初三中考数学 不等式

合集下载

中考数学复习专题三-不等式和不等式组(解析版)

中考数学复习专题三-不等式和不等式组(解析版)

中考专题复习知识点1、不等式的解:能使不等式成立的未知数的值叫做不等式的解。

知识点2、不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。

知识点3、不等式的解集在数轴上的表示: (1)x >a :数轴上表示a 的点画成空心圆圈,表示a 的点的右边部分来表示;(2)x <a :数轴上表示a 的点画成空心圆圈,表示a 的点的左边部分来表示;(3)x ≥a :数轴上表示a 的点画成实心圆点,表示a 的点及表示a 的点的右边部分来表示;(4)x ≤a :数轴上表示a 的点画成实心圆点,表示a 的点及表示a 的点的左边部分来表示。

在数轴上表示大于3的数的点应该是数3所对应点的右边。

画图时要注意方向(向右)和端点(不包括数3,在对应点画空心圆圈)。

如图所示:同样,如果某个不等式的解集为x ≤-2, 那么它表示x 取-2左边的点 画实心圆点。

如图所示:总结:在数轴上表示不等式解集的要点: 小于向左画,大于向右画;无等号画空心圆圈,有等号画圆点。

知识点4、不等式的性质:(1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

知识点5、一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的不等式,叫做一元一次不等式。

知识点6、解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)未知数的系数化为1。

通过这些步骤可以把一元一次不等式转化为x >a (x ≥a )或x <a (x ≤a )的形式。

知识点7、一元一次不等式组:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。

知识点8、知识点9、解不等式组:求不等式组解集的过程叫做解不等式组。

知识点10、解一元一次不等式组的一般步骤:先分别解不等式组中的各个不等式,然后再求出这几个不等式解集的公共部分。

中考数学复习:函数与方程、不等式的关系

中考数学复习:函数与方程、不等式的关系

中考数学复习:函数与方程、不等式的关系1.函数与方程的关系(1)关于x的一元二次方程ax2+bx+c=0(a≠0)的解⇔抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标的值;(2)关于x的一元二次方程ax2+bx+c=mx+n(am≠0)的解⇔抛物线y=ax2+bx+c (a≠0)与直线y=mx+n(m≠0)交点的横坐标的值.2.函数与不等式的关系(1)关于x的不等式ax2+bx+c>0(a≠0)的解集⇔抛物线y=ax2+bx+c(a≠0)位于x轴上方的所有点的横坐标的值;(2)关于x的不等式ax2+bx+c<0(a≠0)的解集⇔抛物线y=ax2+bx+c(a≠0)位于x轴下方的所有点的横坐标的值;(3)关于x的不等式ax2+bx+c>mx+n(ma≠0)的解集⇔抛物线y=ax2+bx+c(a≠0)位于直线y=mx+n(m≠0)上方的所有点的横坐标的值;(4)关于x的不等式ax2+bx+c<mx+n(ma≠0)的解集⇔抛物线y=ax2+bx+c(a≠0)位于直线y=mx+n(m≠0)下方的所有点的横坐标的值.例题讲解例1在平面直角坐标系xOy中,抛物线y=mx2-2mx-2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.若该抛物线在-2<x<-1这一段位于直线l:y=-2x+2的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的表达式.解:如图,因为抛物线的对称轴是x=1,且直线l与直线AB关于对称轴对称.所以抛物线在-1<x<0这一段位于直线l的下方.又因为抛物线在-2<x<-1这一段位于直线l的上方,所以抛物线与直线l的一个交点的横坐标为-1.当x=-1时,y=-2×(-1)+2=4,则抛物线过点(-1,4),将(-1,4)代入y=mx2-2mx-2,得m+2m-2=4,则m=2.所以抛物线的表达式为y=2x2-4x-2.例2已知y=ax²+bx+c(a≠0)的自变量x与函数值y满足:当-1≤x≤1时,-1≤y≤1,且抛物线经过点A(1,-1)和点B(-1,1).求a的取值范围.解:因为抛物线y=ax²+bx+c经过A(1,-1)和点B(-1,1),代入得a+b+c=-1,a-b+c=1,所以a+c=0,b=-1,则抛物线y=ax²-x-a,对称轴为x=12a.①当a<0时,抛物线开口向下,且x=12a<0,如图可知,当12a≤-1时符合题意,所以-12≤a<0.当-1<12a<0时,图像不符合-1≤y≤1的要求,舍去.②当a>0时,抛物线开口向上,且x=12a>0.如图可知,当12a≥1时符合题意,所以0<a≤12.当0<12a<1时,图像不符合-1≤y≤1的要求,舍去.综上所述,a的取值范围是-12≤a<0或0<a≤12.例3在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,'b)给出如下定义:1 '1b abb a ≥⎧=⎨-<⎩,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(﹣2,5)的限变点的坐标是(﹣2,﹣5).(1)若点P在函数y=﹣x+3(﹣2≤x≤k,k>﹣2)的图象上,其限变点Q的纵坐标b′的取值范围是﹣5≤b′≤2,求k的取值范围;(2)若点P在关于x的二次函数y=x2﹣2tx+t2+t的图象上,其限变点Q的纵坐标b′的取值范围是b′≥m或b′<n,其中m>n.令s=m﹣n,求s关于t的函数解析式及s的取值范围.解:(1)依题意,y=﹣x+3(x≥﹣2)图象上的点P的限变点必在函数y=313-21x xx x-+≥⎧⎨-≤<⎩的图象上.∴b′≤2,即当x=1时,b′取最大值2.当b′=﹣2时,﹣2=﹣x+3.∴x=5.当b′=﹣5时,﹣5=x﹣3或﹣5=﹣x+3.∴x=﹣2或x=8.∵﹣5≤b′≤2,由图象可知,k的取值范围是5≤k≤8.(2)∵y=x2﹣2tx+t2+t=(x﹣t)2+t,∴顶点坐标为(t,t).若t<1,b′的取值范围是b′≥m或b′<n,与题意不符.若t≥1,当x≥1时,y的最小值为t,即m=t;当x<1时,y的值小于﹣[(1﹣t)2+t],即n=﹣[(1﹣t)2+t].∴s=m﹣n=t+(1﹣t)2+t=t2+1.∴s关于t的函数解析式为s=t2+1(t≥1),当t=1时,s取最小值2,∴s的取值范围是s≥2.1);点B;5≤k≤8;s≥2.进阶训练1.若关于x 的一元二次方程x 2+ax +b =0有两个不同的实数根m ,n (m <n ),方程x 2+ax+b =1有两个不同的实数根p ,q (p <q ),则m ,n ,p ,q 的大小关系为( )A .m <p <q <nB .p <m <n <qC .m <p <n <qD .p <m <q <nB【提示】 函数y =x 2+ax +b 和函数y =x 2+ax +b -1的图像如图所示,从而得到p <m <n<q解:函数y =x 2+ax +b 如图所示: xq n m p O2.在平面直角坐标系xOy 中,p (n ,0)是x 轴上一个动点,过点P 作垂直于x 轴的直线,交一次函数y =kx +b 的图像于点M ,交二次函数y =x ²-2x -3的图像于点N ,若只有当-2<n <2时,点M 位于点N 的上方,求这个一次函数的表达式.y =-2x +1【提示】 依据题意并结合图像可知,一次函数的图像与二次函数的图像的交点的横坐标分别为-2和2,由此可得交点坐标分别为-2和2,由此可得交点坐标为(-2,5)和(2,-3)将交点坐标分别代入一次函数表达式即可3.在平面直角坐标系xOy中,二次函数y=mx2-(2m+1)x+m-5的图像与x轴有两个公共点,若m取满足条件的最小整数,当n≤x≤1时,函数值y的取值范围是-6≤y≤4-n,求n的值n的值为-2【提示】根据已知可得m=1.图像的对称轴为直线x=32.当n≤x≤1<32时,函数值y随自变量x的增大而减小,所以当x=1时,函数的值为-6,当x=n时,函数值为4-n.所以n2-3n-4=4-n,解得n=-2或n=4(不符合题意,舍去),则n的值为-2。

2023年中考数学重点知识专题----已知不等式解集求参数值或参数范围(含答案解析)

2023年中考数学重点知识专题----已知不等式解集求参数值或参数范围(含答案解析)

2023年中考数学重点知识专题----已知不等式解集求参数值或参数范围(含答案解析)◆ 题型一:已知不等式确定的解集,求参数值或者范围几种常见考法: ① {若我们计算的结果为a <x <b 而题中给的结果为1<x 2,因为不等(组)的解集是确定的,则{a =1b =2② {若我们计算到ax <a ,因为未知a 的正负,无法下一步运算而题中给的结果为x <1,根据不等式的性质,则a >0③ {若我们计算的结果为{x <bx <2而题中给的结果为x <2,根据不等式解集的取法,“同小取小”,则b ≥2④ {若我们计算的结果为{x <bx <2而题中给的结果为x <b ,根据不等式解集的取法,“同小取小”,则b ≤2⑤ {若我们计算的结果为{x >b x >2而题中给的结果为x >2,根据不等式解集的取法,“同大取大”,则b ≤2⑥ {若我们计算的结果为{x >b x >2而题中给的结果为x >b ,根据不等式解集的取法,“同大取大”,则b ≥21. (2022·河北·模拟预测)已知a 是自然数,如果关于x 的不等式(a -3) x >a -3的解集为x <1,那么a 的值为( )A .1,2B .1,2, 3C .0,1, 2D .2,3【答案】C【分析】根据不等式(a -3)x >a -3的解集为x <1,得a -3<0,即可求解. 【详解】解:∵(a -3)x >a -3,当不等式两边同时除以a -3,若a -3>0,不等式化为x >1, 若a -3<0,则不等式化为x <1, ∴a -3<0,即a <3,符合条件的自然数有0,1,2. 故选:C .【点睛】本题考查根据不等式解集求参数,熟练掌握根据不等式解集确定系数符号是解题的关键.2. (2022·四川成都·模拟预测)关于x 的不等式组{3x −1>4(x −1)x <m 的解集为3x <,那么m 的取值范围是( )A .m ≥3B .m >3C .m <3D .m =3【答案】A【分析】先解出第一个不等式的解集,再由不等式组的解集为3x <,即可求解. 【详解】解:{3x −1>4(x −1)①x <m ②,解不等式①得:3x <, ∵不等式组的解集为3x <, ∴m ≥3. 故选:A【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.1.(2022·重庆市第三十七中学校二模)若数a 既使得关于x 的不等式组{x−a 2+1≤x+a 3x −2a >6无解,又使得关于y的分式方程5y−2−a−y2−y =1的解不小于1,则满足条件的所有整数a 的和为( ) A .−4 B .−3 C .−2 D .−52.(2022·重庆·模拟预测)若关于x 的不等式组{3<0x −4>3(x −2)的解集为x <1,且关于x 的分式方程x+2x−1+m 1−x=3有非负整数解,则符合条件的m 的所有值的和是( )A .6B .8C .11D .143.(2022·重庆市开州区德阳初级中学模拟预测)若关于x 的一元一次不等式组{3x −2≥2(x +2)a −2x <−5的解集为x ≥6,且关于y 的分式方程y+2a y−1−8−3y 1−y=2的解是正整数,则所有满足条件的整数a 的个数是( )A .3B .4C .5D .64.(2022·河北·模拟预测)已知a是自然数,如果关于x的不等式(a-3) x>a-3的解集为x<1,那么a的值为() A.1,2 B.1,2,3 C.0,1,2 D.2,3【答案】C【分析】根据不等式(a-3)x>a-3的解集为x<1,得a-3<0,即可求解.【详解】解:∵(a-3)x>a-3,当不等式两边同时除以a-3,若a-3>0,不等式化为x>1,若a-3<0,则不等式化为x<1,∴a-3<0,即a<3,符合条件的自然数有0,1,2.故选:C.【点睛】本题考查根据不等式解集求参数,熟练掌握根据不等式解集确定系数符号是解题的关键. 5.(2022·山东德州·二模)已知不等式组{x2+3a ≤−22x +5>1的解集在数轴上表示如图所示,则a 的值为( )A .−56B .-1C .−13D .−166.(2022·广东·二模)已知不等式组{x +a ≥0x +b ≤0,的解集为2≤x ≤3,则(a −b)2022的值为( )A .1−B .2022C .1D .−2022【答案】C【分析】解不等式得出x≥-a ,x≤-b ,由不等式组的解集得出-b=3,-a=2,解之求得a 、b 的值,代入计算可得.【详解】解:由x+a≥0,得:x≥-a , 由x+b≤0,得:x≤-b , ∵解集是2≤x≤3, ∴-b=3,-a=2,解得:a=-2,b=-3,∴(a−b)2022=(−2+3)2022=1,故选:C.【点睛】本题考查了解一元一次不等式组,能求出不等式(或组)的解集是解此题的关键.7.(2022·四川成都·模拟预测)关于x的不等式组{3x−1>4(x−1)x<m的解集为3x<,那么m的取值范围是()A.m≥3B.m>3C.m<3D.m=3【答案】A【分析】先解出第一个不等式的解集,再由不等式组的解集为3x<,即可求解.【详解】解:{3x−1>4(x−1)①x<m②,解不等式①得:3x<,∵不等式组的解集为3x<,∴m≥3.故选:A【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.8.(2022·山东·日照市北京路中学二模)若关于x的不等式组{x+1<3x+124x−1≥3(a−x)的解集是x>1,关于y的分式方程ay−1=5y−8y−1−2的解为非负数,则所有符合条件的整数a的和为()A.-18 B.-15 C.0 D.2【答案】B【分析】根据不等式组的解集求出不等式的解集,确定a的取值范围,再根据分式方程的解是非负数确定a 的取值范围,注意排除增根的情况,最后两个a的取值范围合并,就可以算出所有整数a的和.【详解】解:x+1<3x+12,2x+2<3x+1,解得x>1,4x−1≥3(a−x),4x-1≥3a-3x,x≥3a+17,∵关于x 的不等式组的解集为x >1, ∴3a+17≤1,解得a≤2, 又∵ay−1=5y−8y−1−2的解为非负数,∴a=5y −8−2(y −1), ∴y=a+63≥0且y≠1,解得a≥-6且a≠-3,∴a 的取值范围为-6≤a≤2且a≠-3,符合条件的整数a 有:-6、-5、-4、-2、-1、0、1、2,所有的a 相加的和=(-6)+(-5)+(-4)+(-2)+(-1)+(0)+1+2 =-15. 故选:B .【点睛】本题考查含参的一元一次不等式组和含参的分式方程的解.注意含参的不等式的解法和增根的情况是解决本题的关键.9.(2020·河南·模拟预测)已知不等式组{2x −a <1x −4b >3的解集为﹣1<x <1,则(a +b )(b ﹣1)的值为_____.【点睛】本题考查不等式组的计算求解集,关键是和已知解集对应相等,求出a,b的值.10.(2022·甘肃武威·模拟预测)定义新运算“⊗”,规定:a⊗b=a−2b.若关于x的不等式x⊗m>3的解集为x>−1,则m的取值范围是________.【答案】m=-2【分析】根据定义的新运算得到x⊗m=x−2m>3,得x>3+2m,从而3+2m=-1,求得m的值.【详解】解:∵a⊗b=a−2b,∴x⊗m=x−2m,∵x⊗m>3,∴x−2m>3,∴x>2m+3,∵不等式x⊗m>3的解集为x>−1,∴2m+3=−1,∴m=-2,故答案为:m=-2.【点睛】本题考查了新定义运算在不等式的应用,解题的关键是准确理解新定义的运算.◆题型二:已知不等式的特殊解,求参数值或者范围若2<x<m恰有3个整数解,求m的取值范围。

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(试题部分)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1B .2C .3D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+B .22a b −>−C .a b −<−D .22a b <4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x <B .2x >C .<2x −D .2x >−5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m <B .1m <C .12m <<D .513m <<8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+B .55x y −<−C .55x y >D .55x y −>−9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥−B .2x ≤−C .2x >−D .2x <−10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .20.(2024·广西·中考真题)不等式7551x x +<+的解集为 .21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .22.(2024·吉林·中考真题)不等式组2030x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.24.(2024·福建·21x −<的解集是 .25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ; 27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可). 三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解. 29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解.30.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来. 31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①② 请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解.36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本; (2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a(a为正整数)折售出,最终获利1577元,请直接写出商店的进货方案.38.(2024·江苏扬州·中考真题)解不等式组260412xxx−≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a的点与原点的距离叫做数a的绝对值.数轴上表示数a,b的点A,B之间的距离()AB a b a b=−≥.特别的,当0a≥时,表示数a的点与原点的距离等于0a−.当a<0时,表示数a的点与原点的距离等于0a−.应用如图,在数轴上,动点A从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A,B之间的距离等于3个单位长度?(2)求点A,B40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(答案详解)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1 B .2 C .3 D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .【答案】A【分析】本题考查了一元一次不等式的解法及在数轴上表示不等式的解集.根据一元一次不等式的性质解出未知数的取值范围,在数轴上表示即可求出答案. 【详解】解:12x +≥,1x ∴≥.∴在数轴上表示如图所示:故选:A .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+ B .22a b −>− C .a b −<− D .22a b <【答案】D【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意; B .∵a b <,∴22a b −<−,则此项错误,不符题意; C .∵a b <,∴a b −>−,则此项错误,不符合题意; D .∵a b <,∴22a b <,则此项正确,符合题意; 故选:D .4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x < B .2x > C .<2x − D .2x >−【答案】A【分析】本题考查了解一元一次不等式.熟练掌握解一元一次不等式是解题的关键. 移项可得一元一次不等式的解集. 【详解】解:20x −<, 解得,2x <, 故选:A .5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .【答案】C【分析】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,先求出不等式组的解集,再在数轴上表示出不等式组的解集即可. 【详解】解:()322211x x x x −<⎧⎪⎨+≥−⎪⎩①② 解不等式①得,2x <, 解不等式②得,3x ≥−,所以,不等式组的解集为:32x −≤<,在数轴上表示为:故选:C .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤【答案】B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m −<⎧⎨<+⎩,得:31x x m <⎧⎨<+⎩,∵不等式组的解集为:3x <, ∴13m +≥, ∴2m ≥; 故选B .7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m < B .1m < C .12m <<D .513m <<【答案】B【分析】本题考查实数与数轴,求不等式组的解集,根据数轴上的数右边的比左边的大,列出不等式组,进行求解即可.【详解】解:由题意,得:214m m m −<<−, 解得:1m <; 故选B .8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+ B .55x y −<− C .55x y > D .55x y −>−【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意; B .两边都加上5−,不等号的方向不改变,故错误,不符合题意; C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意; D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意; 故选:C .9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥− B .2x ≤− C .2x >− D .2x <−【答案】A【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键. 【详解】解:移项得,34x x −≥−, 合并同类项得,24x ≥−, 系数化为1得,2x ≥−, 故选:A .10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变. 直接利用不等式的性质逐一判断即可. 【详解】解:1a b >−,A 、1a b +>,故错误,该选项不合题意;B 、12a b −>−,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意; 故选:D .12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤【答案】D【分析】本题考查的是解一元一次不等式组,分别求出各不等式的解集,再求出其公共解集即可.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:212321x x x x +>+⎧⎨+≥−⎩①②,解不等式①,得1x >, 解不等式②,得4x ≤, 故不等式组的解集为14x <≤. 故选:D .13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .【答案】C【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键. 【详解】不等式1x <的解集在数轴上的表示如下:.故选:C .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−【答案】A【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可. 【详解】根据题意1x −>,可得1x <−, A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <−,不符合题意;C 、此不等式组解集为<2x −,不符合题意;D 、此不等式组解集为31x −<<−,不符合题意; 故选:A15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .【答案】A【分析】本题考查解一元一次不等式组和在数轴上表示不等式的解集,先分别求出每一个不等式的解集,再根据不等式的解集在数轴上表示方法画出图示是解题的关键.【详解】解:()211326x x −≥⎧⎪⎨−>−⎪⎩①②,解不等式①,得:1x ≥, 解不等式②,得:4x <, ∴不等式组的解集为14x ≤<. 在数轴上表示如下: .故选:A .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ; ③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③【答案】C【分析】本题考查了二元一次方程、不等式的应用,设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b ,根据1班班长的对话,得180x ≤,350x a +=,然后利用不等式性质可求出170a ≥,即可判断①,③;根据2班班长的对话,得140b >,290y b +=,然后利用不等式性质可求出150y <,即可判断②.【详解】解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b , 根据1班班长的对话,得180x ≤,350x a +=, ∴350x a =− ∴350180a −≤, 解得170a ≥, 故①错误,③正确;根据2班班长的对话,得140b >,290y b +=,∴290b y =−, ∴290140y −>, ∴150y <, 故②正确, 故选:C .18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .【答案】1−(答案不唯一)【分析】本题考查一元一次不等式组的解法,解题的关键是正确掌握解一元一次不等式组的步骤.先解出一元一次不等式组的解集为13x −≤<,然后即可得出整数解.【详解】解:21215x x +≥⎧⎨−<⎩①②,由①得:1x ≥−, 由②得:3x <,∴不等式组的解集为:13x −≤<, ∴不等式组的一个整数解为:1−; 故答案为:1−(答案不唯一).20.(2024·广西·中考真题)不等式7551x x +<+的解集为 . 【答案】<2x −【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.【详解】解:移项得,7515x x −<−, 合并同类项得,24x <−, 系数化为1得,<2x −, 故答案为:<2x −.21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .不等式组22.(2024·吉林·中考真题)不等式组230x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.∴0x >,且x 为正整数, ∴x 的最小值为1,∴绿球的个数的最小值为3, ∴袋子中至少有3个绿球, 故答案为:3.24.(2024·福建·中考真题)不等式321x −<的解集是 . 【答案】1x <【分析】本题考查的是解一元一次不等式,通过移项,未知数系数化为1,求解即可解. 【详解】解:321x −<,33x <, 1x <,故答案为:1x <.25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .【答案】3x ≥/3x ≤【分析】本题主要考查了求不等式组的解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可. 【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >, ∴不等式组的解集为3x ≥, 故答案为:3x ≥.26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ;27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可).三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解.【答案】1,2.【分析】本题考查了求一元一次不等式的解集以及正整数解,先求出不等式的解集,进而可得到不等式的正整数解,正确求出一元一次不等式的解集是解题的关键. 【详解】解:去分母得,()131x x +≥−, 去括号得,133x x +≥−, 移项得,331x x −≥−−, 合并同类项得,24x −≥−, 系数化为1得,2x ≤, ∴不等式的正整数解为1,2.29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解. 【答案】2,3,4【分析】本题考查了解一元一次不等式组,熟练掌握知识点是解题的关键.先将3479x −<−≤变形为347479x x −<−⎧⎨−≤⎩,再解每一个不等式,取解集的公共部分作为不等式组的解集,再找出其中的整数解即可.【详解】解:由题意得347479x x −<−⎧⎨−≤⎩①②,解①得:1x >, 解②得:4x ≤,∴该不等式组的解集为:14x <≤, ∴整数解为:2,3,430.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来.这个不等式的解集在数轴上表示如下:31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①②请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______. 【答案】(1)1x ≤ (2)3x ≥− (3)见解析 (4)31x −≤≤【分析】本题考查的是解一元一次不等式,解一元一次不等式组;(1)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (2)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (3)根据前两问的结果,在数轴上表示不等式的解集; (4)根据数轴上的解集取公共部分即可. 【详解】(1)解:解不等式①得1x ≤,故答案为:1x ≤;(2)解:解不等式②得3x ≥−, 故答案为:3x ≥−;(3)解:在数轴上表示如下:(4)解:由数轴可得原不等式组的解集为31x −≤≤, 故答案为:31x −≤≤.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩ 【答案】17x −<<【分析】先求出每一个不等式的解集,再根据不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解”确定不等式组的解集.本题考查了一元一次不等式组的解法,熟练进行不等式求解是解题的关键.35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解. 【答案】整数解为:1,0,1−【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解.【详解】解:3121x x x +>⎧⎨−≤⎩①②解不等式①得:2x >−解不等式②得:1x ≤∴不等式组的解集为:21x −<≤,∴整数解为:1,0,1−36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?【答案】(1)书架上有数学书60本,语文书30本.(2)数学书最多还可以摆90本【分析】本题主要考查了一元一次方程及不等式的应用,解题的关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.(1)首先设这层书架上数学书有x 本,则语文书有(90)x −本,根据题意可得等量关系:x 本数学书的厚度(90)x +−本语文书的厚度84=,根据等量关系列出方程求解即可;(2)设数学书还可以摆m 本,根据题意列出不等式求解即可.【详解】(1)解:设书架上数学书有x 本,由题意得:0.8 1.2(90)84x x +−=,解得:60x =,9030x −=.∴书架上有数学书60本,语文书30本.(2)设数学书还可以摆m 本,根据题意得:1.2100.884m ⨯+≤,解得:90m ≤,∴数学书最多还可以摆90本.37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a (a 为正整数)折售出,最终获利1577元,请直接写出商店的进货方案. 【答案】(1)特级鲜品猴头菇每箱进价为40元,特级干品猴头菇每箱进价为150元(2)有3种方案,详见解析(3)特级干品猴头菇40箱,特级鲜品猴头菇40箱【分析】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)正确计算求解.(1)设特级鲜品猴头菇和特级干品猴头菇每箱的进价分别是x 元和y 元,根据“购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元”,列出方程组求解即可; (2)设商店计划购进特级鲜品猴头菇m 箱,则购进特级干品猴头菇()80m −箱,根据“获利不少于1560元,其中干品猴头菇不多于40箱,”列出不等式组求解即可;(3)根据(2)中三种方案分别求解即可;元和38.(2024·江苏扬州·中考真题)解不等式组260412x x x −≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a 的点与原点的距离叫做数a 的绝对值.数轴上表示数a ,b 的点A ,B 之间的距离()AB a b a b =−≥.特别的,当0a ≥时,表示数a 的点与原点的距离等于0a −.当a<0时,表示数a 的点与原点的距离等于0a −.应用如图,在数轴上,动点A 从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B 从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A ,B 之间的距离等于3个单位长度?(2)求点A ,B 到原点距离之和的最小值.【答案】(1)过4秒或6秒(2)3【分析】本题考查了一元一次方程的应用,不等式的性质,绝对值的意义等知识,解题的关键是:(1)设经过x 秒,则A 表示的数为3x −+,B 表示的数为122x −,根据“点A ,B 之间的距离等于3个单位长度”列方程求解即可;≤40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?【答案】(1)50元、30元(2)400棵【分析】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据“购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元”列方程组求解即可;(2)购买脐橙树苗a棵,根据“总费用不超过38000元”列不等式求解即可.【详解】(1)解:设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据题意,得211023190x y x y +=⎧⎨+=⎩, 解得5030x y =⎧⎨=⎩, 答:脐橙树苗和黄金贡柚树苗的单价分别为50元/棵,30元/棵;(2)解:设购买脐橙树苗a 棵,则购买黄金贡柚树苗()1000a −棵,根据题意,得()5030100038000a a +−≤,解得400a ≤,答:最多可以购买脐橙树苗400棵.41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩? 【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;(2)设种植甲作物a 亩,则种植乙作物()10a −亩,根据“所需学生人数不超过55人”列不等式求解即可.【详解】(1)解:设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据题意,得32272222x y x y +=⎧⎨+=⎩, 解得56x y =⎧⎨=⎩, 答:种植1亩甲作物和1亩乙作物分别需要5、6名学生;(2)解:设种植甲作物a 亩,则种植乙作物()10a −亩,。

九年级数学中考复习专题——方程与不等式(附答案)

九年级数学中考复习专题——方程与不等式(附答案)

知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。

(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。

(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。

知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。

初三不等式必考知识点

初三不等式必考知识点

初三不等式必考知识点不等式是初中数学中的一种重要的数学概念,也是初三数学的必考知识点之一。

通过学习不等式,可以帮助学生提高数学推理能力和问题解决能力。

本文将介绍初三不等式的基本概念、性质以及解题方法,帮助同学们系统地掌握这一知识点。

一、不等式的基本概念不等式是用不等号(>、<、≥、≤)连接的两个数或者两个代数式。

其中,大于(>)和小于(<)表示严格不等关系,大于等于(≥)和小于等于(≤)表示不严格不等关系。

例如,2x + 3 > 5是一个不等式。

二、不等式的性质 1. 两个不等式的加法性质:如果a > b,那么a + c > b + c,其中c是任意实数。

2. 两个不等式的减法性质:如果a > b,那么a - c > b - c,其中c是任意实数。

3. 两个不等式的乘法性质:如果a > b,且c > 0,那么ac > bc;如果a > b,且c < 0,那么ac < bc。

4. 两个不等式的除法性质:如果a > b,且c > 0,那么a/c > b/c;如果a > b,且c < 0,那么a/c < b/c。

5. 不等式的对称性:如果a > b,则b < a;如果a ≥ b,则b ≤ a。

6. 不等式的传递性:如果a > b,且b > c,则a > c。

三、不等式的解题方法 1. 代数法代数法是解不等式的一种常用方法。

通过运用不等式的性质和运算法则,将不等式转化为简单的形式,从而求得不等式的解集。

常用的代数法有以下几种: - 加减消元法:根据不等式的加法性质和减法性质,通过加或减相同的数使不等式两端的系数相等,从而得到简单的不等式。

- 乘除消元法:根据不等式的乘法性质和除法性质,通过乘或除相同的数使不等式两端的系数相等,从而得到简单的不等式。

中考数学中如何求解一元一次不等式

中考数学中如何求解一元一次不等式

中考数学中如何求解一元一次不等式关键信息项1、一元一次不等式的定义及一般形式名称:____________________________解释:____________________________2、求解一元一次不等式的基本步骤步骤 1:____________________________步骤 2:____________________________步骤 3:____________________________步骤 4:____________________________步骤 5:____________________________3、常见的不等式符号及其含义符号 1:____________________________含义 1:____________________________符号 2:____________________________含义 2:____________________________符号 3:____________________________含义 3:____________________________4、不等式的性质性质 1:____________________________性质 2:____________________________性质 3:____________________________11 一元一次不等式的定义一元一次不等式是指只含有一个未知数,且未知数的次数是 1,不等号两边都是整式的不等式。

其一般形式为:$ax + b > 0$(或$ax + b < 0$,$ax + b \geq 0$,$ax + b \leq 0$),其中$a$、$b$为常数,且$a \neq 0$。

111 与一元一次方程的区别一元一次方程是等式,而一元一次不等式是用不等号连接的式子。

方程的解是使等式成立的未知数的值,而不等式的解是使不等式成立的未知数的取值范围。

中考数学 专题04 代数之不等式(组 )问题(含解析)

中考数学 专题04 代数之不等式(组 )问题(含解析)

专题04 代数之不等式(组 )问题中考数学压轴题中不等式(组)问题较少,主要有含参数的不等式(组)问题,新定义的应用形成的不等式(组)问题,它们出现在选择和填空题中。

一、含参数的不等式(组)问题:1. 若关于x 的不等式2x m <03-恰好只有5个正整数解,则m 的取值范围是 。

【答案】10<m 43≤。

【考点】一元一次不等式的整数解。

2. 如果关于x 的不等式组:⎩⎨⎧≤-≥-0203b x a x ,的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对[a ,b]共有 个。

【答案】6.【解析】∵整数解仅有1,2,∴0<3a ≤1,2≤2b <3, 解得:0<a ≤3,4≤b <6,∴a=1,2,3,b=4,5,∴整数a ,b 组成的有序数对(a ,b )共有3×2=6个. 考点:一元一次不等式组的整数解.二、新定义的应用形成的不等式(组)问题:3. 定义:对于实数a ,符号[a]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(1)如果[a]=-2,那么a 的取值范围是 ___________.(2)如果321=⎥⎦⎤⎢⎣⎡+x ,满足条件的所有正整数x 有____________. 【答案】-3≤a ≤-2 5,6【解析】4. 阅读理解: 对非负实数x “四舍五入”到个位的值记为<x>,即:当n 为非负整数时,如果11n x <n 22-?,则<x>=n 。

如:<0>=<0.49>=0,<0.64>=<1.393>=1,<3>=3,<2.5>=<3.12>=3,…试解决下列问题:(1)填空:如果<3x -2>=4,则实数x 的取值范围为 ;(2)当x 0³,m 为非负整数时,求证:x m m x +=+;(3)求满足71x x 52=-的所有非负实数x 的值; 【答案】(1)1113x <66≤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点跟踪训练10 不等式(组)的应用一、选择题1.小颖准备用21元钱买笔和笔记本,已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买多少支笔? ( )A .1支B .2支C .3支D .4支答案 D解析 (21-2×4)÷3=13÷3=413,选D. 2.(2011·茂名)若函数y =m +2x的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( )A .m >-2B .m <-2C .m >2D .m <2答案 B解析 双曲线在其象限内y 随x 的增大而增大.可知m +2<0,m <-2.3.(2010·南州)关于x 、y 的方程组⎩⎪⎨⎪⎧ x -y =m +3,2x +y =5m 的解满足 x >y >0 ,则m 的取值范围是( )A. m >2B. m >-3C .-3<m <2D .m <3或m >2答案 A解析 解方程组,得⎩⎪⎨⎪⎧x =2m +1,y =m -2,于是2m +1>m -2>0,m >2. 4.一种灭虫药粉30千克,含药率是15%,现在要用含药率较高的同种灭虫药粉50千克和它混合,使混合后的含药率大于20%且小于35%,则所用药粉的含药率x 的范围是( )A .15%<x <23%B .15%<x <35%C .23%<x <47%D .23%<x <50%答案 C解析 依题意,得不等式:(30+50)×20%<30×15%+50×x %<(30+50)×35%160<45+5x <280,115<5x <235,∴23<x <47.5.(2011·烟台)如图,直线y 1=k 1x +a 与y 2=k 2x +b 的交点坐标为(1,2),则使y 1< y 2的x 的取值范围为( )A .x >1B .x >2C .x <1D .x <2答案 C解析 当x =1时,y 1=y 2=2;当x <1时,y 1<y 2;当x >时,y 1>y 2.二、填空题6.(2011·泉州)在函数y =x +4中,自变量x 的取值范围是________.答案 x ≥-4解析 当x +4≥0,即x ≥-4时,根式x +4有意义,所以自变量x 的取值范围是x ≥-4. 7.(2011·嘉兴)当x ________时,分式13-x有意义. 答案 x ≠3解析 当3-x ≠0,即x ≠3时,分式有意义.8.(2011·陕西)若一次函数y =(2m -1)x +3-2m 的图象经过 一、二、四象限,则m 的取值范围是________.答案 m <12解析 因为直线经过第一、二、四象限,所以⎩⎪⎨⎪⎧2m -1<0,3-2m >0,解之,得m <12. 9.(2011·临沂)有3人携带会议材料乘坐电梯,这3人的体重共210kg ,每捆材料20kg ,电梯最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载________捆材料.答案 42解析 设搭载x 捆材料,210+20x ≤1050,20x ≤840,x ≤42,最多还能搭载42捆.10.(2011·东营)如图,用锤子以相同的力将铁钉锤入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的13.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是a cm ,如铁钉总长度是6 cm ,则a 的取值范围是________.答案 5413≤a <92 解析 由题意,得⎩⎨⎧ a +13a <6,①a +13a +19a ≥6,②由①得a <92; 由②得a ≥5413.∴5413≤a <92. 三、解答题11.(2011·广州)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?解 (1)120×0.95=114(元).所以实际应支付114元.(2)设购买商品的价格为x 元,由题意得:0.8x +168<0.95x ,解得x >1120.所以当购买商品的价格超过1120元时,采用方案一更合算.12.(2011·绍兴)筹建中的城南中学需720套单人课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组,每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务,光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.解 ∵720÷6=120,∴光明厂平均每天要生产120套单人课桌椅.(2)设x 人生产桌子,则(84-x )人生产椅子,则⎩⎨⎧ x 5×12×(6-1)≥720,84-x 4×24×(6-1)≥720,解得⎩⎪⎨⎪⎧x ≥60,x ≤60. ∴x =60,84-x =24.答:60人生产桌子,24人生产椅子.13.(2011·桂林)某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒;则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得1盒.(1)设敬老院有x 名老人,则这批牛奶共有多少盒?(用含x 的代数式表示);(2)该敬老院至少有多少名老人?最多有多少名老人.解 (1)牛奶盒数:(5x +38)盒.(2)依题意得:⎩⎪⎨⎪⎧ (5x +38)-6(x -1)<5,(5x +38)-6(x -1)≥1,解得⎩⎪⎨⎪⎧ x >39,x ≤43. ∴不等式组的解集为:39<x ≤43.又∵x 为整数,∴x =40,41,42,43.答:该敬老院至少有40名老人,最多有43名老人.14.(2011·潼南)潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A 、B 两类蔬种植户 种植A 类蔬菜面积(单位:亩) 种植B 类蔬菜面积(单位:亩) 总收入 (单位:元)甲 3 1 12500乙 2 3 16500((1)求A 、B 两类蔬菜每亩平均收入各是多少元?(2)某种植户准备租20亩地用来种植A 、B 两类蔬菜,为了使总收入不低于63000元,且种植A 类蔬菜的面积多于种植B 类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.解 (1)设A 、B 两类蔬菜每亩平均收入分别是x 元,y 元.由题意得:⎩⎪⎨⎪⎧3x +y =12500,2x +3y =16500, 解得:⎩⎪⎨⎪⎧x =3000,y =3500. 答:A 、B 两类蔬菜每亩平均收入分别是3000元,3500元.(2)设用来种植A 类蔬菜的面积a 亩,则用来种植B 类蔬菜的面积为(20-a )亩.由题意得:⎩⎪⎨⎪⎧ 3000a +3500(20-a )≥63000,a >20-a , 解得:10<a ≤14.∵a 取整数,∴a 为:11、12、13、14. 类别 种植面积 (单位:亩)A 11 12 13 14B 9 8 7 615.(2010·桂林36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.解 (1)设租36座的车x 辆.据题意,得:⎩⎪⎨⎪⎧36x <42(x -1),36x >42(x -2)+30, 解得:⎩⎪⎨⎪⎧x >7,x <9, 由题意,x 应取8.则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200元;方案②:租42座车7辆的费用:7×440=3080元;方案③:因为42×6+36×1=288,租42座车6辆和36座车1辆的总费用:6×440+1×400=3040元;所以方案③:租42座车6辆和36座车1辆最省钱.四、选做题16.(2011·江西)某数学兴趣小组开展了一次活动,过程如下:设∠BAC =θ(0°<θ<90°),现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB 、AC 上.活动一如图甲所示,从点A 1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直. (A 1A 2为第1根小棒)数学思考(1)小棒能无限摆下去吗?答:__________;(填“能”或“不能”)(2)设AA 1=A 1A 2=A 2A 3=1.①θ=________度;②若记小棒A 2n -1A 2n 的长度为a n (n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,…), 求出此时a 2,a 3的值,并直接写出a n (用含n 的式子表示).活动二如图乙所示,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第一根小棒,且A 1A 2=AA 1.数学思考(3)若已经摆放了3根小棒,则θ1=______,θ2=______, θ3=________;(用含θ的式子表示)(4)若只能..摆放4根小棒,求θ的范围. 解 (1)能.(2)① 22.5°.②方法一:∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3, ∴A 1A 3=2,AA 3=1+ 2.又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠AA 2A 1=∠AA 4A 3=∠AA 6A 5, ∴AA 3=A 3A 4,AA 5=A 5A 6,∴a 2=A 3A 4=AA 3=1+2,a 3=AA 3+ A 3A 5=a 2+ A 3A 5.∵A 3A 5=2a 2,∴a 3=A 5A 6=AA 5=a 2+2a 2=()2+12.∴a n =(2+1)n -1.方法二:∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3, ∴A 1A 3=2,AA 3=1+ 2.又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6.∴∠A 2A 3A 4=∠A 4A 5A 6=90°,∠A 2A 4A 3=∠A 4 A 6A 5, ∴△A 2A 3A 4∽△A 4A 5A 6,∴1a 2=a 2a 3,∴a 3=a 221=()2+12. a n =()2+1n -1.(3)θ1=2θ;θ2=3θ;θ3=4θ.(4)由题意得:⎩⎪⎨⎪⎧4θ<90°,5θ≥90°, ∴18°≤θ<22.5°.。

相关文档
最新文档