高一数学最新课件-集合(第一节)001 精品
合集下载
数学人教A版(2019)必修第一册1.1集合的概念(共17张ppt)

那么 = {0,1}.
练习巩固
例2:试分别用描述法和列举法表示下列集合:
(1)方程x 2 − 2 = 0的所有实数根组成的集合;
(2)由大于10且小于20的所有整数组成的集合.
解:(1)设x ∈ A,则x是一个实数,且x 2 − 2 = 0.因此,用描述法表示为
A = {x ∈ R|x 2 − 2 = 0}.
B = {11,12,13,14,15,16,17,18,19}.
练习巩固
练习1:用下列所给对象能构成集合的是
、3的近似数
、所有小于0的实数
、某校高一 1 班的游泳小能手
、全体很大的自然数
【答案】
练习2:下列说法、 1,2,3 是不大于3的自然数组成的集合
(2)某校高一 1 班的聪明学生;
(3)某班身高在1.7以上的同学;
(4)中国比较长的河流;
(5)全体很大的自然数.
【答案】 √,×,√,×,×
新知探究
重要数集:
问2:我们可以用自然语言描述一个集合.除此之外,还可以用什么方式
来表示集合呢?
新知探究
思考4:(1)地球上的四大洋组成的集合如何表示?
情境导入
高一年级集合啦!
思考:在数学中,集合是什么,又有着什么样的用处呢?
问1:方程x 2 = 2是否有解?
【答】有理数范围内没有根,实数范围内的根有 2、 − 2
问2:所有到定点的距离等于定长的点组成哪种图形?
【答】平面内是圆,空间内是球
新知探究
思考:如何简洁、准确地表述数学对象及研究范围?看下面几个例子:
方程x 2 − 2 = 0有两个实数根 2, − 2,因此,用列举法表示为
A = { 2, − 2}.
练习巩固
例2:试分别用描述法和列举法表示下列集合:
(1)方程x 2 − 2 = 0的所有实数根组成的集合;
(2)由大于10且小于20的所有整数组成的集合.
解:(1)设x ∈ A,则x是一个实数,且x 2 − 2 = 0.因此,用描述法表示为
A = {x ∈ R|x 2 − 2 = 0}.
B = {11,12,13,14,15,16,17,18,19}.
练习巩固
练习1:用下列所给对象能构成集合的是
、3的近似数
、所有小于0的实数
、某校高一 1 班的游泳小能手
、全体很大的自然数
【答案】
练习2:下列说法、 1,2,3 是不大于3的自然数组成的集合
(2)某校高一 1 班的聪明学生;
(3)某班身高在1.7以上的同学;
(4)中国比较长的河流;
(5)全体很大的自然数.
【答案】 √,×,√,×,×
新知探究
重要数集:
问2:我们可以用自然语言描述一个集合.除此之外,还可以用什么方式
来表示集合呢?
新知探究
思考4:(1)地球上的四大洋组成的集合如何表示?
情境导入
高一年级集合啦!
思考:在数学中,集合是什么,又有着什么样的用处呢?
问1:方程x 2 = 2是否有解?
【答】有理数范围内没有根,实数范围内的根有 2、 − 2
问2:所有到定点的距离等于定长的点组成哪种图形?
【答】平面内是圆,空间内是球
新知探究
思考:如何简洁、准确地表述数学对象及研究范围?看下面几个例子:
方程x 2 − 2 = 0有两个实数根 2, − 2,因此,用列举法表示为
A = { 2, − 2}.
人教版高中数学必修一课件:集合1(共16张PPT)

如果a是集合A中的元素,说a属于A, 记作a∈A
如果a不是集合A中的元素,说a不属于A,
记作a A (或a A)
例如: A={2,4,8,16}
4 A, 8A, 32A .
注意: 符号“∈”不可颠倒
思考
A={2,4}, B={{1,2},{2,3},
{2,4},{3,5}}, 问:A与B的关系如何?
补充练习: 1.课本P5练习2; 2.判断: (1)所有在N中的元素都在N*中; 错 (2)所有在N中的元素都在Z中; 对 (3)所有不在N*中的数都不在Z中; 错 (4)所有不在Q中的实数都在R中; 对
(5) 由既在R中又在N*中的数组成的集合中
一定包含数0;
错
(6) 不在N中的数不能使方程4x=8成立.
①数组 1,3,5,7.
数
②满足说3x明-2集>合x+中3的的全元体素实数可.以是数数,可
以 求③其是到角中平两的面边图元距形素离之,是和也确相可定等以的的点是!的人集,合但. 是点 要
④所有直角三角形.
形
⑤高一(1)班全体同学.
人
二、元素与集合的关系
元素与集合的关系有“属于∈”及 “不属于”(也可表示为 )两种.
能我们该如何来表示?
①数组 1,3,5,7.
能
②满足3x-2>x+3的全体实数. 能
③到角两边距离之和相等的点. 能
④所有直角三角形. ⑤高一(1)班全体同学. ⑥年龄很小的人
能 能 不能
集合元素的性质1:
确定性
集合中的元素必须是确定的, 也就是说,对于一个给定的集合, 其元素的意义是明确的.
例题2:下列各组所组成的集合中, 他的元素是什么?
对
3.集合{2a,a2+a}中,a应满足什么条?
如果a不是集合A中的元素,说a不属于A,
记作a A (或a A)
例如: A={2,4,8,16}
4 A, 8A, 32A .
注意: 符号“∈”不可颠倒
思考
A={2,4}, B={{1,2},{2,3},
{2,4},{3,5}}, 问:A与B的关系如何?
补充练习: 1.课本P5练习2; 2.判断: (1)所有在N中的元素都在N*中; 错 (2)所有在N中的元素都在Z中; 对 (3)所有不在N*中的数都不在Z中; 错 (4)所有不在Q中的实数都在R中; 对
(5) 由既在R中又在N*中的数组成的集合中
一定包含数0;
错
(6) 不在N中的数不能使方程4x=8成立.
①数组 1,3,5,7.
数
②满足说3x明-2集>合x+中3的的全元体素实数可.以是数数,可
以 求③其是到角中平两的面边图元距形素离之,是和也确相可定等以的的点是!的人集,合但. 是点 要
④所有直角三角形.
形
⑤高一(1)班全体同学.
人
二、元素与集合的关系
元素与集合的关系有“属于∈”及 “不属于”(也可表示为 )两种.
能我们该如何来表示?
①数组 1,3,5,7.
能
②满足3x-2>x+3的全体实数. 能
③到角两边距离之和相等的点. 能
④所有直角三角形. ⑤高一(1)班全体同学. ⑥年龄很小的人
能 能 不能
集合元素的性质1:
确定性
集合中的元素必须是确定的, 也就是说,对于一个给定的集合, 其元素的意义是明确的.
例题2:下列各组所组成的集合中, 他的元素是什么?
对
3.集合{2a,a2+a}中,a应满足什么条?
高一数学集合ppt课件

3. 如果A⊆B且B和C是两个互不相交的集 合(即B与C没有交集),那么A与C也是 互不相交的。
2. 如果A⊆B且B⊆C,那么A⊆C。
子集的性质
1. 任何一个集合都是其本身的子集,即 A⊆A。
真子集的定义与性质
真子集的定义:如果 一个集合A是集合B的 一个子集,并且A和B 中至少有一个元素不 相同,那么我们称A 是B的真子集,记为 A⊈B。
集合通常用大写字母 表示,如A、B、C等 。
集合的元素
元素是集合中的个体,可以用小 写字母表示,如a、b、c等。
一个元素可以属于一个或多个集 合,不同元素可以属于同一个集
合。
空集是指不含有任何元素的集合 。
集合的表示方法
列举法
图示法
把集合中的元素一一列举出来,用大 括号{}括起来。
用一条封闭的曲线表示集合,内部可 以填充颜色或点上小点表示元素。
如果一个集合不是另一个集合 的真子集,那么称它为该集合 的真超集。
04
集合的交集、并集、补集的图形 表示
交集的图形表示
总结词
交集是指两个或两个以上集合的公共 部分,可以用符号 "∩" 表示。
详细描述
在图形表示中,交集通常用两个或多 个集合的公共部分来表示。例如,在 两个圆的重叠部分中,重叠部分的元 素就是两个圆的交集。
集合的运算性质
01
02
03
交换律
若A、B是两个集合,则A 并B等于B并A,A交B等于 B交A。
结合律
三个集合的交集和并集, 等于这三个集合分别交、 并后再合并得到的交集和 并集。
分配律
两个集合的并集与另一个 集合的交集相等,等于这 两个集合分别与另一个集 合的交集的并集。
高一数学集合课件制作ppt.ppt

从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
拓展练习
1.1集合的含义与表示 从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。
? 问题反思:
结论:集合元素的特性:
1)确定性 2)互异性 3)无序性
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
二、常用的数集及其记法
❖ 非负整数集(或自然数集):全体非负整数 的集合,记作N;
课堂小结
1、集合的定义 2、集合元素的性质:确定性、互异性、无序性; 3、数集及有关符号; 4、集合的表示方法; 5、集合的分类。
三、元素与集合的关系
(1)属于:如果a是集合A的元素,就说a属于 A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a 不属于A,记作a∉ A
1.1集合的含义与表示 从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。
五、集合的分类:
根据集合中元素的数量将集合分为 1)有限集 2)无限极 3)空集
六、例题讲解
例1 用列举法表示下列集合 1)由大于3小于10的整数组成的集合; 2)方程x2-9=0的解的集合。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
数学人教A版必修第一册1.1集合的概念说课课件

教学分析
教学目标
思想与方法思想
知识与技能
会根据具体问题的条件,用列举法表示给定的集合;通过对给定集合中元素的共同特征的归纳,会用描述法表示有关的集合,在这一过程中经历抽象与概括,特殊到一般等数学思想
提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识,发展学生的数学抽象素养。
思想与方法
数学核心素养
教学策略
教学过程
教学反思
教学分析
感谢!
知道元素与集合之间的关系,会用符号 “∈”表示元素与集合的关系;能用常用数集的符号表示有关集合通过具体的实例,能根据集合中元素的确定性、互异性和无序性判断某些元素的全体是否能组成集合
教学策略
教学过程
教学效果
教学分析
重点与难点
教学重点
教学难点
集合的概念与表示方法
选择恰当的方法表示集合
教学关键点:本课主要涉及自然语言和符号语言,符号语言中的列举法简单易懂,而描述法抽象难理解。描述法教学环节,抽象元素共同特征应该给学生留有充分的思考时间或讨论时间,使学生能够较好地熟悉符号语言,应用符号语言表示集合解决这一点最好的办法就是由特殊到一般,由具体到抽象,这也符合学生 的认知规律,易于学生更好地接受并理解所学内容。
集合的概念比较抽象,在学习了集合的三个 特性之后,应该让学生从生活中、学习中举出更多的 例子
用信息化手段优化教学过程
教学问题诊断
教学策略
教学过程
教学反思
教学分析
本节课最核心的内容是“描述法”,针对不同问题,要 求选用合适的集合表示法,必会成为学生学习的难点 和障碍
教学策略
教学策略
教学过程
教学效果
教学策略
教学过程
教学目标
思想与方法思想
知识与技能
会根据具体问题的条件,用列举法表示给定的集合;通过对给定集合中元素的共同特征的归纳,会用描述法表示有关的集合,在这一过程中经历抽象与概括,特殊到一般等数学思想
提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识,发展学生的数学抽象素养。
思想与方法
数学核心素养
教学策略
教学过程
教学反思
教学分析
感谢!
知道元素与集合之间的关系,会用符号 “∈”表示元素与集合的关系;能用常用数集的符号表示有关集合通过具体的实例,能根据集合中元素的确定性、互异性和无序性判断某些元素的全体是否能组成集合
教学策略
教学过程
教学效果
教学分析
重点与难点
教学重点
教学难点
集合的概念与表示方法
选择恰当的方法表示集合
教学关键点:本课主要涉及自然语言和符号语言,符号语言中的列举法简单易懂,而描述法抽象难理解。描述法教学环节,抽象元素共同特征应该给学生留有充分的思考时间或讨论时间,使学生能够较好地熟悉符号语言,应用符号语言表示集合解决这一点最好的办法就是由特殊到一般,由具体到抽象,这也符合学生 的认知规律,易于学生更好地接受并理解所学内容。
集合的概念比较抽象,在学习了集合的三个 特性之后,应该让学生从生活中、学习中举出更多的 例子
用信息化手段优化教学过程
教学问题诊断
教学策略
教学过程
教学反思
教学分析
本节课最核心的内容是“描述法”,针对不同问题,要 求选用合适的集合表示法,必会成为学生学习的难点 和障碍
教学策略
教学策略
教学过程
教学效果
教学策略
教学过程
高一数学集合ppt课件.pptx

第一节 集合
1.1.1 集合的含义与表示
• 1.集合与元素的定义 一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,通常用大写拉丁字母A,B,C等表
示集合,用拉丁小写字母a,b,c等表示集合中的元素。如果a是A中的元素,就表示为a∈A,读作a属于A, 反之a∉A,读作a不属于A * 2.集合的三要素: 1、确定性,集合中的元素是确定的,要么在集合中要么不在,二者必居其一;(判断是否能组成集合的 方法) 2、互异性,集合里相同的元素不允许重复出现,比如{a,a,b,b,c,c}是错误的写法,应该写成{a,b,c}.(警示我 们做题后要检查) 3、无序性,集合里的元素的排列不考虑顺序问题,例如{a,b,c}与{a,c,b}表示同一个集合。(方便定义集合 相等)
• 2.交集的符号语言: A∩B={x|x∈A,且x∈B}
并集、交集的性质
• 集合交换律 A∩B=B∩A A∪B=B∪A • 集合结合律 (A∩B)∩C=A∩(B∩C) (A∪B)∪C=A∪(B∪C) • 集合分配律 A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C) • A∩ Ø = Ø ,A∪ Ø = Ø
全集与补集
• 全集:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这 个集合为全集,通常记作U
• 补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A 相对于全集U的补集,简称为集合A的补集,记作CuA 符号语言:CuA={x|x∈U,且x ∉A}
例5
• 1.设集合U={1,2,3,4,5,6},M={1,3,5},则CuM=______。 • 2.已知全集U={0,1,2},A={x|x-m=0},如果CuA={0,1},则m=______。
1.1.1 集合的含义与表示
• 1.集合与元素的定义 一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,通常用大写拉丁字母A,B,C等表
示集合,用拉丁小写字母a,b,c等表示集合中的元素。如果a是A中的元素,就表示为a∈A,读作a属于A, 反之a∉A,读作a不属于A * 2.集合的三要素: 1、确定性,集合中的元素是确定的,要么在集合中要么不在,二者必居其一;(判断是否能组成集合的 方法) 2、互异性,集合里相同的元素不允许重复出现,比如{a,a,b,b,c,c}是错误的写法,应该写成{a,b,c}.(警示我 们做题后要检查) 3、无序性,集合里的元素的排列不考虑顺序问题,例如{a,b,c}与{a,c,b}表示同一个集合。(方便定义集合 相等)
• 2.交集的符号语言: A∩B={x|x∈A,且x∈B}
并集、交集的性质
• 集合交换律 A∩B=B∩A A∪B=B∪A • 集合结合律 (A∩B)∩C=A∩(B∩C) (A∪B)∪C=A∪(B∪C) • 集合分配律 A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C) • A∩ Ø = Ø ,A∪ Ø = Ø
全集与补集
• 全集:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这 个集合为全集,通常记作U
• 补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A 相对于全集U的补集,简称为集合A的补集,记作CuA 符号语言:CuA={x|x∈U,且x ∉A}
例5
• 1.设集合U={1,2,3,4,5,6},M={1,3,5},则CuM=______。 • 2.已知全集U={0,1,2},A={x|x-m=0},如果CuA={0,1},则m=______。
高一数学《集合》课件

子集与相等的关系:如果一个集合的所有元素都是另一个集合的元 素,并且两个集合的元素完全相同,则称这两个集合相等。
子集的表示方法:在数学符号中,如果集合A是集合B的子集,则表 示为A⊆B。
真子集的定义及性质
真子集的定义:如果集合A是集合B的子集,并且集合A不等于 集合B,则称集合A为集合B的真子集。
并集的证明:通过集合的基本性质和运算性质,可以证明并集的运算性质。 单击此处输入你的项正文,文字是您思想的提炼,言简意赅的阐述观点。
并集的应用:并集在数学、逻辑和计算机科学等领域有广泛的应用。 单击此处输入你的项正文,文字是您思想的提炼,言简意赅的阐述观点。
交集的运算性质与证明
补集的运算性质与证明
并集的性质: a) 任何集合与空集的并集都是该集合本身 b) 任何集合与 自身的并集是该集合本身 c) 并集的并集等于先求各自并集再求新的并集 a) 任何集合与空集的并集都是该集合本身 b) 任何集合与自身的并集是该集合本身 c) 并集的并集等于先求各自并集再求新的并集
交集的定义及性质
• 定义:两个集合A和B的交集是由所有既属于A又属于B的元素组成的集合,记作A∩B。
全集的运算性质与证明
全集的运算性质:全集与任 何集合的交、并、差等运算 结果仍为全集
全集的定义:包含所有元素 的对象或集合
全集的证明方法:通过定义 和公理进行证明
全集在数学中的应用:证明 集合的基本性质和定理
YOUR LOGO
THANK YOU
汇报人:XX
证明:设任意集合A,则A包含 A中的所有元素,即A⊆A。
应用:在集合运算中,任何集 合都满足反身律,它是集合运 算的基本性质之一。
举例:例如,对于任意集合{1, 2, 3},它自身也是其子集,即 {1, 2, 3}⊆{1, 2, 3}。
子集的表示方法:在数学符号中,如果集合A是集合B的子集,则表 示为A⊆B。
真子集的定义及性质
真子集的定义:如果集合A是集合B的子集,并且集合A不等于 集合B,则称集合A为集合B的真子集。
并集的证明:通过集合的基本性质和运算性质,可以证明并集的运算性质。 单击此处输入你的项正文,文字是您思想的提炼,言简意赅的阐述观点。
并集的应用:并集在数学、逻辑和计算机科学等领域有广泛的应用。 单击此处输入你的项正文,文字是您思想的提炼,言简意赅的阐述观点。
交集的运算性质与证明
补集的运算性质与证明
并集的性质: a) 任何集合与空集的并集都是该集合本身 b) 任何集合与 自身的并集是该集合本身 c) 并集的并集等于先求各自并集再求新的并集 a) 任何集合与空集的并集都是该集合本身 b) 任何集合与自身的并集是该集合本身 c) 并集的并集等于先求各自并集再求新的并集
交集的定义及性质
• 定义:两个集合A和B的交集是由所有既属于A又属于B的元素组成的集合,记作A∩B。
全集的运算性质与证明
全集的运算性质:全集与任 何集合的交、并、差等运算 结果仍为全集
全集的定义:包含所有元素 的对象或集合
全集的证明方法:通过定义 和公理进行证明
全集在数学中的应用:证明 集合的基本性质和定理
YOUR LOGO
THANK YOU
汇报人:XX
证明:设任意集合A,则A包含 A中的所有元素,即A⊆A。
应用:在集合运算中,任何集 合都满足反身律,它是集合运 算的基本性质之一。
举例:例如,对于任意集合{1, 2, 3},它自身也是其子集,即 {1, 2, 3}⊆{1, 2, 3}。
高一数学集合ppt课件最新版

05
02
解析
对于A,解方程(x-1)(x+2)=0得到x=1或x=2,所以A={1,-2};对于B,解方程x^2-2x3=0得到x=3或x=-1,所以B={3,-1}。
04
解析
1.5不是自然数,所以1.5∉N;√2是 无理数,所以√2∉Q;π是实数,所以 π∈R。
06
解析
解方程x^2-4=0得到x=2或x=-2,所以 A={2,-2},又B={-2,2},所以A=B。
03
不等式与区间表示法
一元一次不等式解法
03
移项法
将不等式中的常数项移至右侧,使左侧只 含有一个未知数。
系数化为1
将未知数的系数化为1,得到标准形式的 不等式。
求解集
根据不等式的性质,求解出未知数的取值 范围。
一元二次不等式解法
配方法
通过配方将一元二次不等 式转化为完全平方形式, 从而求解。
公式法
解析
(1)因为f(-x)=(-x)^2=x^2=f(x), 所以f(x)=x^2是偶函数;(2)因为 sin(-x)=-sinx=-f(x),所以f(x)=sinx 是奇函数;(3)因为|-x|=|x|=f(x), 所以f(x)=|x|是偶函数。
05
指数函数与对数函数
指数函数性质及应用
指数函数定义及图像特征 指数函数的值域和定义域
练习题与解析
解析
1. 由等差数列求和公式得 $S = frac{n}{2} times (a_1 + a_n)$,其中 $a_1 = 2, a_n = 29, n = 10$(因为 $29 = 2 + (n - 1) times 3$),所以 $S = frac{10}{2} times (2 + 29) = 155$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3 用列举法表示下列集合:
(1){x|2x2+(2+ 2 )x+ 2 =0} ={-1, 2 }
2
(2){x|x=4k-1,10≤x≤20,k∈Z} ={11,15,19}
(3){x| 6 ∈Z,x∈N} ={0,1,2,4,5,6,9}
3 x
(4){x|x= | a | b a | b | ,ab≠0} ={-2,0,2}
❖ 正整数集:非负整数集内排除0的集,记作N* 或N+;
❖ 整数集:全体整数的集合,记作Z;
❖ 有理数集:全体有理数的集合,记作Q;
❖ 实数集:全体实数的集合,记作R.
元素:集合中的每个对象叫做这个集合的元素。
元素表示方法:小写拉丁字母
若a是集合A中的对象,就说a是集合A的元素, a属于集合A,记作 a∈A
若a不是集合A中的对象,就说a不是集合A的元 素,a不属于集合A,记作 aA
例:2 ∈{ 1,2,3,4,5,6}
9 { 1,2,3,4,5,6 }
例2 :用符号 或 填空
3.14___Q
π____Q 0 ____N*
2 3 ____Z 2 3 ____Q 2 3__R
(5) 方程x2- 3 x=0的有理数解.
解:(1)不能. “体重很重”的标准不明确。
(2)能.横坐标小于0且纵坐标大于0的点都是第二象限的点. (3)不能.“某些”指哪些?标准不明确. (4)能.就是小于或等于5的数. (5)能.该方程的有理数解为x=0
常用的数集及其记法
❖ 非负整数集(或自然数集):全体非负整数 的集合,记作N;
ab
(5){(x,y)|x+y=6, x∈N, y∈N} ={(0,6),(1,5),(2,4)
(6){(x,y)|y=x 且 y=x2-2} ={(2,2),(-1,-1)}
(3,3),(4,2),(1,5), (6,0)}
练习:用列举法表示下列集合:
(1){x|x2-(a + b)x+ ab =0} (2){x下列集合:
(1){ 5,7,9,11} (2)直角坐标平面内第一、二象限的点的集合。 (3)被3除余2 的整数的集合
解:(1) { x|x=2k+1,1<k<6,k∈Z }
(2) {(x,y)|x≠0且 y>0} (3) {x|x=3k+2 k∈Z}
练习:用描述法表示下列集合:
(1){ 4,6,8,10,12 } (2)不在坐标轴的点的集合。 (3)被5除余1的自然数的集合。
答案:(1){x|x=2k,1<k<7,k∈z}
(2){(x,y)|x≠0且y≠0}
(3){x|x=5k+1,k∈z}
集合的分类:
有限集(元素的个数是有限个)
集合 无限集(元素的个数是无数多个)
空集 ø(集合中不含有元素)
集合的表示方法:
列举法:把集合中的元素一一列举出来的方法。
形式为:{元素1,元素2,元素3,‥‥‥}
例:由方程x2-1=0的所有的解组成的集合,简称方
程x2-1=0的解集;可以表示为 {-1,1}
注:用列举法表示集合时,元素具有无序性即{-1,1} 与{1,-1}表示同一集合,
元素还具有互异性, 如方程x2-4x+4=0的解集为{2}. 而不是{2,2},因此,条件{x|ax2+bx+c=0,a≠0}={-1} 意味着a-b+c=0及b2-4ac=0两层意思.
x3
(3){y|y= m n mn ,mn≠0}
| m | | n | | mn |
(4){(x,y)|y=4-x2, |x|≤1, x∈Z}
答案:(1)当a = b时为{ a }, 当 a≠b 时为 {a , b}
(2) { -4,-2,-1,0,1,2 }
(3) { 3,-1}
(4) {(-1,3),(0,4),(1,3)}
1.1 集合
定义:某些指定的对象集在一起就成为一个集合。
例:“太平洋,大西洋,印度洋,北冰洋”组成一
个集合。 集合表示方法: 大括号表示:{太平洋,大西洋,印度洋,北冰洋} 大写拉丁字母表示:A={太平洋,大西洋,
印度洋,北冰洋}
例1 具有下列特征的对象能否构成一个集合:
(1) 体重很重的人. (2) 直角坐标平面内第二象限的点. (3) 直角坐标平面内. (4) 不大于5 的实数.
练习:用符号 或 填空
1__N 0__N -3__N 0.5__N 1__Z 0__Z -3__Z 0.5__Z 1__Q 0__Q -3__Q 0.5__Q 1__R 0__R -3__R 0.5__R
2 __N 2 __Z 2 __Q 2 __R
集合的另一种表示方法:图示法
为了形象,常常用一条封闭曲线的
内部表示一个集合 。 (称为韦恩图
或文氏图)
A
小结
❖ 集合与元素
❖ 集合与元素的关系: ∈ 、
❖ 集合的表示法:1、列举法;2、描述法;
3、图示法
❖ 集合的分类:有限集、无限集、空集。 ❖ 集合中元素的特性: 确定性、互异性、
无序性
描述法:用确定的条件表示某些对象是否属于这 个集合的方法。
形式为:{代表元素|代表元素满足的条件}
例 集合{x|x2-x=0}表示方程x2-x=0的解组成的集合
集合{x∈R|x-3>2}或{x|x-3>2}表示不等式x-3>2的 解集; 集合{x|y=1/x}表示使得y=1/x有意义的x组成的集合; 集合{y|y=x2}表示y=x2中y的取值范围组成的集合; 集合{(x,y)|y=x2}表示满足函数式y=x2的那些点组 成的集合