高一数学必修一集合课件

合集下载

高中数学新人教A版必修1课件:第一章集合与函数概念1.1.3集合的基本运算(第1课时)并集和交集

高中数学新人教A版必修1课件:第一章集合与函数概念1.1.3集合的基本运算(第1课时)并集和交集

集合运算时忽略空集致错
• 典例 4 集合A={x|x2-3x+2=0},B={x|x2-2x+a- 1=0},A∩B=B,求a的取值范围.
• [错解] 由题意,得A={1,2}.∵A∩B=B,∴1∈B,或者 2∈B,∴a=2或a=1.
• [错因分析] A∩B=B⇔A⊇B.而B是二次方程的解集,它
可能为空集,如果B不为空集,它可能是A的真子集,也可
B.{x|-4<x<-2}
• C.{x|-2<x<2} D.{x|2<x<3}
• [解析] N={x|x2-x-6<0}={x|(x-3)(x+2)<0}={x|- 2<x<3},
• ∴M∩N={x|-4<x<2}∩{x|-2<x<3}
• ={x|-2<x<2},故选C.
• 4.(202X·江苏,1)已知集合A={-1,0,1,6},B={x|x>0, x∈R},则A∩B=___{_1,_6_} ______.
• 2.并集和交集的性质并集
简单 性质
A∪A=___A___; A∪∅=___A___
常用 结论
A∪B=B∪A; A⊆(A∪B); B⊆(A∪B);
A∪B=B⇔A⊆B
交集
A∩A=___A___; A∩∅=___∅___
A∩B=B∩A; (A∩B)⊆A; (A∩B)⊆B;
A∩B=B⇔B⊆A
• 1.(202X·全国卷Ⅲ理,1)已知集合A={-1,0,1,2},B= {x|x2≤1},则A∩B= ( A )
• 将x=-2代入x2-px-2=0,得p=-1,∴A={1,-2},
• ∵A∪B={-2,1,5},A∩B={-2},∴B={-2,5},

高中数学必修一必修1全章节ppt课件幻灯片

高中数学必修一必修1全章节ppt课件幻灯片
22
(2)方程x2+2x+1=0的解集中有两个元素. (3)组成单词china的字母组成一个集合.
【解题探究】 1.集合中的元素有哪些特性? 2.集合中的元素能重复吗?
探究提示: 1.集合中的元素有三个特性,即确定性、互异性和无序性. 2.构成集合的元素必须是不相同的,即集合元素具有互异性, 相同的元素只能算作一个. 【解析】1.①不正确.因为成绩较好没有明确的标准. ②正确.中国海洋大学2013级大一新生是确定的,明确的. ③正确.因为参加2012年伦敦奥运会的所有国家是确定的, 明确的. ④不正确.因为高科技产品的标准不确定. 答案:②③
(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b, c与由元素b,a,c组成的集合是相等的集合.这个性质通常 用来判断两个集合的关系.
3.元素和集合之间的关系 (1)根据集合中元素的确定性可知,对任何元素a和集合A,在 a∈A和a∉A两种情况中有且只有一种成立. (2)符号“∈”和“∉”只是表示元素与集合之间的关系. 4.对一些常用的数集及其记法要关注的两点
第一章 集合与函数概念 1.1 集合
1.1.1 集合的含义与表示 第1课时 集合的含义
一、元素与集合 1.定义: (1)元素:一般地,把所研究的_对__象_统称为元素,常用小写的 拉丁字母a,b,c,…表示. (2)集合:一些元素组成的总体,简称为_集_,常用大写拉丁字 母A,B,C,…表示. 2.集合相等:指构成两个集合的元素是_一__样_的. 3.集合中元素的特性:_确__定__性_、_互_异__性__和_无__序__性__.
类型 一 集合的判定
【典型例题】
1.下列说法中正确的序号是
.
①高一(四)班学习成绩较好的同学组成一个集合;

高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】

高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】
当A与B无公共元素时,A与B
的交集仍存在,此时A∩B=∅.
(三)交集
【做一做】
【探究2】
已知集合A={0,2},B={-2,-1,0,1,2},
则A∩B=(
)
A.{0,2}
C.{0}
B.{1,2}
D.{-2,-1,0,1,2}
交集的性质:
[答案]
A
①A∩B=B∩A;②A∩A=A;
③A∩∅=∅; ④若A⊆B,则A∩B=A;
(四)集合的交并运算
【巩固练习1】
(1) 已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是(
A.{-1,2,3}
B.{-1,-2,3}
C.{1,-2,3}
D.{1,-2,-3}
(2) 若集合A={x|-2≤x<3},B={x|0≤x<4},则A∪B=________.
⑤(A∩B)⊆A;(A∩B)⊆B.
(四)集合的交并运算
1.集合的并集运算
例1.
(1)设集合M={x| 2 +2x=0,x∈R},N={x| 2 -2x=0,x∈R},则M∪N=(
A.{0}
B.{0,2} C.{-2,0} D.{-2,0,2}
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B。
(2)在解决问题时,用到了哪些数学思想?
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第2课时)
教材分析
本小节内容选自:
《普通高中数学必修第一册》
人教A版(2019)
第一课时
课时内容
集合的并集、交集运算
集合的补集、综合运算
所在位置
教材第10页

人教版高中数学必修1《集合的概念》PPT课件

人教版高中数学必修1《集合的概念》PPT课件

• 题型二 元素与集合的关系 • 【学透用活】
• 元素与集合的关系解读
a∈A与a∉A取决于a是不是集合A中的元素,只 唯一性
有属于和不属于两种关系 符号“∈”“∉”具有方向性,左边是元素, 方向性 右边是集合
[典例 2] (1)满足“a∈A 且 4-a∈A,a∈N 且 4-a∈N ”,有且只有 2
名称 自然数集 正整数集 整数集 有理数集 实数集
记法
N _________
_N_*_或N_+_
_Z__
_Q__
_R__
• [微思考] N与N*有何区别?
• 提示:N*是所有正整数组成的集合,而N是由0和所有的 正整数组成的集合,所以N比N*多一个元素0.
(二)基本知能小试
1.给出下列关系:①13∈R ;② 5∈Q ;③-3∉Z ;④- 3∉N ,其中正确的个
数为
()
A.1
B.2
C.3
D.4
解析:13是实数,①正确; 5是无理数,②错误;-3 是整数,③错误;- 3
是无理数,④正确.故选 B. 答案:B
2.已知集合 M 有两个元素 3 和 a+1,且 4∈M,则实数 a=________.
解析:由题意可知 a+1=4,即 a=3. 答案:3
• 知识点三 集合的表示方法
• [方法技巧] • 用列举法表示集合的3个步骤
• (1)求出集合的元素.
• (2)把元素一一列举出来,且相同元素只能列举一次.
• (3)用花括号括起来.
• 提醒:二元方程组的所有实数解组成的集合、函数图象 上的所有点构成的集合都是点的集合,一定要写成实数对 的形式,元素与元素之间用“,”隔开,如{(2,3),(5,- 1)}.

高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集

Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.

高中数学集合的表示 PPT优秀课件

高中数学集合的表示 PPT优秀课件

谢谢欣赏
法表示,描述法既可以表示元素个数无限的集合,也 可以表示元素个数有限的集合. 2.在用描述法表示集合时应注意:
(1)弄清元素所具有的形式(即代表元素是什么), 是数、还是有序实数对(点)、还是集合或其他形式?
(2)元素具有怎样的属性?当题目中用了其他字 母来描述元素所具有的属性时,要去伪存真,而不能 被外表的字母形式所迷惑.
{x R | x 7 3}
五、集合的表示方式总结
例2 用描述法和列举法描述以下集合
(1)方程 x2 -2=0 的所有实数根组成的集合 A={x R | x2 2=0 } 或A { 2, 2}
(2)由大于10小于20的所有整数组成的集合 B={x Z | 10<x<20 }
或B={11,12,13,14,15,16,17,18,19 }
例 不等式 x 7 3 的解集 {x R | x 7 3}
集合的表示方式
(1)列举法 把集合中的元素一一列举出来,以逗号隔开,并
用花括号“{ }〞括起来的表示集合的方法叫做列举法.
{2, 3, 5, 7,11,13,17,19}
(2)描述法: 用集合所含元素的共同特征表示集合的 方法称为描述法。
八、课堂检测
1答案解析: 1解析 ∵0∈N且-<0<,∴0∈A. 答案 B 2解析 集合{0,1,2,3,4,5,6,7}表示前7个自然数,故用描述法可表示为{x∈N|x≤7}. 答案 B 3解析 由x2+x-2=0,得x=-2或x=1. 又x∈N,∴x=1. 答案 {1} 4解析 ∵x∈A,∴当x=-1时,y=|x|=1; 当x=0时,y=|x|=0;当x=1时,y=|x|=1. 答案 {0,1} 5解 (1)∵x∈N*,y∈N*, ∴x=1,y=3或x=2,y=2或x=3,y=1, ∴A={(1,3),(2,2),(3,1)}. (2){(x,y)|x<0,y>0}.

高中数学必修一课件:集合的概念(第1课时)

高中数学必修一课件:集合的概念(第1课时)

思考题 1 【多选题】下列每组对象的全体能构成集合的是( ACD )
A.《高考调研·必修Ⅰ》的作者 B.中国的大城市 C.直角坐标平面内第一象限的点 D.方程 x2-2=0 在实数范围内的解
题型二 元素与集合的关系
例 2 用符号“∈”“∉”填空. (1)0___∈____N,-1____∉___N, 3___∉____N,12___∉____N; (2)-13___∉____Z, 2___∉____Q,π___∈____R; (3)5__∈_____Z,-11___∈____Q,- 5___∈____R.
(2)B={-2,-1,0,1,2}. (3){2,3,5,7,11}.
题型四 集合中元素的性质 例 4 (1)集合{a,a2}中,实数 a 的取值范围是_____a≠_0_且_a_≠_1______. 【解析】 根据集合中元素的互异性得 a≠a2,即 a≠0 且 a≠1.
(2)已知 A={a-2,2a2+5a,12},且-3∈A,求实数 a 的值. 【解析】 ∵-3∈A,∴a-2=-3 或 2a2+5a=-3. ∴a=-1 或 a=-32.但 a=-1 时,a-2=-3,2a2+5a=-3,与集合中元 素的互异性矛盾,∴a=-32.
【解析】 若 A,B 表示同一个集合,则xy= =22, x 或xy==22x,,即xy= =24,或xy= =02, .
课后巩固
1.判断对错(对的打“√”,错的打“×”). (1)在一个集合中不能找到两个相同的元素.( √ ) (2)高中数学新教材人教 A 版第一册课本上的所有难题能组成集合.( × ) (3)由方程 x2-4=0 和 x-2=0 的根组成的集合中有 3 个元素.( × ) (4)由形如 x=3k+1(k∈Z)的数组成集合 A,则 1,-1,-11 这三个元素都 属于集合 A.( × )

高中一年级数学必修1第一章 集合与函数的概念1.1 集合第一课时课件

高中一年级数学必修1第一章 集合与函数的概念1.1 集合第一课时课件
集合中的元素是 互异的!
课堂探究
探究点2:集合中元素的性质.
(3)高一(4)班的全体同学组成一个集合,调 整座位后,这个集合有没有变化?
集合中的元素是 无序的!
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
在现代数学中,集合是一种简洁、高雅的数学语言,“一 切数学成果可建立在集合论基础上”这一发现使数学家们为 之陶醉.那么,我们怎样理解数学中的“集合”?
回顾旧知
在小学和初中,我们已经接触过一些集合: (1)自然数的集合; (2)有理数的集合;
(3)不等式 x 7 3的解的集合;
(4)到一个定点的距离等于定长的点的集合; (5)到一条线段的两个端点距离相等的点的集合 .................
数集的扩充过程
N*
或 N
正整数 集
N
自然数 集
Z
整数集
实数集
R
有理数 集
Q
练习1.下列指定的对象,能构成一个集合
的是
()
①很小的数 ②不超过 30的非负实数
③直角坐标平面的横坐标与纵坐标相等的点
④的近似值 ⑤高一年级很帅的男生
⑥所有无理数 ⑦大于2的整数
⑧全体正三角形
A. ②③④⑥⑦⑧ B. ②③⑥⑦⑧
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}.
⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
元素与集合的关系: ∊, ∉ 常用数集及其表示 集合的表示法:列举法、描述法
格奥尔格·康托尔 康托尔(Georg Cantor,1845-1918,德)
德国数学家,集合论的创始者。1845年3月3日生于圣彼 得堡(今苏联列宁格勒),1918年1月6日病逝于哈雷。其父为迁 居俄国的丹麦商人。康托尔11岁时移居德国,在德国读中学。 1862年17岁时入瑞士苏黎世大学,翌年转入柏林大学,主修数学, 从学于E.E.库默尔、K.(T.W.)外尔斯特拉斯和L.克罗内克。 1866年曾去格丁根学习一学期。
基础练习
2.互异性
若 3是由x 2,2x2 5x,12三个元素构成集合
中的元素,求x的值.
基础练习
0 __ N 0 __ N 3 __ Q
2 __ N 1.5 __ Z
2 __ Q
7 __ R 0 __ Z
0 __
集合的表示方法
探究一 :(1) 用列举法表示下列集合
① A {x N | 0 x 5}
康托尔在1878年这篇论文里已明确提出“势”的概念(又称为基数)并且用“与自身 的真子集有一一对应”作为无穷集的特征。
康托尔认为,建立集合论重要的是把数的概念从有穷数扩充到无穷数。他在 1879~1884年发表的题为《关于无穷线性点集》论文6篇,其中5篇的内容大部分为 点集论,而第5篇很长,此篇论述序关系,提出了良序集、序数及数类的概念。他定 义了一个比一个大的超穷序数和超穷基数的无穷序列,并对无穷问题作了不少的哲 学讨论。在此文中他还提出了良序定理(每一集合都能被良序),但未给出证明。
④ 三角形
集合的表示方法
思考:下列集合是否相同。
(1)A x y x2 1 B y y x2 1 C (x, y) y x2 1
SUCCESS
THANK YOU
2019/8/31
集合的表示方法
探究三:含参数问题
M x (x a)(x2 ax a 1) 0
1.集合的概念:
一般地,把一些能够确定的不同的对象 看成一个整体,就说这个整体是由这些对象 的全体构成的集合(或集)
构成 集合的每个对象叫做这个集合的 元素.
基础练习
1.确定性
⑴现有:①不大于 3 的正有理数.② 3的近似数 ③全部长方形.④全体无实根的一元二次方程 程.四个条件中所指对象不能组成集合的__ _.
D.5
3.填空
x y 2 (1)方程组 x y 5 的解集用列举法表示
为_______;用描述法表示为 .
(2)集合{(x, y) | x y 6, x N, y N}
用列举法表示为
.
能力提高题
1. 用描述法表示下列集合 ①{1,4,7,10,13} ②{1/3,1/2,3/5,2/3,5/7}
1872年康托尔在瑞士结识了J.W.R.戴德金,此后时常往来并通信讨论。 1873年他估计,虽然全体正有理数可以和正整数建立一一对应,但全体正实数 似乎不能。他在1874年的论文《关于一切实代数数的一个性质》中证明了他的 估计,并且指出一切实代数数和正整数可以建立一一对应,这就证明了超越数 是存在的而且有无穷多。在这篇论文中,他用一一对应关系作为对无穷集合分 类的准则。
(第一课时)
2014.9.1
集合的含义与表示
德国数学家,集合论的 创始者。1845年3月3日 生于圣彼得堡(今苏联 列宁格勒),1918年1 月6日病逝于哈雷。
了解康托尔
初中学习了哪些集合的实例
数集 自然数的集合,有理数的集合,不等式x7<3的解的集合…
点集 圆(到一个定点的距离等于定长的点的集合) 线段的垂直平分线(到一条线段的两个端点的距 离相等的点的集合),等等.
则实数 a为( )
(A) 2 (B)0或3 (C) 3 (D)0,2,3均可
(3)下列四个集合中,不同于另外三个的是:
A.﹛y︱y=2﹜
B. ﹛x=2﹜
C. ﹛2﹜
D. ﹛x︱x2-
4x+4=0﹜
(4) 由实数x, -x, x2 , |x| 所组成的集合 中,最 多含有的元素的个数为( )
A.2 B.3 C.4
中各元素之和等于3,求a的值
选择题
⑴ 以下说法正确的(
)
(A) “实数集”可记为{R}或{实数集}或{所有实数}
(B) {a,b,c,d}与{c,d,b,a}是两个不同的集合
(C) “我校高一年级全体数学学得好的同学”不 能组成一个集合,因为其元素不确定
⑵ 已知2是集合M={ 0, a, a2 3a 2 }中的元素,
B {x 集
③ y x 1与y 2 x 4 33
的图象的交点构成的集合
集合的表示方法
探究二:用描述法表示下列集 合
① 小于10的所有非负整数构成的
集合{1,3,5,7,}


y x 1与y 2 x 4 33
的图象的交点构成的集合
1867年在库默尔指导下以数论方面的论文获博士学位。1869年在哈雷大学通过讲师 资格考试,后即在该大学任讲师,1872年任副教授,1879年任教授。
大学期间康托尔主修数论,但受外尔斯特拉斯的影响,对数学推导的严格性和 数学分析感兴趣。哈雷大学教授H.E.海涅鼓励他研究函数论。他于1870、1871 、1872年发表三篇关于三角级数的论文。在1872年的论文中提出了以基本序列 (即柯西序列)定义无理数的实数理论,并初步提出以高阶导出集的性质作为 对无穷集合的分类准则。函数论研究引起他进一步探索无穷集和超穷序数的兴 趣和要求。
在整数和实数两个不同的无穷集合之外,是否还有更大的无穷?从1874年初起, 康托尔开始考虑面上的点集和线上的点集有无一一对应。经过三年多的探索,1877
说,“我见到了,但我不相信。”这似乎抹煞了维数的区别。论文于1878年发 表后引起了很大的怀疑。P.D.G.杜布瓦-雷蒙和克罗内克都反对,而戴德金早在 1877年7月就看到,不同维数空间的点可以建立不连续的一一对应关系,而不能有连 续的一一对应。此问题直到1910年才由L.E.J.布劳威尔给出证明。
2.用列举法表示下列集合:
(1)A=﹛x∈N︱1
6
x∈Z﹜
(2)
B=﹛1
6
x∈N

x∈Z

3. 求集合{3 ,x , x2-2x}中,元素x应满足的 条件。
4. 若-3 ∈ {a-3, 2a+1, a2+1},求实数a的值.
回顾交流
今天我们学习了哪些内容?
集合的含义 集合元素的性质:确定性,互异性,无序性
相关文档
最新文档