPSR跳转分⽀指令b指令: ⽆条件直接跳转,没打算返回bl指令:跳转前把返回地址放⼊lr中,以便返回,常⽤在函数中bx指令:跳转同时切换到ARM模式,⽤于异常处理的跳转内存访问指令ldr:加载指定内存地址的数据到寄存器,按照字节访问str:加载指定寄存器数据到内存地址中,按照字节访问ldm:和ldr功能⼀样,⼀次多字节多寄存器访问stm:和str功能⼀样,⼀次多字节多寄存器访问swp:内存和寄存器互换指令,⼀边读⼀边写,例如:swp r1,r2,[r0]:读取指针r0的数据到r1中,同时把r2的数据赋值给r0指针指向的变量软中断指令swi(software interrupt),在软件层模拟产⽣⼀个中断,这个中断会传送给CPU,常⽤于实现系统调⽤⽴即数⾮法与合法ARM指令都是32为,除了指令标记和操作标记外,只能附带少位数的⽴即数,所以有⾮法与合法之分⾮法⽴即数:合法⽴即数:经过任意位数的移位后,⾮0部分可以⽤8位表⽰就是合法⽴即数协处理器与指令协处理器协处理器属于Soc中另外⼀颗核⼼,⽤于协助主CPU实现某些功能,被主CPU调⽤来执⾏任务,协处理器和MMU,Cache,TLB有功能和管理上的联系ARM设计可以⽀持多达16个协处理器,但是⼀般只实现其中的CP15协处理器指令mrc:读取CP15中的寄存器mcr:向CP15中的寄存器写数据指令⽤法:mcr{<”cond”>} p15,<”opcode_1”>,<”Rd”>,<”Crn”>,<”Crm”>,{<”opcode_2”>} opcode_1:对于CP15永远为0Rd:ARM通⽤寄存器Crn:CP15寄存器,取值范围c0~c15Crm:CP15寄存器,⼀般为c0opcode_2:省略或者为0ldm,stm和栈ldm,stmldr与str只能访问4个字节,当数据较⼤的时候,就会明显的降低效率,这时就需要使⽤到ldm和stm,ldm与stm是⼤量的从寄存器与内存交换数据的⽅式,常⽤于在内存和寄存器之间⼤量读取和写⼊数据:stmia sp {r0 - r12}:stm表⽰进⾏批量数据操作,ia的意思是将r0存⼊SP的内存地址处,然后SP内存地址+4(32位),将r1存⼊该地址,内存地址再+4,存⼊r2,依次存到r12,这就是⼀个寄存器和内存交换⼤量数据的⽰例,在⼀个周期内完成了多个内存地址和多个寄存器的操作。
ARM Instruction Set(ARM汇编指令集)

[Rn, offset ] [Rn, offset ]! [Rn], offset
•
Memory Reference must be word aligned
Load / Store Byte
•
Load Register with unsigned Byte from memory
Load Register Store Register
Rd, Rd, Rd,
Load Register unsigned Byte Load Register Signed Byte Store Register Byte
Rd, Rd, Rd,
Load Register unsigned Halfword Load Register Signed Halfword Store Register Halfword
Rd, Rm, Rs Rd, Rn, Rd, Rn,
op1 op1
Summary: Memory Access
LDR cc STR cc LDR cc B LDR cc SB STR cc B LDR cc H LDR cc SH STR cc H
Rd, Rd,
op2 op2 op2 op2 op2 op2 op2 op2
Systems Architecture
ARM Instruction Set
Data, Arithmetic and Memory Access
Notations
Rd Destination register d d may be any register R0 – R15 Condition Code Instruction executed under condition Set Condition Codes Instruction sets condition for cc Data-Processing Addressing Mode Immediate / Register / Scaled Memory Access Addressing Mode Offset / Pre-indexed / Post-Indexed
arm 汇编 指令

arm 汇编指令ARM汇编指令是一种用于编写ARM处理器程序的语言。
ARM处理器广泛应用于嵌入式系统和移动设备等领域。
ARM汇编指令与x86汇编指令有所不同,它基于RISC(精简指令集计算机)架构。
下面是一些基本的ARM汇编指令:1. 数据传输指令:用于在寄存器之间传输数据。
例如:- mov:将数据从一个寄存器传输到另一个寄存器。
- ldr:将数据从内存传输到寄存器。
2. 算术指令:用于执行加法、减法、乘法和除法等操作。
例如:- add:加法操作。
- sub:减法操作。
- mull:乘法操作。
- div:除法操作。
3. 逻辑指令:用于执行逻辑操作,如与、或、非等。
例如:- and:与操作。
- or:或操作。
- xor:异或操作。
4. 移位指令:用于对数据进行左移、右移或无符号右移。
例如:- lsr:无符号右移。
- asr:带符号右移。
- ror:循环右移。
5. 比较指令:用于比较两个寄存器的值。
例如:- cmp:比较两个寄存器的值,若相等则返回0,否则返回1。
6. 跳转指令:用于改变程序的执行流程。
例如:- b:条件跳转。
- bl:无条件跳转。
- bx:带状态跳转。
7. 循环指令:用于实现循环操作。
例如:- loop:内部循环。
- ldp:外部循环。
8. 调用指令:用于实现函数调用。
例如:- blx:带状态调用。
- bx:不带状态调用。
9. 系统调用指令:用于实现与操作系统交互的功能。
例如:- swi:执行系统调用。
10. 存储器访问指令:用于访问内存数据。
例如:- str:将数据存储到内存。
- ldr:从内存中加载数据。
以上仅为ARM汇编指令的一部分,实际上,ARM汇编指令还有很多其他功能。
为了更好地理解和使用ARM汇编指令,可以参考相关的教程和手册,并进行实际操作。
3.ARM汇编指令集

(2)算术指令: ADD ADC SUB SBC RSB RSC
逻辑指令: AND ORR EOR BIC
比较指令: CMP CMN TST TEQ
数据搬移: MOV MVN
(3)加法指令 ADD R1,R2,R3 @ R1=R2+R3
64位乘法: MULL R0, R1, R2, R3 @{R1:R0}=R2*R3
【6】分支指令(偏移,跳转)
(1)指令格式
B{<cond>} label
BL{<cond>} subroutine_label
(2) b -- 无返回的跳转 -- c语言的goto
【1】测试一:
(1)mov r0,#16
mov r0,r1,ASR #4
MUL r1,r2,#3
mvn r0,r0 @r0=~r0
add r0,r0,#1
RSB R0,R0,#0 @R0 = 0-R0
比如:(1)0x1122
(2)0x8000007F
01 0001 0010 0010
0000 0000 0000 0000 0000 | 0111 1111 10| 00
用伪指令:
ldr r1,#0x1122
数据传输指令 MOV R1,R2 @ R1=R2
取反传送指令 MVN R1,R2 @ R1= ~R2
【2】乘法指令
32位乘法: MUL R1,R2,R3 @R1=R2*R3
mov r3,r1,LSL #2 @r3=r1*4=4
【8】立即数
(1)立即数:就是满足一定规则的数。
这个数可以用一个8位的数循环右移0--30之间的偶数位形成。
ARM汇编指令列表

ARM汇编伪指令ARM条件码CPSR位[31:24]为条件位域,用f表示;位[23:16]为状态位域,用s表示;位[15:8] 为扩展位域,用x表示;位[7:0] 为控制位域,用c表示;与指令MSR相关关于移位中断向量表APCS寄存器使用约定Load and Store指令LDR R0,[R1] ;将存储器地址为R1的字数据读入寄存器R0。
LDR R0,[R1,R2] ;将存储器地址为R1+R2的字数据读入寄存器R0。
LDR R0,[R1,#8] ;将存储器地址为R1+8的字数据读入寄存器R0。
LDR R0,[R1,R2] !;将存储器地址为R1+R2的字数据读入寄存器R0,并将新地址R1+R2写入R1。
LDR R0,[R1,#8] !;将存储器地址为R1+8的字数据读入寄存器R0,并将新地址 R1+8写入R1。
LDR R0,[R1],R2 ;将存储器地址为R1的字数据读入寄存器R0,并将新地址 R1+R2写入R1。
LDR R0,[R1,R2,LSL#2]!;将存储器地址为R1+R2×4的字数据读入寄存器R0,并将新地址R1+R2×4写入R1。
LDR R0,[R1],R2,LSL#2 ;将存储器地址为R1的字数据读入寄存器R0,并将新地址R1+R2×4写入R1。
LDRB R0,[R1] ;将存储器地址为R1的字节数据读入寄存器 R0,并将R0的高24 位清零。
LDRB R0,[R1,#8] ;将存储器地址为R1+8的字节数据读入寄存器R0,并将 R0的高24位清零。
LDRH R0,[R1] ;将存储器地址为R1的半字数据读入寄存器 R0,并将R0的高16位清零。
LDRH R0,[R1,#8] ;将存储器地址为R1+8的半字数据读入寄存器R0,并将R0 的高16位清零。
LDRH R0,[R1,R2] ;将存储器地址为R1+R2的半字数据读入寄存器R0,并将 R0的高16位清零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ARM汇编指令集1 跳转指令1.1 跳转指令B:B LABLE ;跳转到标号LABEL处B 0X1111 ;跳转到绝对地址0X1111处1.2 带连接的跳转指令BL:START …BL NEXT ;跳转到标号NEXT处,同时保存当前PC到R14中…;返回地址…NEXT…;子程序入口MOV PC,R14 ;返回1.3 带状态切换的跳转指令BX:MOV R0, #0X0201BX R0 ;程序跳转到0x0200处,微处理器切换到Thumb 状态(地址必须是4的倍数,否则产生不可预知的后果)2算术运算指令2.1不带进位加法指令ADDADD R0, R1, R2 ;R0←(R1)+(R2)ADD R0, R1, #112 ;R0←(R1)+ 112ADD R0, R1, R2, LSL #1 ;R0←(R1)+(R2<<1) ;将R2中的值左移1位,再与R1值相加,结果送R02.2带进位加法指令ADCADDS R0, R3, R6 ;加最低位字节,不带进位ADCS R1, R4, R7 ;加第二个字,带进位ADCS R2, R5,R8 ;加第三个字,带进位;三句话实现了96bit加法运算,由于ARM寄存器宽度只有32bit所以分三次相加2.3 不带进位减法指令SUB ;S—进位标志SUB R0, R1, R2 ;R0←(R1)- (R2)SUB R0, R1, #112 ;R0←(R1)- 112SUB R0, R1 ,R2 LSL#1 ;R0←(R1)- (R2<<1)2.4 带进位减法指令SBCSUBS R0, R3, R6 ;减最低位字节,不带进位SBCS R1, R4, R7 ;减第二个字,带进位SBCS R2, R5, R8 ;减第三个字,带进位;三句话实现了96bit减法运算,由于ARM寄存器宽度只有32bit所以分三次相减2.5 不带进位逆向减法指令RSBRSB R0, R1, R2 ;R0←(R2)- (R1)RSB R0, R1, #112 ;R0←112- (R1)RSB R0, R1, R2, LSL#1 ;R0←(R2<<1)-R12.6 带进位逆向减法指令RSCRSBS R0, R6, R3 ;减最低字节的字,不带进位RSCS R1, R7, R4 ;减第二个字,带进位RSCS R2, R8, R5 ;减第三个字,带进位;三句话实现了96bit减法运算,由于ARM寄存器宽度只有32bit所以分三次相减2.732位乘法指令MULMUL R0, R1, R2 ;R0←(R1) X(R2)MULS R0, R1, R2 ;R0←(R1) X(R2) ;更新CPSR标志位2.8乘-累加指令MLAMLA R0, R1, R2, R3 ;R0←(R1) X(R2)+(R3)MLAS R0, R1, R2, R3 ;R0←(R1) X(R2)+(R3) ;更新CPSR 标志位2.9 无符号数长乘指令UMULLMOV R5, #0X01MOV R8, #0X02UMULL R0, R1, R5, R8 ;(R1) (R0)←(R5)X(R8);UMULL指令实现64bit无符号数乘法2.10无符号长乘-累加指令UMLALMOV R0, #0X01MOV R1, #0X02MOV R5, #0X01MOV R8, #0X02UMLAL R0, R1, R5, R8 ;R0←(R0) +(R5)X(R8)低字节;R1←(R1) +(R5) X(R8)高字节;UMLAL 指令为64位无符号乘-累加指令2.11有符号长乘指令SMULLMOV R5, #0X01MOV R8, #0X02SMULL R0, R1, R5, R8 ;(R1) (R0)←(R5)X(R8);SMULL指令实现64bit有符号数乘法2.12 有符号长乘-累加指令SMLALMOV R0, #0X01MOV R1, #0X02MOV R5, #0X01MOV R8, #0X02SMLAL R0, R1, R5, R8 ;R0←(R0) +(R5)X(R8)低字节;R1←(R1) +(R5) X(R8)高字节; SMLAL 指令为64位有符号乘-累加指令2.13 比较指令CMPCMP R1, #0X10 ;比较BGT TAG ;R1> #0X10转到TAG标号处……2.14负数比较指令CMNCMN R0, #1 ;判断R0中的值是否为1的补码,是则置标志位Z为13逻辑运算指令3.1“与”指令ANDMOV R0, 0XFFAND R0, R0, #3 ;取出R0的最低2bit3.2“或”指令ORRMOV R0, 0XFFORR R0, R0, #33.3“异或”指令EORMOV R0, 0XFFEOR R0, R0, #3 ;R0←(R0)^(0X03)3.4位清除指令BICMOV R0, 0XFFBIC R0, R0, #B11 ;寄存器R0的低2bit被清零3.5测试比较指令TSTTST R1, #b11 ;测试寄存器R1中的第0位和第1位,更新CPSR中标志位,应用中会在TST指令后加一条跳转指令。
3.6异或测试指令TEQTEQ R0, R1 ;R1和R0中的值按位异或,更新CPSR,实际应用中用TEQ 指令测试两个寄存器中的数值是否相等。
4存储器访问指令4.1字加载指令LDRLDR R1, [R0, #0X08] ;读取R0+0X08地址处的数据,保存到R1;完成后R0中的数据保持不变LDR R1, [R0]LDR R1, [R0, R2]LDR R1, [R0, R2, LSL#2] ;读取R0+ (R2<<2)地址处的数据,保存到R1LDR R1, LABEL ;LABEL 为程序标号,必须是当前指令的±4KB LDR R1, [R0], #0X04LDR R1, [R0], #0X04 ;读取R0地址处的数据,保存到R1;指令执行后R0中值变为R0+0X04 注意:使用LDR指令时字节地址是4的倍数4.2字存储指令STRSTR R0, [R1, #4] ;将R0中的数据保存到内存地址(R0)+4中4.3字节加在指令LDRB (低8位)LDRB R0, [R1, #4] ;将地址(R1)+4处的1字节存储到寄存器R0的低;位,并将R0的高24位清零4.4字节存储指令STRBSTRB R1, [R0, #0X04] ;将R1的低8位存到地址R0+0X04处;执行后R0中数据不变4.5半字加载指令LDRH (低16位)LDRH R0, [R1, #8] ;将R1+8地址处的16位数据送R0中LDRH R0, [R1, R2] ;将R1+R2地址处的数据送寄存器R0中4.6半字存储指令STRHSTRH R1, [R0, #0X04] ;将R1的低16bit数据存到地址R0+0X04处4.7用户模式数据加载存储指令4.8有符号字节加在指令LDRSB (带符号&低8位)LDRSB R0, [R1, R2] ;将地址R1+R2上的8位数值送R0;R0的高24位用符号位扩展4.9有符号半字加载指令LDRSH (带符号&低16位)LDRSH R0, [R1] ;将地址R1上的低16位数据送R0;R0的高16位用符号位扩展4.10批量数据加载/存储指令LDM/STMLDM/STM指令地址模式选择LDMIA R0! , {R2-R4} ;R0=0X00000028 R2=0X0000001C;R3=0X0000020 R4=0X00000024 LDMIB R0! , {R2-R4} ;R0=0X00000028 R2=0X00000020;R3=0X00000024 R4=0X00000028 LDMDA R0! , {R2-R4} ;R0=0X00000010 R2=0X0000001C;R3=0X00000018 R4=0X00000014 LDMDB R0! , {R2-R4} ;R0=0X00000010 R2=0X00000018;R3=0X00000014 R4=0X000000104.11寄存器存储器字交换指令SWPMOV R0, #0X10MOV R1, #0X11MOV R2, #0X12SWP R0, R1, [R2]设地址0X12处值为0XFF,执行指令后R0=0XFF, R1=0X11, R2=0X12内存地址0X12处值为0X114.12寄存器存储器字节交换指令SWPB (高24位填0 低8位数据)MOV R0, #0X10MOV R1, #0XFF11MOV R2, #0X12SWPB R0, R1, [R2];设地址0X12处值为0XFF,执行指令后R0=0XFF, R1=0XFF11, R2=0X12 ;地址0X12处值为0XFF115数据传送指令5.1数据传送指令MOVMOV R0, #1MOV R0, R1 ;R0←(R1)MOV R0, R1, LSL#3 ;R0←(R1<<3)5.2反向传送指令MVNMVN R0, #8 ;R0=-9??;指令执行后,R0中值为立即数8按位取反的值??5.3程序状态字内容送通用寄存器指令MRSMRS R1, CPSR ;将CPSR的值送R1;MRS指令是唯一可以直接读取CPSR和SPSR寄存器的指令5.4写状态寄存器指令MSR;状态寄存器分4个域[31:24]为条件标志域用f表示,[23:16]为状态位域用s表示,[15:8]为扩展位域用x表示,[7:0]为控制域用c表示。
MSR CPSR_c, #0X11 ;CPSR[7:0]=0X11MSR CPSR_cxsf,R0 ;CPSR=R06移位指令6.1逻辑左移操作LSL (低位填0)MOV R1, #0X01MOV R0, R1, LSL#2MOV R2, #2MOV R0, R1, LSL R26.2算数左移操作ASL (低位填0)MOV R1, #0X01MOV R0, R1, ASL #26.3逻辑右移操作LSR (高位填0)MOV R1, #0X04MOV R0, R1, LSR#26.4算术右移操作ASR ()MOV R1, #0X80000004MOV R0, R1, ASR#26.5循环右移操作R0R (高位由低位填充)MOV R1, #0X01MOV R0, R1, ROR#26.6带扩展的循环右移操作RRX (低位→C →高位)MOV R3, #0X7FFFFFFFMOV R4, #0X7FFFFFFFMOV R1, #0X04ADDS R3, R3, R4MOV R0, R1, RRX#27.0异常产生指令7.1 软中断指令SWISWI 12 ;将产生中断号为12的软中断;通过该条指令可以用软件的方法实现异常7.2断点中断指令BKPTBKPT [immediate_16] ;16位立即数;断点中断指令BKPT 常被用来设置软件断点,在调试时非常有用8协处理指令8.1协处理器数据操作指令CDPCPD P1, 1, C2, C3, C4;指令要操作的协处理器为p1 ,1为协处理器p1的指令操作代码。