细胞的大小

合集下载

微生物细胞的大小测定

微生物细胞的大小测定
定义
电子显微镜图像分析法是通过电 子显微镜获取微生物细胞的图像,
然后利用图像处理技术进行分析 和测量的方法。
优点
可以获得高分辨率和高清晰度的细 胞图像,通过图像处理技术可以实 现自动化测量,提高测量效率。
缺点
需要昂贵的电子显微镜设备,且图 像处理技术需要专业知识和技能。
04 微生物细胞大小的生理意 义
05 微生物细胞大小的测定实 例
单个细胞大小的测定实例
测量方法
注意事项
使用显微镜和测量工具,如测微计或 显微镜测微器,对单个细胞进行直接 测量。
为保证测量准确性,应选择处于对数 生长期的细胞进行测量,避免细胞形 态不规则或重叠影响测量结果。
测量步骤
将微生物样品制备成临时装片,放置 在显微镜载物台上,调整焦距使细胞 清晰可见,使用测量工具对单个细胞 进行长、宽、高的测量。
缺点
测量过程较为繁琐,需要 经验丰富的实验员操作, 且容易受到观察者的主观 影响。
染色法
定义
染色法是通过染色剂对微 生物细胞进行染色,使其 更容易观察和测量的方法。
优点
染色后细胞轮廓清晰,易 于观察和测量,可以提高 测量的准确性和精度。
缺点
染色过程可能对细胞造成 损伤,影响其生理状态和 活性。
电子显微镜图像分析法
微生物细胞大小与生长速率的关系
总结词
微生物细胞的大小与其生长速率密切相关。一般来说,较小的细胞具有更快的生长速度,因为它们具有更高的表 面积与体积比,有利于物质交换和能量代谢。
详细描述
微生物细胞的生长速率与其大小呈负相关。较小的细胞具有更大的表面积与体积比,这使得它们能够更有效地进 行物质交换和能量代谢,从而支持更快的生长速度。例如,细菌的繁殖速度通常与其大小呈负相关,较小的细菌 在适宜条件下能够更快地繁殖。

细胞大小与物质扩散的关系

细胞大小与物质扩散的关系

细胞大小与物质扩散的关系细胞是构成生物体的基本单位,它们的大小对于物质扩散起着重要的影响。

细胞通过细胞膜与外界环境进行物质交换,而细胞膜的特性与细胞的大小息息相关。

本文将从细胞大小对物质扩散速率的影响、细胞大小对细胞膜表面积与体积比例的影响以及细胞大小对细胞内物质运输的影响三个方面展开讨论。

细胞大小对物质扩散速率有着直接的影响。

物质扩散是指溶质从高浓度区域向低浓度区域的自发性运动。

根据菲克定律,扩散速率与扩散系数和浓度梯度成正比,与扩散距离成反比。

细胞越小,细胞内外浓度梯度越大,扩散速率也就越快。

这是因为细胞内部的物质可以更快地与细胞外部环境进行交换,从而加快了物质的扩散速率。

细胞大小对细胞膜表面积与体积比例也有着重要的影响。

细胞膜是细胞与外界环境之间物质交换的关键界面,它的表面积与体积比例决定了细胞膜对物质扩散的有效性。

当细胞变大时,细胞膜的表面积增加的速率不及体积增加的速率,导致细胞膜表面积与体积比例下降。

这就意味着细胞膜对物质扩散的效率会降低,物质交换速度会减慢。

细胞大小对细胞内物质运输也会产生影响。

细胞内的物质运输主要通过细胞质中的胞浆流动来实现。

当细胞变大时,胞浆流动速度会减慢,从而影响了物质在细胞内的运输速率。

此外,细胞内物质的扩散也受到细胞内膜的影响。

细胞内膜的存在会限制细胞内物质的自由扩散,使得物质的运输速率减慢。

因此,细胞越大,细胞内物质的运输速率越慢。

细胞大小与物质扩散有着密切的关系。

细胞越小,物质扩散速率越快;细胞越大,细胞膜表面积与体积比例越低,物质交换效率越低;细胞越大,细胞内物质运输速率越慢。

因此,在研究细胞的物质交换过程时,需要考虑细胞的大小对物质扩散的影响,以便更准确地理解细胞内外物质的交换机制。

希望本文能对读者对细胞大小与物质扩散的关系有所启发。

植物细胞与动物细胞的结构比较

植物细胞与动物细胞的结构比较

植物细胞与动物细胞的结构比较细胞是生命的基本单位,而植物细胞和动物细胞是构成植物和动物身体的基本组织单位。

虽然两者都是细胞,但它们在结构上存在着一些显著的差异。

本文将比较植物细胞和动物细胞的结构,以探讨它们之间的不同之处。

一、细胞壁:植物细胞通常拥有细胞壁,而动物细胞则没有。

细胞壁是由纤维素等物质构成的坚硬的外部层,能够提供形态支持和防止细胞膨胀。

动物细胞缺乏细胞壁,因此较为柔软和灵活。

二、细胞大小:植物细胞一般较大,通常在10-100微米之间,而动物细胞大小则相对较小,一般在10-30微米之间。

这是由于植物细胞需要较大的细胞体积来储存养分和水分,以适应阳光合成等功能的需要。

三、细胞形态:植物细胞通常呈现规则的方形或长方形形态,而动物细胞则呈现各种形状,如圆形、多边形等。

这是由于细胞壁对植物细胞形态的限制,而动物细胞则较为灵活。

四、液泡:植物细胞通常含有较大的液泡,起到储存水分、养分和废物的作用。

而动物细胞内部则相对较少含有液泡。

这是由于植物细胞需要应对大量水分和养分的吸收和储存,而动物细胞的水分和养分管理则相对较为简单。

五、叶绿体:植物细胞具有叶绿体,这是一种特殊的细胞器,能够进行光合作用。

叶绿体能够吸收阳光能量并转化为化学能以供细胞使用。

而动物细胞则不含有叶绿体,无法进行光合作用。

六、中心体:动物细胞中常含有中心体,它参与细胞有丝分裂过程。

而植物细胞中则没有明显的中心体。

这是植物细胞和动物细胞在有丝分裂中的一个区别点。

七、紧密连接:植物细胞之间常通过紧密连接组成组织和器官,形成稳固的结构。

而动物细胞之间的连接则相对较少,多为薄而柔软的细胞膜。

综上所述,植物细胞与动物细胞在结构上存在着明显的差异。

植物细胞具有细胞壁、较大的细胞大小、规则的形态、较大的液泡和叶绿体等特征。

而动物细胞则较为柔软、大小较小、形态多样、少量液泡和无叶绿体。

这些差异使得植物细胞和动物细胞各自适应了不同的环境和功能需求。

通过对比和理解两者的结构差异,不仅能够加深对生物细胞的认识,还能够为进一步研究生物学提供有益的参考。

微生物细胞大小的测定方法

微生物细胞大小的测定方法

微生物细胞大小测定一、实验目的了解目镜测微尺和镜台测微尺的构造和使用原理,掌握微生物细胞大小的测定方法。

二、实验原理微生物细胞的大小是微生物重要的形态特征之一,由于菌体很小,只能在显微镜下来测量。

用于测量微生物细胞大小的工具有目镜测微尺和镜台测微尺。

目镜测微尺(图-1 )是一块圆形玻片,在玻片中央把5mm长度刻成50等分,或把10 mm长度刻成100等分。

测量时,将其放在接目镜中的隔板上(此处正好与物镜放大的中间像重叠)来测量经显微镜放大后的细胞物象。

由于不同目镜、物镜组合的放大倍数不相同,目镜测微尺每格实际表示的长度也不一样,因此目镜测微尺测量微生物大小时须先用置于镜台上的镜台测微尺校正,以求岀在一定放大倍数下,目镜测微尺每小方格所代表的相对长度。

镜台测微尺(图20-2 )是中央部分刻有精确等分线的载玻片,一般将Imm等分为100格,每格长I0 μm (即0.0lmm ),是专门用来校正目镜测微尺的。

校正时,将镜台测微尺放在载物台上,由于镜台测微尺与细胞标本是处于同一位置,都要经过物镜和目镜的两次放大成象进入视野,即镜台测微尺随着显微镜总放大倍数的放大而放大,因此从镜台测微尺上得到的读数就是细胞的真实大小,所以用镜台测微尺的已知长度在一定放大倍数下校正目镜测微尺,即可求岀目镜测微尺每格所代表的长度,然后移去镜台测微尺,换上待测标本片,用校正好的目镜测微尺在同样放大倍数下测量微生物大小。

三、实验器材1 .活材料:酿酒酵母(SaCCharomyCeS CereViSiae )、枯草杆菌(BaCCiIlUS SUbtiliS )染色标本片。

2 •器材:显微镜、目镜测微尺、镜台测微尺、擦镜纸。

四、实验方法1•目镜测微尺的校正把目镜的上透镜旋下,将目镜测微尺的刻度朝下轻轻地装入目镜的隔板上,把镜台测微尺置于载物台上,刻度朝上。

先用低倍镜观察,对准焦距,视野中看清镜台测微尺的刻度后,转动目镜,使目镜测微尺与镜台测微尺的刻度平行,移动推动器,使两尺重叠,再使两尺的“ 0”刻度完全重合,定位后,仔细寻找两尺第二个完全重合的刻度,计数两重合刻度之间目镜测微尺的格数和镜台测微尺的格数。

微生物细胞大小的测定方法

微生物细胞大小的测定方法

微生物细胞大小测定一、实验目得了解目镜测微尺与镜台测微尺得构造与使用原理,掌握微生物细胞大小得测定方法. 二、实验原理微生物细胞得大小就是微生物重要得形态特征之一,由于菌体很小,只能在显微镜下来测量。

用于测量微生物细胞大小得工具有目镜测微尺与镜台测微尺。

目镜测微尺(图-1)就是一块圆形玻片,在玻片中央把5mm长度刻成50等分,或把10 mm长度刻成100等分。

测量时,将其放在接目镜中得隔板上(此处正好与物镜放大得中间像重叠)来测量经显微镜放大后得细胞物象。

由于不同目镜、物镜组合得放大倍数不相同,目镜测微尺每格实际表示得长度也不一样,因此目镜测微尺测量微生物大小时须先用置于镜台上得镜台测微尺校正,以求出在一定放大倍数下,目镜测微尺每小方格所代表得相对长度.镜台测微尺(图20-2)就是中央部分刻有精确等分线得载玻片,一般将lmm等分为100格,每格长l0μm(即0、0lmm),就是专门用来校正目镜测微尺得.校正时,将镜台测微尺放在载物台上,图1目镜测微尺图2 镜台测微尺由于镜台测微尺与细胞标本就是处于同一位置,都要经过物镜与目镜得两次放大成象进入视野,即镜台测微尺随着显微镜总放大倍数得放大而放大,因此从镜台测微尺上得到得读数就就是细胞得真实大小,所以用镜台测微尺得已知长度在一定放大倍数下校正目镜测微尺,即可求出目镜测微尺每格所代表得长度,然后移去镜台测微尺,换上待测标本片,用校正好得目镜测微尺在同样放大倍数下测量微生物大小。

三、实验器材1.活材料:酿酒酵母(Saccharomyces cerevisiae)、枯草杆菌(Baccillussubtili s)染色标本片。

2。

器材:显微镜、目镜测微尺、镜台测微尺、擦镜纸。

四、实验方法1.目镜测微尺得校正把目镜得上透镜旋下,将目镜测微尺得刻度朝下轻轻地装入目镜得隔板上,把镜台测微尺置于载物台上,刻度朝上.先用低倍镜观察,对准焦距,视野中瞧清镜台测微尺得刻度后,转动目镜,使目镜测微尺与镜台测微尺得刻度平行,移动推动器,使两尺重叠,再使两尺得“0”刻度完全重合,定位后,仔细寻找两尺第二个完全重合得刻度,计数两重合刻度之间目镜测微尺得格数与镜台测微尺得格数.因为镜台测微尺得刻度每格长l0μm,所以由下列公式可以算出目镜测微尺每格所代表得长度.例如目镜测微尺5小方格正好与镜台测微尺5小方格重叠,已知镜台测微尺每小方格为l0μm,则目镜测微尺上每小方格长度为=5×10μm/5=10μm用同法分别校正在高倍镜下与油镜下目镜测微尺每小方格所代表得长度。

微生物细胞大小的测定方法

微生物细胞大小的测定方法

微生物细胞大小测定一、实验目的了解目镜测微尺与镜台测微尺的构造与使用原理,掌握微生物细胞大小的测定方法。

二、实验原理微生物细胞的大小就是微生物重要的形态特征之一,由于菌体很小,只能在显微镜下来测量。

用于测量微生物细胞大小的工具有目镜测微尺与镜台测微尺。

目镜测微尺(图-1)就是一块圆形玻片,在玻片中央把5mm长度刻成50等分,或把10 mm长度刻成100等分。

测量时,将其放在接目镜中的隔板上(此处正好与物镜放大的中间像重叠)来测量经显微镜放大后的细胞物象。

由于不同目镜、物镜组合的放大倍数不相同,目镜测微尺每格实际表示的长度也不一样,因此目镜测微尺测量微生物大小时须先用置于镜台上的镜台测微尺校正,以求出在一定放大倍数下,目镜测微尺每小方格所代表的相对长度。

镜台测微尺(图20-2)就是中央部分刻有精确等分线的载玻片,一般将lmm等分为100格,每格长l0μm(即0、0lmm),就是专门用来校正目镜测微尺的。

校正时,将镜台测微尺放在载物台上,图1目镜测微尺图2 镜台测微尺由于镜台测微尺与细胞标本就是处于同一位置,都要经过物镜与目镜的两次放大成象进入视野,即镜台测微尺随着显微镜总放大倍数的放大而放大,因此从镜台测微尺上得到的读数就就是细胞的真实大小,所以用镜台测微尺的已知长度在一定放大倍数下校正目镜测微尺,即可求出目镜测微尺每格所代表的长度,然后移去镜台测微尺,换上待测标本片,用校正好的目镜测微尺在同样放大倍数下测量微生物大小。

三、实验器材1.活材料:酿酒酵母(Saccharomyces cerevisiae)、枯草杆菌(Baccillus subtilis)染色标本片。

2.器材:显微镜、目镜测微尺、镜台测微尺、擦镜纸。

四、实验方法1.目镜测微尺的校正把目镜的上透镜旋下,将目镜测微尺的刻度朝下轻轻地装入目镜的隔板上,把镜台测微尺置于载物台上,刻度朝上。

先用低倍镜观察,对准焦距,视野中瞧清镜台测微尺的刻度后,转动目镜,使目镜测微尺与镜台测微尺的刻度平行,移动推动器,使两尺重叠,再使两尺的“0”刻度完全重合,定位后,仔细寻找两尺第二个完全重合的刻度,计数两重合刻度之间目镜测微尺的格数与镜台测微尺的格数。

细胞的大小形态级类型

细胞的大小形态级类型

1858年
1838年
1839年
精选文本
4
1665年
1665年,英国科学家胡克用自 己设计与制造的的简易显微镜观察 栎树软木塞切片时,发现其中有许 多小室,他把这些小室称为细胞, 实际上胡克当时看到的是细胞壁。 这是人类发现细胞的第一步。
精选文本
5
1838年
1838年,德国植物学家施莱登使 用分辨率达1µm的显微镜,观察了大量 的植物组织后提出:“植物,不论发展 到多么高级,都是由充分个体化的、
·细胞的形态
·细胞的大小
精选文本
27
细胞内在的结构、自身的 表面张力和外部的机械压力等 相互作用,使各种细胞总能保 持一定的形态。
精选文本
28
显微结构: 光学显微镜下观察到的细胞结构 其直径一般在0.2μm以上。
亚显微结构:电子显微镜下观察到的细胞结构 其直径一般在0.2μm以下。
思考:显微结构 亚显微结构
3、真核细胞的结构
结构模式图
精选文本
32
原核细胞与真核细胞的比较
较小(1~10µm)
较大(10~100µm)
有(支原体除外)
植物细胞和真菌细胞有, 动物细胞无
原核细胞与真核细胞相似
只有分散的核糖体, 无其 他细胞器
有各种细胞器
没有成形的细胞核,组成 核的物质集中在核区,称
有成形的、真正的细胞核。 有核膜,有核仁。
精选文本
1
学习目标
1.概述细胞学说建立的过程、内容及意义 2.举例说出细胞的大小和形态 3.区分显微结构和亚显微结构 4.区别原核细胞与真核细胞
精选文本
2
细胞学说的建立与发展
生物科学研究的重要工具—— 显微镜

细胞大小

细胞大小

一、教材分析1.教学内容的地位与作用“细胞大小与物质运输的关系”是人教版《普通高中课程标准实验教科书生物1必修分子与细胞》第6章“细胞的生命历程”中的第一节“细胞增殖”中的一个实验。

把本实验安排在“细胞分裂”内容之前,目的在于先让学生通过探究,知道细胞不能无限长大的原因,明白了细胞分裂的必要性,再来学习细胞分裂,体现知识的系统性。

本课时内容还与后续模块中微生物的代谢、细胞进化有着紧密联系。

2.教学内容的重点和难点①重点:探究细胞大小与物质运输的关系。

(依据:这是本实验要探究的主题,通过探究得出“细胞不能无限长大”的原理。

)②难点:利用模型探究细胞表面积与体积的关系;理解细胞越小表面积越大、越有利于物质交换的原理。

(依据:由于客观条件的限制,只能进行模拟实验,要借助逻辑推理和想象、迁移才能得出合乎事实规律的认识。

)课时安排1课时。

学情分析1.知识基础学生在初中已经学习过“细胞通过分裂产生新细胞”“受精卵通过细胞分裂和分化形成组织器官”等知识,也具有相应的化学知识,知道本实验中NaOH与酚酞的显色原理。

2.能力基础学生在本模块前面的学习中,已经进行过其他的探究活动,对探究实验的过程和方法有一定的认识,在操作技能上也有一定的基础。

3.心理基础①有的学生比较喜欢动手操作,但不愿意深入思考;②有的学生习惯于老师说什么就记什么,缺乏探究精神;③学生普遍习惯于对直观事物的观察和描述,现用模型来代替细胞具有一定的抽象性,需要学生运用联想迁移进行思考,存有一定的难度。

三、教学目标1.知识目标①理解细胞表面积与体积的关系,以及细胞大小与物质进出的关系;②理解细胞越小表面积越大、越有有利于物质交换;③概述细胞不能无限长大的原因。

2.能力目标学会用数据、表格分析问题。

3.情感态度与价值观①培养学生合作精神;②培养学生实事求是的科学态度和严谨认真的治学精神。

四、教法、学法教法1.情景唤起法:从学生熟悉的生活例子和经验出发,将感性直观的认识上升为理论知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档