9偏振光的观察与研究11

合集下载

偏振光现象的观察和分析

偏振光现象的观察和分析

偏振光现象的观察和分析偏振光的观察可以通过一些特定的实验装置来实现。

例如,可以使用偏振片和分析器来检测光的偏振状态。

偏振片是一种光学元件,它能够选择性地通过振动方向与特定方向相同的光,而将其他方向的光消除或减弱。

这样,当光通过偏振片时,只有特定方向的光能通过,其他方向的光被过滤掉了。

而分析器是另一种偏振片,在实验中用于检测偏振光。

当通过偏振片的光到达分析器时,如果它们的振动方向相同,那么光将能够通过分析器,我们可以观察到透过分析器的光强度。

如果它们的振动方向不同,那么光将被分析器阻止通过,我们将观察不到通过分析器的光。

通过使用偏振片和分析器的实验装置,可以进行一系列的观察和分析。

首先,我们可以通过调整偏振片和分析器之间的相对角度来观察最大和最小光强的变化。

当振动方向相同时,光强度最大,当振动方向垂直时,光强度最小。

通过这一观察结果,我们可以得出结论,光强度与振动方向之间存在关联。

其次,我们可以观察光的偏振状态的改变。

例如,可以用线性偏振光源辐射出一个固定方向的偏振光,然后通过一系列的偏振片和分析器来调整光的偏振状态。

通过观察光在不同偏振状态下的传播特性,我们可以了解光的偏振性质以及不同偏振状态下光的行为差异。

除了观察外,我们还可以进一步分析偏振光的性质。

例如,通过使用偏振片和分析器,我们可以测量通过透过分析器的光强度,并进一步计算出偏振光的偏振度。

偏振度是一种度量光偏振状态的物理量,它可以用来描述光的偏振程度。

对于完全偏振的光来说,其偏振度为1,而对于完全偏振的光来说,其偏振度为0。

此外,偏振光的观察和分析还可以应用于实际生活中的一些领域。

例如,在电子显示技术中,液晶显示器使用偏振器和光调制器来控制光的偏振状态,从而实现图像的显示和切换。

在光通信中,偏振光也被广泛应用于光纤传输和光信号处理中,以提高传输速率和信号质量。

总之,偏振光现象的观察和分析可以帮助我们更深入地了解光的性质和行为。

通过观察光的光强度变化以及偏振状态的改变,我们可以探索光的偏振性质和对其进行分析。

偏振光现象的观察和分析

偏振光现象的观察和分析

偏振光现象的观察和分析摘要本实验用半导体激光通过偏振片来产生线偏振光,使其分别通过1/4波片和1/2波片,通过测量不同方向上检偏器透过的光的强度,判断出出射光的偏振态。

并证实了线偏振光通过1/4波片可以产生线偏振光、圆偏振光、椭圆偏振光,通过1/2波片可以产生线偏正光,验证了马吕斯定律。

一、引言振动方向对于传播方向的不对称性叫做偏振,它是横波区别于其他纵波的一个最明显的标志。

只有横波才能产生偏振现象,故光的偏振是光的波动性的又一例证。

在垂直于传播方向的平面内,包含一切可能方向的横振动,且平均说来任一方向上具有相同的振幅,这种横振动对称于传播方向的光称为自然光(非偏振光)。

凡其振动失去这种对称性的光统称偏振光。

偏振光的典型应用是偏光式3D 技术,其普遍用于商业影院和其它高端应用。

二、实验原理1.偏振光的种类光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度E 称为光矢量。

在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。

如果光在传播过程中,若光矢量保持在固定平面上振动,这种振动状态称为平面振动态,此平面就称为振动面。

图1 电矢量垂直于纸面的偏振光图2 电矢量平行于纸面振光【1】光的五种偏振态:①线偏振光:在光的传播过程中,只包含一种振动,其振动方向始终保持在同一平面内,②部分偏振光:光波包含一切可能方向的横振动,但不同方向上的振幅不等。

③自然光:光波包含一切可能方向的横振动,但不同方向上的振幅相等。

④椭圆偏振光:在光的传播过程中,空间每个点的电矢量均以光线为轴作旋转运动,若它们的频率相同并且有固定的位相差,则该点的合成振动的轨迹一般呈椭圆形。

⑤圆偏振光:旋转电矢量端点描出圆轨迹的光称圆偏振光,是椭圆偏振光的特殊情形。

2.线偏振的产生(1)偏振片利用某些有机化合物的“二向色性”制成,当自然光透过这种偏振片后,光矢量垂直于偏振片方向的分量几乎完全被吸收,而平行方向的分量几乎完全通过,因此透射光基本上为线偏振光。

偏振光的观察与研究实验报告

偏振光的观察与研究实验报告

偏振光的观察与研究实验报告一、实验目的1。

观察光的偏振现象,加深偏振的基本概念.2. 了解偏振光的产生和检验方法。

3。

观测椭圆偏振光和圆偏振光。

二、实验仪器偏振光观察与研究的实验装置包括一下几个部分:光源(可发出多种类型激光),偏振片,波晶片(λ/2 和λ/4 波长),光屏。

1.光源:双击实验桌上光源小图标弹出光源的调节窗体.单击调节窗体的光源开关可以切换光源开关状态;可以选择光源发出光的类型,包括自然光、椭圆偏振光、圆偏振光、线偏振光、部分偏振光。

光源默认发出是自然光.2.偏振片:双击桌面上偏振片小图标,弹出偏振片的调节窗体。

初始化时偏振片的旋转角度是随机的,用户使用时需要手动去校准。

最大旋转范围为360°,最小刻度为1°。

可以通过点击调节窗体中旋钮来逆时针或顺时针旋转偏振片。

3.波晶片:分为λ/2 和λ/4 波长波片,双击桌面上波晶片小图标,弹出波晶片的调节窗体。

初始化时波晶片的旋转角度是随机的,用户使用时需要手动去校准.最大旋转范围为360°,最小刻度为1°。

三、实验原理1。

偏振光的概念和产生:光的偏振是指光的振动方向不变,或光矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆的现象。

光有五种偏振态:自然光(非偏振光),线偏振光,部分偏振光,圆偏振光,椭圆偏振光.反射光中的垂直于入射面的光振动(称s分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。

在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s分量)。

折射光为部分偏振光,而且此时的反射光线和折射光线垂直。

2. 改变偏振态的方法和器件:①光学棱镜:如尼科耳棱镜、格兰棱镜等,利用光学双折射的原理制成的;②偏振片:它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这些分子平行排列在同一方向上,此时胶膜只允许垂直于排列方向的光振动通过,因而产生线偏振光。

偏振光的观察与研究实验原理

偏振光的观察与研究实验原理

偏振光的观察与研究实验原理
偏振光是光学中的一个重要概念,它涉及到光的振动方向和传播方向的不对称性。

以下是偏振光的观察与研究实验原理:
1. 偏振光的定义:偏振光是指光的振动方向相对于传播方向具有不对称性。

只有横波才能产生偏振现象,而光波是一种电磁波,因此具有偏振性质。

2. 偏振光的分类:根据振动方向与传播方向的关系,偏振光可以分为自然光、线偏振光、局部偏振光、圆偏振光和椭圆偏振光五种。

3. 产生偏振光的方法:
利用光的反射和折射:当光在界面上反射或折射时,光的振动方向会发生变化。

通过调整入射角,可以在特定条件下获得线偏振光。

当入射角为布雷斯特角时,反射光成为完全线偏振光。

利用光学棱镜:尼科尔棱镜和格兰棱镜等光学棱镜可以将自然光转化为线偏振光。

利用偏振片:偏振片可以由自然光得到线偏振光,通过改变偏振片的放置角度,可以得到不同偏振态的光。

4. 改变光的偏振态的元件:波晶片。

平而偏振光垂直入射晶片,如果光轴平行于晶片表而,会产生双折射现象。

利用此特性,可以通过改变波晶片的放置角度来改变出射光的偏振态。

在实验中,通常会使用各种设备来观察和研究偏振光,例如偏振分束器、检偏器等。

通过调整这些设备的参数和角度,可以观察到不同偏振态的光的特性,进一步了解光的偏振性质。

总之,偏振光的观察与研究实验主要涉及光的反射、折
射、通过光学棱镜和偏振片产生偏振光的方法,以及利用波晶片改变光的偏振态的原理。

通过这些实验,可以深入了解光的偏振性质及其在光学中的应用。

偏振光的观察与研究教案

偏振光的观察与研究教案

偏振光的观察与研究一、实验简介光的偏振是指光的振动方向不变,或电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆的现象。

光的偏振最早是牛顿在1704~1706年间引入光学的;光的偏振这一术语是马吕斯在1809年首先提出的,并在实验室发现了光的偏振现象;麦克斯韦在1865~1873年间建立了光的电磁理论,从本质上说明了光的偏振现象。

按电磁波理论,光是横波,它的振动方向和光的传播方向垂直.自然光是各方向的振幅相同的光,对自然光而言,它的振动方向在垂直于光的传播方向的平面内可取所有可能的方向,没有一个方向占有优势。

若把所有方向的光振动都分解到相互垂直的两个方向上,则在这两个方向上的振动能量和振幅都相等.线偏振光是在垂直于传播方向的平面内,光矢量只沿一个固定方向振动。

部分偏振光可以看作自然光和线偏振光混合而成,即它有某个方向的振幅占优势。

圆偏振光和椭圆偏振光是光矢量末端在垂直于传播方向的平面上的轨迹呈圆或椭圆。

起偏器是将非偏振光变成线偏振光的器件;检偏器是用于鉴别光的偏振光状态的器件。

利用光的偏振现象在物理学方面可测量材料的厚度和折射率,可以了解材料的微观结构。

利用偏振光的干涉现象在力学上检测材料压力分布,应用于建筑工程学方面可以检测桥梁和水坝的安全度。

二、实验原理1.偏振光的概念和产生:2.改变偏振态的方法和器件:常见的起偏或检偏的元件构成有两种:1.光学棱镜。

如尼科耳棱镜、格兰棱镜等,它是利用光学双折射的原理制成的;2.偏振片。

它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这些分子平行排列在同一方向上,此时胶膜只允许垂直于排列方向的光振动通过,因而产生线偏振光.马吕斯定律:马吕斯在1809年发现,完全线偏振光通过检偏器后的光强可表示为I1 = I0 cos2α,其中的 是检偏器的偏振方向和入射线偏振光的光矢量振动方向的夹角:波晶片:又称位相延迟片,是从单轴晶体中切割下来的平行平面板,由于波晶片内的速度v o ,v e不同,所以造成o光和e光通过波晶片的光程也不同.当两光束通过波晶片后o光的位相相对于e光多延迟了Δ=2π(n0-n1)d/λ,若满足(n e-n o)d=±λ/4,即Δ=±π/2我们称之为λ/4片,若满足(n e-n o)d=±λ/2,即Δ=±π,我们称之为λ/2片,若满足(n e-n o)d=±λ,即Δ=2π我们称之为全波片。

偏振光的观察与研究报告

偏振光的观察与研究报告

实验报告课程名称:大学物理实验(一)实验名称:偏振光的观察与研究振现象在生活和生产中有广泛应用,比如利用偏振眼镜可以观看立体电影,用偏振片可以突出蓝天中的白云,在液晶显示器中可以控制字符显示,在显微镜中可用来检测样品的各向异性和双折射性,检测材料的结构、厚度、折射率和应力分布等。

光的偏振在建筑工程学方面可以检测桥梁和水坝的安全度。

起偏器和检偏器根据光学元件在实验中的作用,分为起偏器和检偏器。

起偏器是将自然光变成线偏振光的元件,检偏器是用于鉴别光的偏振态的元件。

产生偏振光的方式:1.光在界面的反射和透射:根据布儒斯特定律,入射角为一特定值时,反射光为完全线偏振光,折射光为部分偏振光。

2.光学棱镜:利于晶体的双折射原理得到的o光和e光是完全偏振光。

3.偏振片:利于有机分子(如聚乙烯醇)的平行排列,只允许垂直于排列方向的光振动通过,可以产生线偏振光。

该方法因工艺简单且价格便宜得到广泛应用,本实验中采用偏振片作为起偏器和检偏器。

马吕斯定律偏振光的研究从马吕斯定律开始,马吕斯定律也是最基本和最重要的偏振定律。

马吕斯于1809年发现,完全线偏振光通过检偏器后的光强可表示为:其中是检偏器的偏振方向和起偏器偏振方向的夹角。

波晶片波晶片又称位相延迟片,是改变光的偏振态的元件。

它是利用不同偏振方向的光在晶体中的传播速度不同来产生相位延迟的,传播速度较大()的振动方向成为快轴,传播速度较小()的振动方向称为慢轴。

设快轴和慢轴对应的折射率分别为,波片的厚度为,则光束通过波片后的光程差为:对应的相位差为•若光程差满足即相位差,我们称之波片。

•若光程差满足即相位差,我们称之2波片。

图5,波片的o轴与偏振方向平行图6,波片旋转图7,波片旋转上图坐标轴表示波晶片,o轴和e轴表示波片的快轴和慢轴方向,o和e轴相互垂直。

红色箭头表示自然光经过检偏器后的电矢量方向,实验中起偏器的设置始终不变。

绿色箭头表示偏振光经过波片后的偏振状态。

偏振光现象的观察和分析

偏振光现象的观察和分析

偏振光现象的观察和分析偏振光现象的观察和分析引⾔:光的偏振现象有法国⼯程师马吕斯⾸先发现。

对光偏振现象的研究清楚地显⽰了光的横波性,加深了⼈们对光传播规律的认识。

近年来光的偏振特性在光调制器、光开关、光学计量、应⼒分析、光信息处理、光通信、激光、光电⼦器件中都有⼴泛应⽤。

本实验利⽤偏振⽚和1/4波⽚观察光的偏振现象,并分析和研究各种偏振光。

从⽽了解1/4波⽚和1/2波⽚的作⽤及应⽤,加深对光偏振性质的认识。

实验原理1、偏振光的种类。

光可按光适量的不同振动状态分为五类:(1)线偏振光(2)⾃然光(3)部分偏振光(4)园偏振光(5)椭圆偏振光使⾃然光变成偏振光的装置称为起偏器,⽤来检验偏振光的装置称为检偏器。

2、线偏振光的产⽣。

(1)反射和折射产⽣偏振⾃然光以 i B =arc tan n 的⼊射⾓从空⽓⼊射⾄折射率为n 的介质表⾯上时,反射光为线偏振光。

以 i B ⼊射到⼀叠平⾏玻璃堆上的⾃然光,透射出来后也为线偏振光。

(2)偏振⽚。

利⽤某些晶体的⼆向⾊性可使通过他的⾃然光变成线偏振光。

(3)双折射产⽣偏振。

⾃然光⼊射到双折射晶体后,出射的o 光和e 光都为线偏振光。

3、波晶⽚4、线偏振光通过各种波⽚后偏振态的改变。

在光波的波⾯中取⼀直⾓坐标系,将电⽮量E 分解为两个分量E X 和E y ,他们频率相同都为ω,设E y 相对E X 的相位差为?φ,即有E X =A x cos ωt (2)E y =A y cos(ωt +?φ) (3)由(2)、(3)两式得,对于⼀般情况,两垂直振动的合成为: e 轴O 轴θ光轴图 1E x2 A x2+ E y2A y22 E x2 E y2A x2A y2cos?φ=sin2?φ(4)注意对于线偏振光通过波⽚的情况?φ取决于o光和e光⼊射时的相位差和由波晶⽚引起的相位差δ之和;⽽ E X为线偏振光振幅E在o轴的分量, E y为e轴的分量。

从上⾯垂直振动合成的⼀般情况出发可以得出以下结论:(1)线偏振光的振动⽅向与波⽚的光轴夹⾓为θ或π/2,或者通过1/2波⽚仍为线偏振光。

偏振光的观察和应用

偏振光的观察和应用

偏振光的观察和应用偏振光是指光波中的电矢量在特定方向上振动的光线。

在自然界中,大部分光波都是无偏振的,电矢量在所有方向都振动。

然而,通过使用适当的装置,可以将自然光转化为偏振光,并对其进行观察和应用。

观察偏振光最常见的方法是使用偏振片。

偏振片是一种具有特殊结构的光学材料,它可以选择性地透过一些方向的偏振光,同时阻挡其他方向的偏振光。

偏振片的制作是通过将一些光通过一系列的偏振器或滤光片来实现的。

这些滤光片的结构是由一些具有各向异性的材料制成的。

当自然光通过这些片时,它们会选择性地通过特定方向上的光线,抑制其他方向上的光线。

通过观察偏振光,可以进行一系列的实验和研究。

其中一个重要的应用领域是材料表征。

偏振光能够揭示材料中的结构和性质。

例如,通过研究偏振光在材料中的传播和反射,可以得到关于材料的折射率、密度、厚度和透明度等信息。

这对于材料的研究和应用具有重要意义,比如在光学和光电子器件的设计和制造中。

另一个应用偏振光的领域是显微镜观察。

透过偏振片装置,可以观察到样品中的偏振光现象。

这对于材料的质量检测、晶体学和生物学研究等领域非常有用。

例如,在矿物学中,可以通过偏振显微镜观察到岩石和矿物样品中的偏光现象,进而推断它们的组成和结构。

偏振光还有广泛的应用于光通信和光存储技术中。

在光通信中,偏振光可以用来传输信息。

光纤传输的光可以通过调整电矢量的方向来表示“0”和“1”的二进制位。

这种技术被称为偏振分束多路复用(Polarization Division Multiplexing),可以大大提高光纤通信的传输容量。

此外,在光存储技术中,利用了偏振光读写媒介,通过调整光的偏振方向来存储和读取信息。

在生物医学领域,偏振光也有重要的应用。

通过观察和分析组织和细胞样品中的偏振光,可以获得关于它们的形态、分子构成和变化的信息。

这对于疾病的早期诊断和治疗具有重要意义。

例如,在癌症诊断中,偏振光显微镜可以检测到组织和细胞中的异常现象,从而帮助医生做出准确的诊断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验( 9 )偏振光的观察与研究
班级18020S01 学号1802004137
姓名沈豹组别
日期2020-6-5 指导教师
一.实验目的
1.了解光的五种偏振状态。

2.了解偏振光元件和偏振光的检验。

3.掌握马吕斯定律。

二.实验仪器
偏振光观察与研究的实验装置包括以下几个部分:光源(可发出多种类型激光)偏振片、波晶片(λ/2和λ/4波长)、光屏。

三.实验原理
为了研究光的偏振态和利用光的偏振特性进行各种分析和测量工作,需要各种偏振元件:产生偏振光的元件、改变光的偏振态的元件等,下面分类介绍。

1.产生偏振光的元件
在激光器发明之前,一般的自然光源产生的光都是非偏振光,因此要产生偏振光都要使用产生偏振光的元件。

根据这些元件在实验中的作用,分为起偏器和检偏器。

起偏器是将自然光变成线偏振光的元件,检偏器是用于鉴别光的偏振态的元件。

在激光器谐振腔中可以利用布儒斯特角使输出的激光束是线偏振光。

将自然光变成偏振光的方法有很多,一个方法是利用光在界面反射和透射时光的偏振现象。

我们的先人在很早就已经对水平面的反射光有所研究,但定量的研究最早在1815年由布儒斯特完成。

反射光中的垂直于入射面的光振动(称s分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。

在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s分量)。

折射光为部分偏振光,而且此时的反射光线和折射光线垂直,这种现象称之为布儒斯特定律。

该方法是获得线
偏振光的方法之一。

如图1所示。

因为此时, , ,若=1(为空气的折射率),则
图1 布儒斯特定律原理图
叫做布儒斯特角,所以通过测量布儒斯特角的大小可以测量介质的折射率。

由以上介绍可以知道利用反射可以产生偏振光,同样利用透射(多次透射)也可以
产生偏振光(玻璃堆)。

图2 格兰棱镜起偏、检偏原理
第二种是光学棱镜,如尼科耳棱镜、格兰棱镜等,它是利用晶体的双折射的原理制
成的。

在晶体中存在一个特殊的方向(光轴方向),当光束沿着这个方向传播时,光束不
分裂,光束偏离这个方向传播时,光束将分裂为两束,其中一束光遵守折射定律叫做寻
常光(o光),另一束光一般不遵守折射定律叫做非寻常光(e光)。

o光和e光都是线偏振
光(也叫完全偏振光),两者的光矢量的振动方向(在一般使用状态下)互相垂直。

改变
射向晶体的入射光线的方向可以找到光轴方向,沿着这个方向,o光和e光的传播速度相等,折射率相同。

晶体可以有一个光轴,叫做单轴晶体,如方解石、石英,也可以有两
个光轴,叫双轴晶体,如云母、硫磺等。

包含光轴和任一光线的平面叫对应于该光线的
总成绩:
预习操作处理
主平面,o 光电矢量的振动方向垂直于o光主平面,e光电矢量的振动方向平行于e光主平
面。

格兰棱镜由两块方解石直角棱镜构成,两棱镜间有空气间隙,方解石的光轴平行于
棱镜的棱。

自然光垂直于界面射入棱镜后分为o光和e光,o光在空气隙上全反射,只有e
光透过棱镜射出。

第三种是偏振片,它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这
些分子平行排列在同一方向上,此时胶膜只允许垂直于排列方向的光振动通过,因而产
生线偏振光。

它的偏振性能不如格兰棱镜,但价格便宜,且可以得到大面积的应用。


实验中采用偏振片作为起偏器和检偏器。

2.波晶片:
又称位相延迟片,是改变光的偏振态的元件。

它是从单轴晶体中切割下来的平行平
面板,由于波晶片内的速度v
o
,v
e
不同(所以折射率也就不同),所以造成o光和e光通过
波晶片的光程也不同。

当两光束通过波晶片后o光的位相相对于e光延迟量为,
若满足,即我们称之为片,若满足
,即,我们称之为片,若满足
,即,我们称之为全波片(m为整数)。

波晶片可以用来检验和改变光的偏振态,如图3所示,在起偏器后加上一个波片,
旋转起偏器或波片就可以得到圆或者椭圆偏振光。

波片是椭偏仪中的重要元件,
而椭偏仪可以精确测量薄膜的厚度和折射率,是材料科学研究中常用的精密仪器。

图3 用波片改变光的偏振态
偏振光的研究从马吕斯定律开始,马吕斯定律也是最基本和最重要的偏振定律。


吕斯在1809年发现,完全线偏振光通过检偏器后的光强可表示为
其中的 是检偏器的偏振方向和起偏器偏振方向的夹角。

3.光的五种偏振态
自然光是各方向振幅相同的光,对自然光而言,它的振动方向在垂直于光的传播方
向的平面内可取所有可能的方向,没有一个方向占有优势.若把所有方向的光振动都分解
到相互垂直的两个方向上,则在这两个方向上的振动能量和振幅都相等.线偏振光是在垂
直于传播方向的平面内,光矢量只沿一个固定方向振动.部分偏振光可以看作自然光和线
偏振光混合而成,即它有某个方向的振幅占优势。

圆偏振光和椭圆偏振光是光矢量末端
在垂直于传播方向的平面上的轨迹呈圆或椭圆。

四.实验内容步骤
1.研究λ/4波片对偏振光的影响:
本实验所用仪器有:光源、偏振片(2个)、λ/4波晶片、光屏等。

光路图
(1)按光路图使偏振片A和B 的偏振轴正交(消光)。

然后插入一片λ/4波片C(实际
实验中要使光线尽量穿过元件的中心)。

(2)以光线为轴先转动C使消光,然后使B转过360°观察现象。

(3)再将C从消光位置转过15°、30°、45°、60°、75°、90°,每次都将B转过
360°,观察实验现象。

2.研究λ/2波片对偏振光的影响:
本实验所用仪器有:光源、偏振片(2个)、λ/2波片、光屏等。

光路图
(1)使偏振片A和B的偏振轴正交(消光),并在B和A之间再插入一个λ/2波片C。

(2)以光线为轴将λ/2波片C转动任意角度破坏消光现象,再将B转动360°,观察
消光现象。

五.数据记录
(1)研究1/4波长对偏振片的影响
(2)
与偏振片A的方向的夹角θ15 30 45 60 75 90 120
转动B到消光位置θ’120 150 0 30 60 90 150
线偏振光经1/2λ波晶片后
振动方向转过的角度
30 60 90 120 150 0 60
六.数据处理
(1)1/4波长可将线偏振光变成椭圆偏振光或圆偏振光;反之,它也可将圆偏振光
或椭圆偏振光变成线偏振光。

(2)半波片转动一定角度时,检偏器转动2倍的角度才能消光。

七.实验结果分析
真实可能导致的误差,2偏振片与激光不垂直;激光器发出的光未调成平行光;预热时间不够,激光不稳定;读数误差。

相关文档
最新文档