激光诱导荧光光谱技术
激光诱导荧光技术

激光诱导荧光(LIF)检测作为目前灵敏度最高的 检测技术,在生物、化学、医学等领域应用广泛。 激光光束的高汇聚性使其非常适合于微区检测, LIF 成为微型化仪器和电泳芯片中应用最普遍的 检测手段。另外,许多能发自然荧光环境样品和 生物样品,通过衍生技术进行荧光检测,因而 LIF 成为检测的首选技术。
液体LIF
气体LIF 燃烧LIF 测量物质
平面激光诱导荧光技术
举例:示踪平面LIF技术
采用YAG激光器的倍频 532nm激光作为激发源。由 于自然界中只有某些特殊的高 分子有机染料分子可以被
532nm激光激发而发出荧光,
人们就用这种有机染料分子作 为示踪物质加入到所要研究的 流场中,观察并测量荧光信号 的性质。
平面激光诱导荧光技术
研究LIF主要课题组
研究课题组 主要研究领域及成就
Dovichi N. J.
Soper S. A. Issaq H. J.
发明了壳流检测池,随后的LIFD单分子检测都是在此基 础上完成的,对LIFD的应用作出了卓越贡献。
主要研究领域包括:荧光探针、分子生物学、微分析仪器 等,较多采用近红外激光诱导荧光监测器。 毛细管电泳协会的创始人之一。在激光诱导荧光检测方面 主要从事紫外激光诱导荧光检测。
平面激光诱导荧光技术
PLIF检测原理图
平面激光诱导荧光技术
PLIF优点
高空间分辨:可达到微米量级。 快速时间响应:时间分辨最高可达纳秒量级,可对自由基 等瞬态物质寿命进行检测。 高灵敏度:探测下限最高可达106个粒子/cm3。 干扰小:通过激光激发,而不涉及接触式的探针等器件, 对等离子体,燃烧等干扰相对较小。
平面激光诱导荧光技术
可见光波长的红绿蓝激光 (635nm,532nm,445nm)
激光诱导荧光光谱技术

应用
(3)燃烧系统中的应用
测量温度、粒子浓度等。LIF方法在火焰中粒子 浓度的测量包括: ① 瞬态自由基粒子的测量。瞬态自由基是燃烧中的 反应中间体,如OH等。 ② 污染粒子测量,用于对污染物的控制与排放,常 见的污染粒子有NO、CO、NO2、SO2等分子, LIF方法的空间与时间的分辨测量有助于深入理解 燃烧过程中这些粒子形成的机理。 ③ 金属粒子的测量,如Na、K、NaS等。
No. 11
应用
(2)水质监测
LIF 遥测系统以355 nm 激发波长的Nd-YAG晶体激 光器为激发光源, 脉冲宽度4 ns , 重复频率10Hz 。脉冲 激光通过卡塞格伦望远镜射入待测水体, 后向散射的荧光 进入望远镜, 使用光纤分为两路, 一路通过干涉滤光片, 光电倍增管测量作为水拉曼光强度, 另一路通过安装有中 心波长为355 、450 和685 nm 三块干涉滤光片的转轮, 以光电倍增管测量瑞利散射光、DOM 荧光和叶绿素a 荧光强度。测得的瑞利散射光、DOM 荧光和叶绿素a 荧光强度以水拉曼光强度进行归一化, 记为瑞利散射因子、 DOM 荧光因子和叶绿素a 荧光因子, 分别与水体浊度、 DOM 浓度和叶绿素a 浓度成线性正相关。
光学组件:光路调整,光路转换,过滤杂散光等作用。
样品池:气体密闭池、液体池。窗口与光路上不产生激发光的散射,
窗口与池壁不产生荧光、样品池的窗口通常作成布儒斯特角。
光电探测器:光电倍增管、光电二极管、电荷耦合器件CCD等。
信号处理模块:信号采集、分析、显示和处理, 根据信号控制激光
器、检测光路和光电探测器等模块, 实现在线分析、处理和信号优化。
处于高能态的分子不稳定,在一定时间内它会从高能态返 回到基态。在此过程中,分子会通过自发辐射释放能量发光而 产生荧光,这就是激光诱导荧光。
激光诱导荧光技术(LIF)的研究

基于激光诱导荧光技术(LIF)的喷雾当量比特性研究 四、激光诱导荧光测试系统
基于激光诱导荧光技术(LIF)的喷雾当量比特性研究 四、激光诱导荧光测试系统
基于激光诱导荧光技术(LIF)的喷雾当量比特性研究
五、激光诱导荧光方法的应用
在燃烧系统中 L I F 法的应用,包括测量温度、 粒子浓度、燃料分布等方面。目前,LIF 法已成为 燃烧气流的化学与结构研究的重要手段。现对用激 光诱导荧光法测量发动机缸内混合气浓度进行说明。
在内燃机技术领域,激光诱导荧光试验研究燃烧,实现 了对燃烧过程的非侵入式观察。在 这 种 方 法 中利 用 单 色 性 好 、波 长 较 短 、能量较大的短脉冲激 光 使 某 种 分 子 或 原 子 激 发 ,测 量 由 激 发 态 返 回 基 态 时 发 出的荧光,便 可 以 计 算 该 成 分 的浓度 和温度分布。
基于激光诱导荧光技术(LIF)的喷雾当量比特性研究
参考文献:
多级旋流空气雾化喷嘴雾化特性及光学测试方法研究_刘存喜 复合激光诱导荧光定量标定技术及其_省略_应用_燃油喷雾当量比定量标 定方法_孙田 复合激光诱导荧光定量标定技术及其对柴油喷雾特性研究的应用_孙田 复合激光诱导荧光法在喷雾特性的研究进展_白原原 基于PLIEF技术两次喷射柴油喷雾结构和特性的定量研究_王卓卓 利用复合激光诱导荧光法对气相柴油喷雾温度场和浓度场的定量标定_ 郭红松 使用PLIEF技术对重型柴油机相_省略_柴油喷雾结构及其浓度场的定量研 究_郭红松 应用激光诱导荧光法研究直喷汽油机缸内混合气形成过程_马骁 用激光诱导荧光法测量GDI发动机缸内混合气分布_马骁 用激光诱导荧光法研究燃烧的最新进展_薛敏霞
基于激光诱导荧光技术(LIF)的喷雾当量比特性研究
五、激光诱导荧光方法的应用
药物分析中的激光诱导击穿光谱技术研究及应用

药物分析中的激光诱导击穿光谱技术研究及应用概述:激光诱导击穿光谱技术(LIBS)是一种基于激光诱导击穿效应的光谱分析方法。
该技术具有无损、快速、灵敏度高等优点,在药物分析领域得到广泛应用。
本文将对激光诱导击穿光谱技术在药物分析中的研究现状及应用进行探讨。
一、激光诱导击穿光谱技术原理激光诱导击穿光谱技术是一种原位、无损的样品分析方法。
其基本原理是通过激光脉冲的高能量密度,使样品表面产生等离子体,进而激发样品原子、离子和分子的内部能级跃迁,产生特征光谱。
通过分析和解释激光诱导击穿光谱所得到的光谱信息,可以获得样品中的元素组成和化学成分。
二、激光诱导击穿光谱技术在药物分析中的应用1. 药物质量控制激光诱导击穿光谱技术在药物质量控制中具有重要的应用价值。
通过对药物样品进行激光诱导击穿光谱分析,可以准确测定药物中的元素含量和杂质成分,确保药物的质量稳定性和合规性。
此外,激光诱导击穿光谱还可以用于药物中残留金属离子的检测和定量。
2. 药物痕量分析激光诱导击穿光谱技术对于药物痕量分析具有较高的敏感度和选择性。
在药物痕量分析中,常常需要检测微量元素或者特定化合物的含量,激光诱导击穿光谱技术可以通过对样品进行精确的激光能量控制和谱线解析,实现对药物中微量成分的快速准确测定。
3. 药物新药研发激光诱导击穿光谱技术在药物新药研发过程中的应用越来越广泛。
通过对药物原料、中间体和最终产品进行激光诱导击穿光谱分析,可以了解药物的化学成分和含量分布,为药物品质的改进和优化提供科学依据。
4. 药物非破坏性分析激光诱导击穿光谱技术是一种非破坏性的样品分析方法,对于药物分析非常有优势。
传统的样品分析方法通常需要样品的破坏性处理,而激光诱导击穿光谱技术可以直接对样品进行分析,避免了样品的损伤和浪费,同时提高了分析效率和数据可靠性。
三、激光诱导击穿光谱技术的研究进展激光诱导击穿光谱技术的研究一直处于不断发展的阶段。
随着激光技术、光谱仪器和数据处理算法的不断改进,激光诱导击穿光谱技术在药物分析领域的应用也得到了不断拓展。
激光诱导荧光光谱仪的特点及应用介绍

激光诱导荧光光谱仪的特点及应用介绍激光诱导荧光光谱仪(LIF)是基于激光荧光光谱技术的一种仪器。
使用激光束激发样品中的荧光分子,再通过荧光分子发出的光进行分析和检测。
本文将介绍LIF的特点及其应用。
一、LIF的特点1. 高分辨率LIF检测方法的检测灵敏度非常高,可以达到ppb(10-9)的级别。
同时,它的分辨率也极高,可以轻松实现nm(10-9)级别的分辨能力。
2. 非破坏性检测LIF的激发方法是使用激光来刺激样品中的荧光分子,因此不需要使用试剂或化学处理样品。
这种非破坏性检测方法可以有效避免样品被污染或被毁坏的风险。
3. 灵敏度高LIF仪器可以检测非常小的样品量,通常只需要微升级别的样品,即可得到足够的信号。
此外,LIF还有极高的分析速度和高精度。
4. 检测范围广LIF可以对多种物质进行检测,包括生物分子、有机物、无机盐、气体等等。
这种广泛的检测范围使得LIF成为一种多功能性的检测技术,可以用于许多不同领域。
二、LIF的应用1. 生物医学领域LIF在生物医学领域的应用非常广泛,常被用于病原体检测、药物筛选、生物分子的研究等方面。
因为LIF具有非常高的灵敏度和分辨率,所以能够检测到非常微小的基因和蛋白质,有助于生物医学领域的诊断和治疗。
2. 环境监测LIF也可以被应用于环境监测领域,比如空气和水质的检测。
以卤代烃类物质为例,使用激光激发样品中的卤代烃分子,通过监测荧光信号,可以得知样品中的卤代烃物质浓度。
此外,LIF还能在行星地质学、气象等方面应用。
3. 药物研发药物研发中,LIF被广泛用于药物筛选和分析。
使用LIF检测药物作用的生物分子,可以准确地测定药物的作用和分布。
4. 食品安全检测LIF也可以用于食品安全监测。
比如使用LIF检测食品中的有害物质,就能够快速准确地检测出未加工,在加工过程中添加的可以残留在食品中的有害物质。
结论总之,激光诱导荧光光谱仪(LIF)以其高分辨率、非破坏性检测、高灵敏度、广泛的检测范围等特点,在生物医学、环境监测、药物研发和食品安全方面都具有重要的应用价值。
激光诱导荧光技术介绍

02
在荧光产生的过程中,激光与物质相互作用的方式决定了荧光
光谱的特征和强度。
通过控制激光的波长、功率密度和照射时间等参数,可以实现
03
对荧光光谱的调控。
03 激光诱导荧光技术的应用
生物医学研究
生物标记物检测
药物筛选
利用激光诱导荧光技术检测生物体内 的标记物,如蛋白质、核酸等,有助 于疾病的早期诊断和治疗监测。
物质吸收特定波长的激光 能量后,电子从基态跃迁 至激发态。
电子跃迁回到基态
激发态的电子通过释放能 量回到基态,以荧光的形 式释放能量。
荧光光谱分析
通过对荧光光谱进行分析, 可以了解物质的性质和组 成。
激光与物质的相互作用
01
激光与物质相互作用时,物质吸收激光能量后会产生热能、光 化学反应或电离等效应。
使用激光器产生的激光束照射样品,激发荧 光。
数据处理与分析
对收集到的荧光数据进行处理和分析,提取 相关信息。
数据处理与分析
01
数据预处理
对原始数据进行平滑、滤波等处理, 以消除噪声和异常值。
定量分析
根据荧光光谱数据,对样品中的目 标物进行定量分析。
03
02
荧光光谱分析
对荧光光谱进行分析,提取特征峰 和相关信息。
土壤污染监测
通过测量土壤中特定成分的荧光光谱,可以监测 土壤污染状况,为土壤修复和治理提供依据。
化学分析应用实例
有机化合物分析
激光诱导荧光技术可以对有机化合物进行高灵敏度和高选择性的 分析,有助于化合物的定性和定量分析。
无机离子分析
通过测量无机离子与荧光探针结合后的荧光光谱,可以实现无机 离子的高灵敏度分析。
利用激光诱导荧光技术对药物进行筛 选,可以快速、准确地评估药物的疗 效和安全性。
激光技术中的化学应用解析

激光技术中的化学应用解析激光技术作为一种高新技术,其在化学领域的应用日益广泛。
激光技术具有高度定向性、高能量密度、快速反应速度等特点,使其在化学分析、化学合成、光化学反应等方面发挥了重要作用。
本文将从激光诱导荧光技术、激光诱导击穿光谱技术、激光等离子体质谱技术等多个方面对激光技术在化学中的应用进行解析。
1. 激光诱导荧光技术激光诱导荧光技术是一种基于激光与物质相互作用的原理,通过激发样品产生荧光信号来实现对样品的检测与分析。
利用激光的高能量密度和单色性,可以有效地激发样品中的荧光团,使其产生荧光信号。
这项技术在环境监测、食品安全、生物医学等领域具有重要应用,能够实现对微量物质的灵敏检测和定量分析。
2. 激光诱导击穿光谱技术激光诱导击穿光谱技术是利用激光器在样品表面产生等离子体,并通过检测等离子体发射的特征辐射来实现对样品的分析。
这种技术具有非接触式、无损伤性、高灵敏度等优点,可广泛应用于材料分析、痕量元素检测、金属合金分析等领域,为化学研究提供了强大的工具支持。
3. 激光等离子体质谱技术激光等离子体质谱技术是将样品表面或气相样品通过激光器产生等离子体,并通过质谱仪器对等离子体进行分析鉴定。
这种技术在痕量元素检测、岩石矿物分析、生物标本成像等方面具有重要应用,可实现对样品中各种元素及其同位素的定量和定性分析。
综上所述,激光技术在化学领域中的应用呈现出日益多样化和广泛性。
随着科学技术的不断发展和进步,相信激光技术将会在化学领域中发挥越来越重要的作用,为化学研究和实践带来更多创新和突破。
希望本文对您了解激光技术在化学应用方面有所帮助。
感谢阅读!。
lec检查法

lec检查法摘要:1.Lec 检查法简介2.Lec 检查法的原理3.Lec 检查法的应用领域4.Lec 检查法的优势与局限性正文:Lec 检查法,全称为“激光诱导荧光检测法”,是一种基于激光技术的光谱分析方法。
这种方法通过激光激发样品分子产生荧光,然后检测荧光信号来分析样品的成分和性质。
接下来,我们将详细介绍Lec 检查法的原理、应用领域、优势与局限性。
首先,我们来了解Lec 检查法的原理。
当激光照射到样品上时,样品中的分子会被激发并产生荧光。
荧光的强度和波长与样品中分子的种类和浓度有关。
通过检测荧光信号,可以获得关于样品成分和性质的信息。
Lec 检查法利用这一原理,实现了对样品的高灵敏度、高精度分析。
Lec 检查法广泛应用于各个领域,如环境监测、生物医学、化学分析等。
在环境监测领域,Lec 检查法可以用于检测水中的有害物质,如重金属离子、有机污染物等。
在生物医学领域,Lec 检查法可以用于检测生物分子,如蛋白质、核酸等。
在化学分析领域,Lec 检查法可以用于分析样品中的有机化合物、无机化合物等。
尽管Lec 检查法具有许多优势,但也存在一些局限性。
首先,Lec 检查法对样品的要求较高,需要样品具有一定的荧光特性。
其次,Lec 检查法的检测结果可能受到荧光干扰物的影响,如样品中的其他荧光物质、实验环境中的荧光污染等。
此外,Lec 检查法的仪器设备较昂贵,对实验条件和操作技巧也有较高要求。
总之,Lec 检查法作为一种基于激光技术的光谱分析方法,具有高灵敏度、高精度等优点,广泛应用于环境监测、生物医学、化学分析等领域。
然而,Lec 检查法也存在一定的局限性,如对样品的要求较高、可能受到荧光干扰物的影响等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统组成
图1 激光诱导荧光光谱系统结构图干扰小 测温范围宽
可达到微米量级。
时间分辨最高可达纳秒量级,可对自由基等瞬 态物质寿命进行检测。
探测下限可达106个粒子/cm3,浓度检测最低可 达10-13mol/L。
通过激光激发,而不涉及接触式的探针等器件, 对等离子体,燃烧等干扰相对较小。
已有在1600℃的实验条件和1100℃的燃气轮机条件 下进行荧光测温的报道,测温精度可达±1℃。
主要问题
1 目前不常检测的物种,其荧光分离需要一定的光谱基础; 2 对于浓度在ppm级以下的物质荧光可能较弱; 3 对自由基的绝对浓度测量,需要仔细的标定; 4 对激光器的要求较高,维护昂贵; 5 测量系统较复杂。
应用
(2)水质监测
LIF 遥测系统以355 nm 激发波长的Nd-YAG晶体激 光器为激发光源, 脉冲宽度4 ns , 重复频率10Hz 。脉冲 激光通过卡塞格伦望远镜射入待测水体, 后向散射的荧光 进入望远镜, 使用光纤分为两路, 一路通过干涉滤光片, 光电倍增管测量作为水拉曼光强度, 另一路通过安装有中 心波长为355 、450 和685 nm 三块干涉滤光片的转轮, 以光电倍增管测量瑞利散射光、DOM 荧光和叶绿素a 荧光强度。测得的瑞利散射光、DOM 荧光和叶绿素a 荧光强度以水拉曼光强度进行归一化, 记为瑞利散射因子、 DOM 荧光因子和叶绿素a 荧光因子, 分别与水体浊度、 DOM 浓度和叶绿素a 浓度成线性正相关。
敬请老师和同学批评指正!
•
1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1320. 12.13Sunday, December 13, 2020
•
2、阅读一切好书如同和过去最杰出的 人谈话 。08:0 3:0708: 03:0708 :0312/ 13/2020 8:03:07 AM
激光诱导荧光光谱技术
1
☞ 目录:
1
简介
2
原理
3
系统组成
4
突出优点
5
主要问题
6
应用
简介
激光诱导荧光光谱技术
以激光做为光源激发荧光物质产生的荧光称为激光 诱导荧光(Laser-Induced Fluorescence,LIF),是荧光分 析方法的一种。
与瑞利散射和拉曼散射不同,LIF过程不是一个散射 过程,是一个波长的吸收和转化过程。照射激光激发分 子发出更长波长的光,发射荧光强度比散射强度强。与 普通荧光分析方法不同, LIF的激发光源采用激光,灵 敏度较高、检测效果好。
光学组件:光路调整,光路转换,过滤杂散光等作用。 样品池:气体密闭池、液体池。窗口与光路上不产生激发光的散射,
窗口与池壁不产生荧光、样品池的窗口通常作成布儒斯特角。
光电探测器:光电倍增管、光电二极管、电荷耦合器件CCD等。 信号处理模块:信号采集、分析、显示和处理, 根据信号控制激光
器、检测光路和光电探测器等模块, 实现在线分析、处理和信号优化。
•
3、越是没有本领的就越加自命不凡。 20.12.1 308:03: 0708:0 3Dec-20 13-Dec-20
•
4、越是无能的人,越喜欢挑剔别人的 错儿。 08:03:0 708:03: 0708:0 3Sunda y, December 13, 2020
简介
激光特性 1 激光参数可以精确控制 2 激光的方向性、单色性好 3 激光的相干性好、强度大 4 产生荧光信号信噪比高
原理
让一束激光通过检测区域,调节激光波长,当激光光子的 能量(与激光的波长相关)等于检测区域某种组分分子的某两 个特定能级之间的能量之差时,该分子会吸收光子能量跃迁至 高能态。
应用
(3)燃烧系统中的应用
测量温度、粒子浓度等。LIF方法在火焰中粒子 浓度的测量包括: ① 瞬态自由基粒子的测量。瞬态自由基是燃烧中的 反应中间体,如OH等。 ② 污染粒子测量,用于对污染物的控制与排放,常 见的污染粒子有NO、CO、NO2、SO2等分子, LIF方法的空间与时间的分辨测量有助于深入理解 燃烧过程中这些粒子形成的机理。 ③ 金属粒子的测量,如Na、K、NaS等。
应用
(4)痕量分析
凡是能发射荧光的物质都可以采用分子荧光法进行 分析,例如许多无机物、有机物、生物和生化样品(如 维生素、氨基酸、蛋白质、酶、药物、荷尔蒙、农药、 病原抗体等)。
对于许多含量很低的生化样品,在高功率激光照射 下很快发生热分解,可改用峰值功率很高而平均功率 很低的窄脉冲激光激发,从而能获得一定的荧光强度 而不破坏样品。
应用
目前LIF技术已应用于气体、液体、固体的测量中及燃烧、 等离子体、喷射和流动现象中。
生物 医学
环境 其他
毛细血管电泳检测 病变诊断 叶绿素荧光分析 基因突变 DNA分析
检测大气、 水体污染、
检测火焰、 流场等
应用
(1)叶绿素荧光寿命的测量
采用波长355 nm的激光作为光源激发叶绿素荧 光,由光电倍增管接收其荧光信号,由于被测叶绿素 荧光衰减函数与激光脉冲、仪器响应函数卷积在一 起,根据它们的特性,运用时间分辨测量法分别测得 叶绿素荧光及其背景信号,并结合解卷积算法可分离 出真实的叶绿素荧光衰减函数,从而获取叶绿素的荧 光寿命. 该方法能够实现叶绿素荧光寿命的高精度 实时监测,通过对不同叶绿素含量的溶液荧光寿命测 试,证明叶绿素含量与其荧光寿命具有相关性, 确定 了叶绿素含量与荧光寿命的标定曲线.
处于高能态的分子不稳定,在一定时间内它会从高能态返 回到基态。在此过程中,分子会通过自发辐射释放能量发光而 产生荧光,这就是激光诱导荧光。
实际应用中,从荧光的分布,可以探测粒子的种类;从荧 光的强弱,可得知粒子的浓度以及温度;利用其空间分辨性还 可以测量粒子的浓度场、温度场。
系统组成
激光器:气体激光器、固体激光器、液体激光器、半导体激光器等。
应用
(4)痕量分析
LIF是一种高灵敏度的检测方法,广泛应用于原子
与分子的痕量检测,在激光激发下,原子所发出的荧光
强度IF与入射光强度I0和单位体积中处于基态的原子数
目N成正比:
摩尔消光系数
IF ΦF AI0m L N
荧光量子产额 有效照射面积
吸收长度
在检测中如保持入射光强度I0和单位体积中原子数目 N不变,则可以通过荧光强度来确定样品中被测元素 的含量。