抗干扰措施
解决抗干扰措施

解决抗干扰措施
解决抗干扰问题可从解决来自自动化装置内部干扰和外部干扰两个方面来考虑。
(1) 微机保护测控装置①硬件采取接地、屏蔽、抑弧(如二极管跨接于线圈)、光电隔离、数字滤波、退耦、软件陷阱、自检等措施抑制或消除干扰。
②装置外壳采用导电箱体,改善设备接地性能和防磁能力。
③要对元器件老化筛选严格把关,保证其性能的稳定。
尽量切断各种电磁耦合的途径。
注意保证光电耦合器件的耐压水平。
④尽可能采用直流220V供电。
采用不停电电源时宜采用在线式UPS或不停电逆变电源。
若采用交流电源宜加低通滤波器和1:1隔离变压器,以抑制和消除高频干扰信号。
⑤对于保护和外回路直接相连的部分,应经过光耦回路隔离。
⑥必要时在软件中增加延时模块,消除伪遥信。
如针对信...。
抗干扰的措施主要包括屏蔽、隔离、滤波、接地和软件

数控车床如何抗干扰数控车床作为cnc机床自然也会像其他的电子仪器仪表一样受到众多的干扰,所以面对有可能发生的干扰我们必须有应对的措施,抗干扰的措施主要包括屏蔽、隔离、滤波、接地和软件处理等。
①屏蔽技术:屏蔽是目前采用最多也是最有效的一种方式。
屏蔽技术切断辐射电磁噪声的传输途径通,常用金属材料或磁性材料把所需屏蔽的区域包围起来,使屏蔽体内外的场相互隔离,切断电磁辐射信号,以保护被屏蔽体免受干扰,屏蔽分为电场屏蔽、磁场屏蔽及电磁屏蔽。
在实际工程应用时,对于电场干扰时,系统中的强电设备金属外壳(伺服驱动器、变频器、驱动器、开关电源、电机等)可靠接地实现主动屏蔽;敏感设备如智能纠错装置等外壳应可靠接地,实现被动屏蔽;强电设备与敏感设备之间距离尽可能远;高电压大电流动力线与信号线应分开走线,选用带屏蔽层的电缆,对于磁场干扰,选用高导磁率的材料,如玻莫合金等,并适当增加屏蔽体的壁厚;用双绞线和屏蔽线,让信号线与接地线或载流回线扭绞在一起,以便使信号与接地或载流回线之间的距离最近;增大线间的距离,使得干扰源与受感应的线路之间的互感尽可能地小;敏感设备应远离干扰源强电设备变压器等。
②隔离技术:隔离就是用隔离元器件将干扰源隔离,以防干扰窜入设备,保证电火花机床的正常运行。
常见的隔离方法有光电隔离、变压器隔离和继电器隔离等方法。
(1)光电隔离:光电隔离能有效地抑制系统噪声,消除接地回路的干扰。
在智能纠错系统的输入和输出端,用光耦作接口,对信号及噪声进行隔离;在电机驱动控制电路中,用光耦来把控制电路和马达高压电路隔离开。
(2)变压器隔离是一种用得相当广泛的电源线抗干扰元件,它最基本的作用是实现电路与电路之间的电气隔离,从而解决地线环路电流带来的设备与设备之间的干扰,同时隔离变压器对于抗共模干扰也有一定作用。
隔离变压器对瞬变脉冲串和雷击浪涌干扰能起到很好的抑制作用,对于交流信号的传输,一般使用变压器隔离干扰信号的办法。
电气工程中自动化设备的抗干扰措施

电气工程中自动化设备的抗干扰措施电气工程中自动化设备抗干扰措施是保证自动化设备稳定运行的重要手段,有效的抗干扰措施可以提高设备的可靠性和安全性。
本文将介绍一些常见的抗干扰措施。
1. 接地保护:良好的接地系统是抗干扰的基础。
通过良好的接地保护,可以减轻电气设备受到地面电流、雷电、电磁干扰等因素的影响。
2. 屏蔽措施:屏蔽是抗干扰的重要手段之一。
可以通过使用金属屏蔽或电磁波吸收材料对电气设备进行屏蔽,减少外部电磁干扰的影响。
3. 滤波措施:通过使用滤波器对电气设备进行滤波处理,可以消除电源线上的高频噪声和电磁干扰,保证设备的正常运行。
4. 绝缘措施:绝缘是电气设备保护的重要手段。
可以通过使用绝缘材料、绝缘墙等手段,提高设备的绝缘水平,避免电气设备受到外界干扰的影响。
5. 接线规范:合理的接线规范可以降低电气设备发生故障的概率。
在进行接线时,应尽量避免线缆交叉、过长、过密等情况,减少电气干扰。
6. 系统优化:通过对自动化系统进行优化,可以提高系统的抗干扰能力。
对控制系统进行参数调整、优化信号处理程序等。
7. 地域环境考虑:在电气设备的选址、建设和运行中,需要充分考虑设备所处环境的电磁环境、温度湿度等因素,做好相应的抗干扰措施。
8. 过电压保护:通过使用过电压保护设备,可以防止系统因外界雷电等因素引起的过电压,保护电气设备的安全运行。
10. 定期维护:定期进行设备的维护和检查,对于发现的故障和问题及时处理,保证设备的正常运行。
抗干扰措施是电气工程中保证自动化设备稳定运行的关键环节。
通过合理的接地保护、屏蔽措施、滤波措施、绝缘措施、合理的接线规范、系统优化、地域环境考虑、过电压保护、合理的线缆布置以及定期维护等措施的综合应用,可以有效降低外界干扰对设备的影响,提高自动化设备的可靠性和安全性。
电磁干扰解决方案

电磁干扰解决方案
《电磁干扰的解决方案》
随着现代科技的不断发展,电磁干扰问题也越来越突出。
电磁干扰指的是电磁场对设备或系统正常工作造成的影响,它可能导致通信中断、设备损坏甚至安全事故。
因此,如何解决电磁干扰成为了一个迫在眉睫的问题。
在面对电磁干扰问题时,我们可以采取以下解决方案:
1. 设备屏蔽:为了减少电磁干扰,可以在设备上采用屏蔽措施,如在电路板设计中添加屏蔽层、采用屏蔽壳体等,以阻隔外部电磁波的干扰。
2. 使用滤波器:在通信系统中,可以采用滤波器来削弱或者消除干扰信号,保证信号的稳定传输。
3. 地线布局优化:通过合理设计电子设备的地线布局,减少电磁干扰的传播,从而提高设备的抗干扰能力。
4. 电磁兼容性测试:在产品研发的早期阶段,进行电磁兼容性测试,及时发现并解决潜在的电磁干扰问题。
5. 频谱管理:在无线通信系统中,通过合理的频谱规划和管理,避免不同系统之间的频谱干扰,确保通信质量和可靠性。
总的来说,要解决电磁干扰问题,需要综合考虑设计、测试、
管理等多方面的因素。
通过合理的规划和技术手段,可以有效地解决电磁干扰问题,为现代科技的发展提供稳定的环境和保障。
辐射抗干扰

辐射抗干扰
辐射抗干扰是指在电磁环境中,电子设备抵御周围辐射干扰的能力。
电子设备在工作过程中会产生电磁辐射,同时也会受到周围电磁辐射的干扰。
这些干扰源包括无线电台、电视台、雷达、强电流等。
辐射干扰可能会导致设备性能下降,甚至引起设备故障。
为了提高设备的辐射抗干扰能力,可以采取以下措施:
1. 设备外壳和屏蔽:采用金属外壳和屏蔽结构,可以有效地防止外部电磁辐射进入设备内部。
2. 过滤器:在设备输入和输出端口处加装滤波器,过滤掉不必要的高频辐射信号。
3. 接地:良好的接地系统可以将辐射干扰导入地面,减少对设备的影响。
4. 隔离:对敏感的电子部件进行隔离,减少干扰信号的传播,保持设备的稳定性和工作性能。
5. 屏蔽线路:采用屏蔽线路来传输信号,减少干扰信号的入侵。
辐射抗干扰是电子设备设计和制造中必须考虑的重要因素,通过合理的设计和措施,可以提高设备的可靠性和稳定性,减少干扰对设备的影响。
抗干扰措施的基本原则

抗干扰措施的基本原则
抗干扰措施的基本原则是在电磁环境中保证设备正常运行,防止干扰对设备造成影响。
以下为抗干扰措施的基本原则:
1. 从源头上防止干扰。
通过设计和选择不易受干扰的设备和电路,在电磁环境中避免产生和辐射干扰信号。
2. 对设备进行屏蔽。
通过金属外壳、屏蔽罩等物理屏蔽措施阻挡干扰信号的入侵,避免对设备的干扰。
3. 采用滤波器。
通过在电源线路、信号线路等位置安装合适的滤波器,滤除干扰信号,保证设备正常运行。
4. 设计地线系统。
建立良好的地线系统,减小地线电阻和电感,避免地回路干扰。
5. 保持设备间距离。
在设备布局和安装时,保持设备间的距离,避免相互干扰。
6. 采用屏蔽材料。
在电磁环境恶劣的情况下,采用特殊的屏蔽材料进行屏蔽,提高设备的抗干扰能力。
综上所述,抗干扰措施的基本原则是通过从源头上防止干扰、物理屏蔽、滤波、地线系统、设备间距离和屏蔽材料等措施,保证设备在电磁环境中正常运行,避免干扰对设备造成影响。
- 1 -。
防电磁干扰的措施

防电磁干扰的措施引言在当今高科技发达的社会中,电子产品的普及已经无处不在。
然而,随之而来的电磁干扰问题也成为了一个严重的难题。
电磁干扰可以对电子设备的正常运行产生很大的影响,甚至导致设备故障。
因此,我们有必要采取一些措施来防止电磁干扰的发生。
本文将介绍一些常见的防电磁干扰的措施。
措施一:良好的电磁屏蔽电磁屏蔽是一种有效防止电磁干扰的手段,通过使用屏蔽材料来隔离电磁场的影响。
以下是一些常见的电磁屏蔽材料:•金属护罩:对于较小的设备,可以使用金属护罩来屏蔽电磁信号。
金属护罩可以将电磁信号导引到地面,从而防止其对设备的干扰。
•电磁屏蔽涂料:电磁屏蔽涂料可以在设备表面形成一层保护膜,阻止电磁信号的进入。
这种涂料通常使用铜或铝粉末作为主要成分。
•镀金屏蔽:将设备的外部表面镀上一层金属,可以有效地屏蔽电磁信号。
金属的良好导电性可以阻止电磁信号的进入。
良好的电磁屏蔽可以大大减少电磁干扰的发生,提高设备的可靠性和稳定性。
措施二:地线连接地线连接是防止电磁干扰的另一种重要手段。
良好的地线连接可以将电磁信号导引到地面,从而减少信号对设备的干扰。
以下是一些地线连接的重要注意事项:•地线长度:地线应尽可能短,以减少电流在地线上的阻抗。
长的地线会增加电流在地线上的损耗,降低地线的效果。
•地线材料:地线通常使用导电性能良好的材料,如铜或铝。
这些材料具有低电阻和良好的导电性能,有助于提高地线的效果。
•地线接地:地线应连接到地面的可靠的接地点。
接地点应选择在地下水位以下,以确保地线能够有效地导引电磁信号到地面。
良好的地线连接可以有效地减少电磁干扰的产生,提高设备的抗干扰能力。
措施三:滤波器的使用滤波器是另一种有效防止电磁干扰的措施。
它通过滤除电源线上的高频干扰信号,提供稳定的供电环境,从而减少电磁干扰的发生。
以下是一些常见的滤波器类型:•EMI滤波器:EMI滤波器主要用于滤除电磁干扰信号。
它可以安装在电源线入口处,提供良好的抗干扰能力。
无线信号抗干扰的几种处理方法

无线信号抗干扰的几种处理方法随着无线通信技术的发展和普及,无线信号的干扰问题也日益突出。
在无线通信中,干扰是指其他信号对目标信号的干扰和影响,导致信号质量下降,甚至无法正常传输。
为了保证无线通信的质量和稳定性,需要采取一系列的抗干扰措施。
本文将介绍几种常见的无线信号抗干扰的处理方法。
一、频谱分配和管理频谱是无线通信的基础资源,不同频段的信号之间相互干扰的概率较低。
因此,合理的频谱分配和管理是抗干扰的重要手段之一。
1. 频段规划:通过对不同应用场景的频段进行规划,避免不同信号之间的干扰。
比如,将WLAN和蓝牙信号分配到不同的频段,避免相互干扰。
2. 功率控制:合理控制信号的发射功率,避免信号间的干扰。
通过降低发射功率,可以减少信号的传播距离,从而减少干扰的可能性。
3. 频谱监测:定期对频谱进行监测,及时发现和处理干扰源。
通过频谱监测,可以了解当前频段的使用情况,及时调整频率或采取其他措施来降低干扰。
二、天线设计和布置天线是无线通信系统中的重要组成部分,合理的天线设计和布置可以有效减少干扰。
1. 天线选择:选择合适的天线类型和性能参数,以提高信号的接收和发送性能。
比如,使用有向天线可以减少信号间的互相干扰。
2. 天线布置:合理布置天线,避免天线之间的相互干扰。
天线之间的距离应足够远,避免近距离的干扰。
3. 天线指向性:根据实际需求调整天线的指向性,以减少干扰源对目标信号的影响。
通过调整天线的指向性,可以使天线主动屏蔽掉来自其他方向的干扰信号。
三、信号编码和调制技术信号编码和调制技术是抗干扰的重要手段之一,可以提高信号的可靠性和抗干扰能力。
1. 前向纠错编码:通过在数据中添加冗余信息,可以实现在一定范围内的错误检测和纠正。
常见的前向纠错编码有海明码、RS码等。
2. 调制技术:选择合适的调制方式和调制参数,以提高信号的抗干扰能力。
常见的调制技术有频移键控(FSK)、相位偏移键控(PSK)等。
四、信道选择和切换在无线通信中,信道选择和切换可以减少干扰信号对目标信号的影响,提高信号的可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抗干扰措施的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。
1、抑制干扰源
抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。
这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。
减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。
减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。
抑制干扰源的常用措施如下:
(1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。
仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。
(2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。
(3)给电机加滤波电路,注意电容、电感引线要尽量短。
(4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。
注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。
(5)布线时避免90度折线,减少高频噪声发射。
(6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。
2、切断干扰传播路径的常用措施
(1)充分考虑电源对单片机的影响。
电源做得好,整个电路的抗干扰就解决了一大半。
许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。
比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。
(2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。
控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。
(3)注意晶振布线。
晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。
此措施可解决许多疑难问题。
(4)电路板合理分区,如强、弱信号,数字、模拟信号。
尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离。
(5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。
A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求。
(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。
大功率器件尽可能放在电路板边缘。
(7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能。
3、提高敏感器件的抗干扰性能
提高敏感器件的抗干扰性能是指从敏感器件这边考虑尽量减少对干扰噪声的拾取,以及从不正常状态尽快恢复的方法。
提高敏感器件抗干扰性能的常用措施如下:
(1)布线时尽量减少回路环的面积,以降低感应噪声。
(2)布线时,电源线和地线要尽量粗。
除减小压降外,更重要的是降低耦合噪声。
(3)对于单片机闲置的I/O口,不要悬空,要接地或接电源。
其它IC的闲置端在不改变系统逻辑的情况下接地或接电源。
(4)对单片机使用电源监控及看门狗电路,如:IMP809,IMP706,IMP813,X25043,X25045等,可大幅度提高整个电路的抗干扰性能。
(5)在速度能满足要求的前提下,尽量降低单片机的晶振和选用低速数字电路。
(6)IC器件尽量直接焊在电路板上,少用IC座。
4、软件方面
(1)我习惯于将不用的代码空间全清成“0”,因为这等效于NOP,可在程序跑飞时归位;
(2)在跳转指令前加几个NOP,目的同1;
(3)在无硬件WatchDog时可采用软件模拟WatchDog,以监测程序的运行;
(4)涉及处理外部器件参数调整或设置时,为防止外部器件因受干扰而出错可定时将参数重新发送一遍,这样可使外部器件尽快恢复正确;
(5)通讯中的抗干扰,可加数据校验位,可采取3取2或5取3策略;
(6)在有通讯线时,如I^2C、三线制等,实际中我们发现将Data线、CLK线、INH线常态置为高,其抗干扰效果要好过置为低。
5、硬件方面
(1)地线、电源线的部线肯定重要了!
(2)线路的去偶;
(3)数、模地的分开;
(4)每个数字元件在地与电源之间都要104电容;
(5)在有继电器的应用场合,尤其是大电流时,防继电器触点火花对电路的干扰,可在继电器线圈间并一104和二极管,在触点和常开端间接472电容,效果不错!
(6)为防I/O口的串扰,可将I/O口隔离,方法有二极管隔离、门电路隔离、光偶隔离、电磁隔离等;
(7)当然多层板的抗干扰肯定好过单面板,但成本却高了几倍。
(8)选择一个抗干扰能力强的器件比之任何方法都有效,我想这点应该最重要。
因为器件天生的不足是很难用外部方法去弥补的,但往往抗干扰能力强的就贵些,抗干扰能力差的就便宜,正如台湾的东东便宜但性能却大打折扣一样!主要看各位的应用场合了!
PLC的主要抗干扰措施
电源的合理处理,抑制电网引入的干扰对于电源引入的电网干扰可以安装一台带屏蔽层的变比为1:1的隔离变压器,以减少设备与地之间的干扰,还可以在电源输入端串接LC滤波电路。
正确选择接地点,完善接地系统
良好的接地是保证PLC可靠工作的重要条件,可以避免偶然发生的电压冲击危害。
接地的目的通常有两个,其一为了安全,其二是为了抑制干扰。
完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一
PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。
接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。
例如电缆屏蔽层必须一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层,当发生异常状态如雷击时,地线电流将更大。
此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内又会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。
若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。
PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。
模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。
安全地或电源接地
将电源线接地端和柜体连线接地为安全接地。
如电源漏电或柜体带电,可从安全接地导入地下,不会对人造成伤害。
系统接地
PLC控制器为了与所控的各个设备同电位而接地,叫系统接地。
接地电阻值不得大于4Ω,一般需将PLC设备系统地和控制柜内开关电源负端接在一起,作为控制系统地。
信号与屏蔽接地
一般要求信号线必须要有唯一的参考地,屏蔽电缆遇到有可能产生传导干扰的场合,也要在就地或者控制室唯一接地,防止形成“地环路”。
信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地;多个测点信号的屏蔽双绞线与多芯对绞总屏蔽电缆连接时,各屏蔽层应相互连接好,并经绝缘处理,选择适当的接地处单点接点。
对变频器干扰的抑制
变频器的干扰处理一般有下面几种方式:
加隔离变压器,主要是针对来自电源的传导干扰,可以将绝大部分的传导干扰阻隔在隔离变压器之前
使用滤波器,滤波器具有较强的抗干扰能力,还具有防止将设备本身的干扰传
导给电源,有些还兼有尖峰电压吸收功能。
使用输出电抗器,在变频器到电动机之间增加交流电抗器主要是减少变频器输出在能量传输过程中线路产生电磁辐射,影响其它设备正常工作。