电磁屏蔽理论基础

合集下载

EMC理论基础知识——电磁屏蔽理论

EMC理论基础知识——电磁屏蔽理论

EMC理论基础知识——电磁屏蔽理论1、屏蔽效能的感念屏蔽是利用屏蔽体来阻挡或减小电磁能传输的一种技术,是抑制电磁干扰的重要手段之一。

屏蔽有两个目的,一是限值内部辐射的电磁能量泄漏出该内部区域,二是防止外来的辐射干扰进入某一区域。

电磁场通过金属材料隔离时,电磁场的强度将明显降低,这种现象就是金属材料的屏蔽作用。

我们可以用同一位置无屏蔽体时电磁场的强度与加屏蔽体之后电磁场的强度之比来表征金属材料的屏蔽作用,定义屏蔽效能(Shielding EffecTIveness,简称SE):2、屏蔽体上孔缝的影响实际上,屏蔽体上面不可避免地存在各种缝隙、开孔以及进出电缆等各种缺陷,这些缺陷将对屏蔽体的屏蔽效能有急剧的劣化作用。

上节中分析的理想屏蔽体在30MHz 以上的屏蔽效能已经足够高,远远超过工程实际的需要。

真正决定实际屏蔽体的屏蔽效能的因素是各种电气不连续缺陷,包括:缝隙、开孔、电缆穿透等。

屏蔽体上面的缝隙十分常见,特别是目前机柜、插箱均是采用拼装方式,其缝隙十分多,如果处理不妥,缝隙将急剧劣化屏蔽体的屏蔽效能。

3、孔缝屏蔽的总体设计思想根据小孔耦合理论,决定孔缝泄漏量的因素主要有两个:孔缝面积和孔缝最大线度尺寸。

两者皆大,则泄漏最为严重;面积小而最大线度尺寸大则电磁泄漏仍然较大。

如图所示为一典型机柜示意图,上面的孔缝主要分为四类:(1)机箱(机柜)接缝该类缝虽然面积不大,但其最大线度尺寸即缝长却非常大,由于维修、开启等限制,致使该类缝成为电子设备中屏蔽难度最大的一类孔缝,采用导电衬垫等特殊屏蔽材料可以有效地抑制电磁泄漏。

该类孔缝屏蔽设计的关键在于:合理地选择导电衬垫材料并进行适当的变形控制。

(2)通风孔该类孔面积和最大线度尺寸较大,通风孔设计的关键在于通风部件的选择与装配结构的设计。

在满足通风性能的条件下,应尽可能选用屏效较高的屏蔽通风部件。

(3)观察孔与显示孔该类型孔面积和最大线度尺寸较大,其设计的关键在于屏蔽透光材料的选择与装配结构的设计。

电磁屏蔽原理

电磁屏蔽原理

电磁屏蔽原理电磁屏蔽是指采取一定的措施,使电磁辐射或电磁波无法穿透到屏蔽结构内部或从屏蔽结构内部泄漏出来,达到隔绝或减弱电磁辐射或电磁波的目的。

电磁屏蔽原理是指实现电磁屏蔽的基本原理,它是电磁兼容技术的重要内容之一。

电磁屏蔽原理的研究对于提高电磁兼容性、保障电子设备的正常工作、提高电子设备的抗干扰能力以及保障人体健康都具有十分重要的意义。

电磁屏蔽原理主要包括电磁波的传播特性、电磁波与物质相互作用的基本原理以及电磁屏蔽结构的设计原理等内容。

首先,电磁波的传播特性是电磁屏蔽原理的基础。

电磁波在空间中传播时会受到传播介质、传播距离、频率等因素的影响,了解电磁波的传播特性有助于选择合适的屏蔽材料和设计合理的屏蔽结构。

其次,电磁波与物质相互作用的基本原理是电磁屏蔽原理的重要内容。

电磁波在与物质相互作用时会发生反射、透射、吸收等现象,不同的材料对电磁波的作用方式各不相同,因此在设计电磁屏蔽结构时需要根据具体的应用场景选择合适的屏蔽材料。

最后,电磁屏蔽结构的设计原理是实现电磁屏蔽的关键。

合理的屏蔽结构设计能够有效地隔离电磁波,减少电磁辐射对周围环境和设备的影响,保障设备的正常工作和人体的健康。

在实际的电磁屏蔽设计中,需要根据具体的应用场景和要求选择合适的屏蔽材料和设计合理的屏蔽结构。

常见的电磁屏蔽材料包括金属材料、导电涂料、导电纤维布等,而常见的屏蔽结构包括屏蔽罩、屏蔽膜、屏蔽房等。

在选择屏蔽材料时需要考虑其导电性能、机械性能、加工性能等因素,而在设计屏蔽结构时需要考虑其尺寸、形状、安装方式等因素。

通过合理选择屏蔽材料和设计合理的屏蔽结构,可以有效地实现电磁屏蔽的目的,保障设备的正常工作和人体的健康。

总之,电磁屏蔽原理是实现电磁屏蔽的基础和关键,它涉及到电磁波的传播特性、电磁波与物质相互作用的基本原理以及电磁屏蔽结构的设计原理等内容。

通过深入研究电磁屏蔽原理,可以更好地理解电磁屏蔽技术的要点和关键,为实际的电磁屏蔽设计提供理论指导和技术支持。

磁屏蔽的基本原理和应用

磁屏蔽的基本原理和应用

磁屏蔽的基本原理和应用
磁屏蔽是一种用于减弱或阻挡磁场的技术,其基本原理是通过引入特定材料或结构,改变磁场的传播路径,从而减少磁场的影响。

以下是磁屏蔽的基本原理和应用:
基本原理:
1. 磁导屏蔽:利用高导磁性材料(如铁、镍、钴等)制造磁导屏蔽结构,吸收或重定向磁场线,使磁场绕过被屏蔽区域,从而减弱磁场的影响。

2. 磁反馈屏蔽:利用磁反馈原理,通过引入特定形状和材料的结构,使磁场线在屏蔽结构内部形成闭合回路,从而减少外部磁场的渗透。

3. 磁吸收屏蔽:利用吸收材料(如软铁粉、磁性聚合物等)吸收磁场的能量,将磁能转化为热能或其他形式的能量,从而降低磁场的强度。

应用:
1. 电子设备屏蔽:在电子设备制造中,磁屏蔽可用于减少或消除电子设备之间的磁干扰,保护设备的正常工作。

例如,在电子电路板中添加磁导屏蔽结构,可以防止磁场对电路的影响。

2. 医学领域:磁屏蔽技术在医学磁共振成像(MRI)中广泛应用。

由于MRI需要强大的磁场来生成图像,为了防止磁场泄漏对周围环境和其他设备造成干扰,需要采用磁屏蔽技术对MRI设备进行屏蔽。

3. 磁敏感实验室:在一些磁敏感的实验室或设备中,为了保护
实验的准确性和可重复性,需要使用磁屏蔽技术来减少外部磁场的影响。

4. 航空航天领域:在航空航天器、导弹和卫星等系统中,磁屏蔽技术可用于减少磁场对设备和电子系统的干扰,确保设备的可靠性和性能。

总之,磁屏蔽技术通过引入特定材料或结构
,改变磁场的传播路径或吸收磁能,从而减少或消除磁场的影响。

它在电子设备、医学、实验室和航空航天等领域有广泛的应用。

电磁屏蔽基本原理介绍

电磁屏蔽基本原理介绍

电磁屏蔽基本原理介绍电磁屏蔽是指通过采取一定的措施,将电磁辐射或电磁波的干扰降至可接受的水平的过程。

在现代社会中,电磁辐射已经成为无处不在的存在,如电视、手机、电脑等电子设备都会产生电磁辐射。

然而,过高的电磁辐射会对人体和其他电子设备造成不良影响,因此电磁屏蔽就显得尤为重要。

电磁屏蔽的基本原理可以归纳为两个方面:屏蔽材料和屏蔽结构。

1. 屏蔽材料:屏蔽材料是指用于隔离电磁辐射的材料,常见的屏蔽材料包括金属、导电涂料、导电纤维等。

这些材料具有良好的导电性能,能够吸收或反射电磁波,从而降低电磁辐射的强度。

金属是一种常用的屏蔽材料,如铜、铝等。

金属具有良好的导电性和反射性,能够有效地吸收和反射电磁波。

常见的金属屏蔽材料有金属屏蔽罩、金属屏蔽板等。

导电涂料是一种将导电材料加入到涂料中形成的涂层,具有良好的导电性能。

通过在电子设备的外壳或电路板上涂覆导电涂料,可以形成一层导电膜,起到屏蔽电磁辐射的作用。

导电纤维是一种将导电材料织入纤维中形成的材料,具有良好的导电性能和柔软性。

导电纤维可以用于制作电磁屏蔽布料,可以用于制作电子设备的屏蔽罩或服装等。

2. 屏蔽结构:屏蔽结构是指通过设计合理的结构来实现电磁屏蔽的效果。

常见的屏蔽结构包括屏蔽罩、屏蔽壳、屏蔽膜等。

屏蔽罩是一种金属或导电塑料制成的外壳,可以将电子设备完全包裹在内,从而阻挡电磁波的传播。

屏蔽罩通常具有开口和连接器,以便电子设备与外界进行通信。

屏蔽壳是一种金属或导电塑料制成的外壳,可以将电子设备的关键部件包裹在内,从而阻挡电磁波的干扰。

屏蔽壳通常具有开口和密封装置,以便维修和保养。

屏蔽膜是一种将导电材料涂覆在基材上形成的薄膜,可以用于电子设备的屏蔽。

屏蔽膜具有柔软性和可塑性,可以根据需要进行剪裁和粘贴,方便实现电磁屏蔽。

总结:电磁屏蔽是通过屏蔽材料和屏蔽结构来降低电磁辐射的干扰。

屏蔽材料具有良好的导电性能,能够吸收或反射电磁波;屏蔽结构通过设计合理的结构来实现电磁屏蔽的效果。

电磁屏蔽机理

电磁屏蔽机理

电磁屏蔽是指通过设计和使用特定的材料或结构来阻挡电磁波的传播。

电磁波是一种由电场和磁场相互作用而产生的能量波动,它在空间中传播,且速度与光速相等。

电磁屏蔽的机理涉及到电磁波的特性和材料的特性。

一般来说,电磁波在遇到材料时,会发生反射、穿透或吸收。

其中,反射是指电磁波遇到材料表面时发生反弹,穿透是指电磁波能够穿过材料而不改变方向,吸收是指电磁波被材料吸收并转化为热能或其他形式的能量。

电磁屏蔽的主要机理包括以下几种:
反射:当电磁波遇到屏蔽材料时,一部分电磁波会被材料表面反射回去,从而减少电磁波的传播。

吸收:屏蔽材料中的电离子或分子可以吸收电磁波的能量,并将其转化为热能或其他形式的能量,从而减少电磁波的传播。

散射:当电磁波遇到屏蔽材料中的不均匀性或粗糙表面时,会发生散射现象,从而减少电磁波的传播。

屏蔽器结构:屏蔽器的设计结构也可以对电磁波的传播产生影响。

例如,金属屏蔽器可以通过金属导体形成的屏蔽结构来阻挡电磁波的传播。

总的来说,电磁屏蔽的机理涉及到材料的吸收、反射和散射等特性,以及屏蔽器的设计结构。

磁屏蔽的基本原理

磁屏蔽的基本原理

磁屏蔽的基本原理
磁屏蔽是一种常见的电磁兼容(EMC)技术,用于减少电子设备对外部磁场的敏感度,或者减少电子设备产生的磁场对周围环境的影响。

磁屏蔽的基本原理是通过设计和应用磁性材料,来吸收、偏转或者反射磁场,从而达到减少磁场对设备的影响的目的。

磁屏蔽的基本原理主要包括以下几个方面:
1. 磁性材料的选择,磁屏蔽通常使用铁、镍、钴等具有良好磁导性能的材料。

这些材料能够有效地吸收和偏转磁场,从而减少磁场对设备的影响。

2. 磁屏蔽结构的设计,磁屏蔽结构的设计是磁屏蔽的关键。

通过合理的结构设计,可以使磁性材料得到最大程度的利用,从而达到最佳的磁屏蔽效果。

3. 磁屏蔽材料的应用,磁性材料通常以覆盖层、屏蔽罩、屏蔽板等形式应用在设备的关键部位,如电源线、传感器、电路板等。

这些磁屏蔽材料能够有效地减少磁场的影响,提高设备的抗干扰能力。

4. 磁屏蔽的测试和验证,磁屏蔽的效果需要通过测试和验证来进行评估。

常见的测试方法包括磁场测量、屏蔽效果测试等。

只有通过有效的测试和验证,才能确保磁屏蔽的效果达到预期的要求。

总之,磁屏蔽的基本原理是通过合理选择磁性材料,设计合理的屏蔽结构,并将磁性材料应用在设备的关键部位,从而达到减少磁场对设备的影响的目的。

通过测试和验证,可以确保磁屏蔽的效果达到预期的要求,提高设备的抗干扰能力,保障设备的正常工作和可靠性。

磁屏蔽技术在电子设备、航空航天、通信、医疗等领域都有广泛的应用,对提高设备的抗干扰能力和可靠性具有重要意义。

随着科技的不断进步,磁屏蔽技术也在不断创新和发展,为各行各业提供更加可靠和稳定的电子设备和系统。

电磁屏蔽基础理论

电磁屏蔽基础理论

防止或者减少电磁波侵入空间某些部位的措施。

通常的办法是用金属网或者金属壳将产生电磁波的区域与需防止侵入的区域隔开。

例如某些仪器或仪表常安装在金属箱中,又如高电压实验室的墙壁内及室顶中常埋设有金属的屏蔽网,以防止或减少它所受到的干扰及它对其余区域的干扰。

常选择有较高的电导率和磁导率的导体作为屏蔽物的材料。

因为高导电性材料在电磁波的作用下将产生较大的感应电流。

这些电流按照楞次定律将削弱电磁波的透入。

采用的金属网孔愈密,直到采用整体的金属壳,屏蔽的效果愈好,但所费材料愈多。

高导磁性的材料可以引导磁力线较多地通过这些材料,而减少被屏蔽区域中的磁力线。

屏蔽物通常是接地的,以免积累电荷的影响。

电磁波向大块金属透入时将不断衰减,直到衰减为零。

衰减的程度随着材料的电导率、磁导率及电磁波频率的增加而加大。

屏蔽的要求较高时往往采用多层屏蔽。

例如有时采用铸铁、坡莫合金、电解铜 3种材料制成多层屏蔽,以满足导电、导磁等要求。

但是实现完全的屏蔽是很难办到的,因为被屏蔽的区域与其余区域之间往往仍需要有电路的连接,引线与引线、引线与外壳之间总存在着绝缘间隙,仍然为电磁波提供通道。

即使对于完全封闭的金属壳,在频率极低的外部电磁场作用下,理论上内部的磁通密度并不为零。

电磁场在导电介质中传播时,其场量(E和H)的振幅随距离的增加而按指数规律衰减。

从能量的观点看,电磁波在导电介质中传播时有能量损耗,因此,表现为场量振幅的减小。

导体表面的场量最大,愈深入导体内部,场量愈小。

这种现象也称为趋肤效应。

利用趋肤效应可以阻止高频电磁波透入良导体而作成电磁屏蔽装置。

它比静电、静磁屏蔽更具有普遍意义。

电磁屏蔽是抑制干扰,增强设备的可靠性及提高产品质量的有效手段。

合理地使用电磁屏蔽,可以抑制外来高频电磁波的干扰,也可以避免作为干扰源去影响其他设备。

如在收音机中,用空芯铝壳罩在线圈外面,使它不受外界时变场的干扰从而避免杂音。

音频馈线用屏蔽线也是这个道理。

电磁屏蔽知识

电磁屏蔽知识

磁场的屏蔽问题,是一个既具有实际意义又具有理论意义的问题.根据条件的不同,电磁场的屏蔽可分为静电屏蔽、静磁屏蔽和电磁屏蔽三种情况,这三种情况既具有质的区别,又具有内在的联系,不能混淆.静电屏蔽在静电平衡状态下,不论是空心导体还是实心导体;不论导体本身带电多少,或者导体是否处于外电场中,必定为等势体,其内部场强为零,这是静电屏蔽的理论基础.因为封闭导体壳内的电场具有典型意义和实际意义,我们以封闭导体壳内的电场为例对静电屏蔽作一些讨论.(一)封闭导体壳内部电场不受壳外电荷或电场影响.如壳内无带电体而壳外有电荷q,则静电感应使壳外壁带电(如图1).静电平衡时壳内无电场.这不是说壳外电荷不在壳内产生电场,根发电场.由于壳外壁感应出异号电荷,它们与q在壳内空间任一点激发的合场强为零.因而导体壳内部不会受到壳外电荷q或其他电场的影响.壳外壁的感应电荷起了自动调节作用.如果把上述空腔导体外壳接地(图2),则外壳上感应正电荷将沿接地线流入地下.静电平衡后空腔导体与大地等势,空腔内场强仍然为零.如果空腔内有电荷,则空腔导体仍与地等势,导体内无电场.这时因空腔内壁有异号感应电荷,因此空腔内有电场(图3).此电场由壳内电荷产生,壳外电荷对壳内电场仍无影响.由以上讨论可知,封闭导体壳不论接地与否,内部电场不受壳外电荷影响.(二)接地封闭导体壳外部电场不受壳内电荷的影响.如果壳内空腔有电荷q,因为静电感应,壳内壁带有等量异号电荷,壳外壁带有等量同号电荷,壳外空间有电场存在(图4),此电场可以说是由壳内电荷q间接产生.也可以说是由壳外感应电荷直接产生的但如果将外壳接地,则壳外电荷将消失,壳内电荷q与内壁感应电荷在壳外产生电场为零(图5).可见如果要使壳内电荷对壳外电场无影响,必须将外壳接地.这与第一种情况不同.这里还须注意:①我们说接地将消除壳外电荷,但并不是说在任何情况壳外壁都一定不带电.假如壳外有带电体,则壳外壁仍可能带电,而不论壳内是否有电荷(图6).②实际应用中金属外壳不必严格完全封闭,用金属网罩代替金属壳体也可达到类似的静电屏蔽效果,虽然这种屏蔽并不是完全、彻底的.③在静电平衡时,接地线中是无电荷流动的,但是如果被屏蔽的壳内的电荷随时间变化,或者是壳外附近带电体的电荷随时间而变化,就会使接地线中有电流.屏蔽罩也可能出现剩余电荷,这时屏蔽作用又将是不完全和不彻底的.总之,封闭导体壳不论接地与否,内部电场不受壳外电荷与电场影响;接地封闭导体壳外电场不受壳内电荷的影响.这种现象,叫静电屏蔽.静电屏蔽有两方面的意义,其一是实际意义:屏蔽使金属导体壳内的仪器或工作环境不受外部电场影响,也不对外部电场产生影响.有些电子器件或测量设备为了免除干扰,都要实行静电屏蔽,如室内高压设备罩上接地的金属罩或较密的金属网罩,电子管用金属管壳.又如作全波整流或桥式整流的电源变压器,在初级绕组和次级绕组之间包上金属薄片或绕上一层漆包线并使之接地,达到屏蔽作用.在高压带电作业中,工人穿上用金属丝或导电纤维织成的均压服,可以对人体起屏蔽保护作用.在静电实验中,因地球附近存在着大约100V/m的竖直电场.要排除这个电场对电子的作用,研究电子只在重力作用下的运动,则必须有eE<MEG,可算出E其二是理论意义:间接验证库仑定律.高斯定理可以从库仑定律推导出来的,如果库仑定律中的平方反比指数不等于2就得不出高斯定理.反之,如果证明了高斯定理,就证明库仑定律的正确性.根据高斯定理,绝缘金属球壳内部的场强应为零,这也是静电屏蔽的结论.若用仪器对屏蔽壳内带电与否进行检测,根据测量结果进行分析就可判定高斯定理的正确性,也就验证了库仑定律的正确性.最近的实验结果是威廉斯等人于1971年完成的,指出在式F=q1q2/r2±δ中,δ<(2.7±3.1)×10-16,可见在现阶段所能达到的实验精度内,库仑定律的平方反比关系是严格成立的.从实际应用的观点看,我们可以认为它是正确的.静磁屏蔽静磁场是稳恒电流或永久磁体产生的磁场.静磁屏蔽是利用高磁导率μ的铁磁材料做成屏蔽罩以屏蔽外磁场.它与静电屏蔽作用类似而又有不同.静磁屏蔽的原理可以用磁路的概念来说明.如将铁磁材料做成截面如图7的回路,则在外磁场中,绝大部份磁场集中在铁磁回路中.这可以把铁磁材料与空腔中的空气作为并联磁路来分析.因为铁磁材料的磁导率比空气的磁导率要大几千倍,所以空腔的磁阻比铁磁材料的磁阻大得多,外磁场的磁感应线的绝大部份将沿着铁磁材料壁内通过,而进入空腔的磁通量极少.这样,被铁磁材料屏蔽的空腔就基本上没有外磁场,从而达到静磁屏蔽的目的.材料的磁导率愈高,筒壁愈厚,屏蔽效果就愈显著.因常用磁导率高的铁磁材料如软铁、硅钢、坡莫合金做屏蔽层,故静磁屏蔽又叫铁磁屏蔽.静磁屏蔽在电子器件中有着广泛的应用.例如变压器或其他线圈产生的漏磁通会对电子的运动产生作用,影响示波管或显像管中电子束的聚焦.为了提高仪器或产品的质量,必须将产生漏磁通的部件实行静磁屏蔽.在手表中,在机芯外罩以软铁薄壳就可以起防磁作用.前面指出,静电屏蔽的效果是非常好的.这是因为金属导体的电导率要比空气的电导率大十几个数量级,而铁磁物质与空气的磁导率的差别只有几个数量级,通常约大几千倍.所以静磁屏蔽总有些漏磁.为了达到更好的屏蔽效果,可采用多层屏蔽,把漏进空腔里的残余磁通量一次次地屏蔽掉.所以效果良好的磁屏蔽一般都比较笨重.但是,如果要制造绝对的“静磁真空”,则可以利用超导体的迈斯纳效应.即将一块超导体放在外磁场中,其体内的磁感应强度B永远为零.超导体是完全抗磁体,具有最理想的静磁屏蔽效果,但目前还不能普遍应用.电磁屏蔽电磁场在导电介质中传播时,其场量(E和H)的振幅随距离的增加而按指数规律衰减.从能量的观点看,电磁波在导电介质中传播时有能量损耗,因此,表现为场量振幅的减小.导体表面的场量最大,愈深入导体内部,场量愈小.这种现象也称为趋肤效应.利用趋肤效应可以阻止高频电磁波透入良导体而作成电磁屏蔽装置.它比静电、静磁屏蔽更具有普遍意义.电磁屏蔽是抑制干扰,增强设备的可靠性及提高产品质量的有效手段.合理地使用电磁屏蔽,可以抑制外来高频电磁波的干扰,也可以避免作为干扰源去影响其他设备.如在收音机中,用空芯铝壳罩在线圈外面,使它不受外界时变场的干扰从而避免杂音.音频馈线用屏蔽线也是这个道理.示波管用铁皮包着,也是为了使杂散电磁场不影响电子射线的扫描.在金属屏蔽壳内部的元件或设备所产生的高频电磁波也透不出金属壳而不致影响外部设备.用什么材料作电磁屏蔽呢?因电磁波在良导体中衰减很快,把由导体表面衰减到表面值的1/e(约36.8%)处的厚度称为趋肤厚度(又称透入深度),用d表示,有电磁屏蔽电磁场在导电介质中传播时,其场量(E和H)的振幅随距离的增加而按指数规律衰减.从能量的观点看,电磁波在导电介质中传播时有能量损耗,因此,表现为场量振幅的减小.导体表面的场量最大,愈深入导体内部,场量愈小.这种现象也称为趋肤效应.利用趋肤效应可以阻止高频电磁波透入良导体而作成电磁屏蔽装置.它比静电、静磁屏蔽更具有普遍意义.电磁屏蔽是抑制干扰,增强设备的可靠性及提高产品质量的有效手段.合理地使用电磁屏蔽,可以抑制外来高频电磁波的干扰,也可以避免作为干扰源去影响其他设备.如在收音机中,用空芯铝壳罩在线圈外面,使它不受外界时变场的干扰从而避免杂音.音频馈线用屏蔽线也是这个道理.示波管用铁皮包着,也是为了使杂散电磁场不影响电子射线的扫描.在金属屏蔽壳内部的元件或设备所产生的高频电磁波也透不出金属壳而不致影响外部设备.用什么材料作电磁屏蔽呢?因电磁波在良导体中衰减很快,把由导体表面衰减到表面值的1/e(约36.8%)处的厚度称为趋肤厚度(又称透入深度),用d表示,有其中μ和ζ分别为屏蔽材料的磁导率和电导率.若电视频率f=100 MHz,对铜导体(ζ=5.8×107/ ·m,μ≈μo=4π×10-7H/m)可求出d=0.00667mm.可见良导体的电磁屏蔽效果显著.如果是铁(ζ=107/ ·m)则d=0.016mm.如果是铝(ζ=3.54×107/ ·m)则d=0.0085mm.为了得到有效的屏蔽作用,屏蔽层的厚度必须接近于屏蔽物质内部的电磁波波长(λ=2πd).如在收音机中,若f=500kHz,则在铜中d=0.094mm(λ=0.59mm).在铝中d=0.12mm(λ=0.75mm ).所以在收音机中用较薄的铜或铝材料已能得到良好的屏蔽效果.因为电视频率更高,透入深度更小些,所需屏蔽层厚度可更薄些,如果考虑机械强度,要有必要的厚度.在高频时,由于铁磁材料的磁滞损耗和涡流损失较大,从而造成谐振电路品质因素Q值的下降,故一般不采用高磁导率的磁屏蔽,而采用高电导率的材料做电磁屏蔽.在电磁材料中,因趋肤电流是涡电流,故电磁屏蔽又叫涡流屏蔽.在工频(50Hz)时,铜中的d=9.45mm,铝中的d=11.67mm.显然,采用铜、铝已很不适宜了,如用铁,则d=0.172mm,这时应采用铁磁材料.因为在铁磁材料中电磁场衰减比铜、铝中大得多.又因是低频,无需考虑Q值问题.可见,在低频情况下,电磁屏蔽就转化为静磁屏蔽.电磁屏蔽和静电屏蔽有相同点也有不同点.相同点是都应用高电导率的金属材料来制作;不同点是静电屏蔽只能消除电容耦合,防止静电感应,屏蔽必须接地.而电磁屏蔽是使电磁场只能透入屏蔽体一薄层,借涡流消除电磁场的干扰,这种屏蔽体可不接地.但因用作电磁屏蔽的导体增加了静电耦合,因此即使只进行电磁屏蔽,也还是接地为好,这样电磁屏蔽也同时起静电屏蔽作用.综上所述,静电屏蔽、静磁屏蔽、电磁屏蔽的物理内容、物理条件、屏蔽作用是不同的,所用材料也要从具体情况出发.但它们都是屏蔽电磁场,是有本质联系的.软磁材料基本概念所谓软磁材料,特指那些矫顽力小、容易磁化和退磁的磁性材料.所谓的软,指这些材料容易磁化,在磁性上表现“软”.软磁材料的用途非常广泛.因为它们容易磁化和退磁,而且具有很高的导磁率,可以起到很好的聚集磁力线的作用,所以软磁材料被广泛用来作为磁力线的通路,即用作导磁材料,例如变压器、传感器的铁芯,磁屏蔽罩,特殊磁路的轭铁等.这里,介绍几种常用的软磁材料和用它们做成的常见元器件.常用软磁材料:硅钢片:硅钢是含硅量在3%左右、其它主要是铁的硅铁合金.硅钢片大量用于中低频变压器和电机铁芯,尤其是工频变压器.硅钢的特点是具有常用软磁材料中最高的饱和磁感应强度(2.0T以上),因此作为变压器铁芯使用时可以在很高的工作点工作(如工作磁感值1.5T).但是,硅钢在常用的软磁材料中铁损也是最大的,为了防止铁芯因损耗太大而发热,它的使用频率不高,一般只能工作在20KHz以下.硅钢通常是薄片状的,这是为了在制造变压器铁芯时减小铁芯的涡流损失.目前硅钢片主要分热轧和冷轧两大类.所谓热轧硅钢,是把硅钢板坯在850度以上加热后轧制,然后再进行退火.由于轧制温度高,所轧制出来的硅钢片都是各向同性的,也就是说硅钢片的磁性在各个方向上相同.这种各向同性的硅钢也叫做无取向硅钢.无取向硅钢大量应用在电机中的定子或者转子.因为要制造电机定子和转子,就要在大的硅钢片上冲压出圆形的零件.这时总是希望硅钢片沿圆周方向磁性一致,所以要用无取向硅钢.为了获得更好的磁性能,后来人们发明了冷轧硅钢片,即在较低温度下轧制,再退火.冷轧取向硅钢片是其中的代表.冷轧取向硅钢片首先对板坯进行冷轧,使得材料内部产生很多结构缺陷.在随后的退火过程中,材料发生结构上的变化(称为再结晶),这种变化会使硅钢片在某个方向上磁性能非常好,也就是说磁性能和方向有关,因此被称为取向硅钢.在最终使用时,让铁芯中的磁力线沿磁性能最好的方向通过,这样便可以最大限度地发挥硅钢片的磁性能潜力.例如,在变压器中,铁芯材料的磁力线是沿一个方向通过的,如果把硅钢片适当裁剪,然后卷绕成铁芯,使得铁芯周长方向恰好是硅钢片磁性能最好的方向,那么铁芯的导磁率就会很高,容易磁化,能量损耗小,最终提高了变压器效率. 我国对硅钢片的编号是:热轧硅钢片D(如D31指含硅3.1%的热轧硅钢);冷轧硅钢片DT;高磁感取向硅钢片Q和QG.这些材料的磁性能可以从相关的书籍和手册中得到.坡莫合金:坡莫合金指铁镍合金,其含镍量的范围很广,在35%-90%之间.坡莫合金的最大特点是具有很高的弱磁场导磁率.它们的饱和磁感应强度一般在0.6--1.0T之间.最简单的坡莫合金是铁镍两种元素组成的合金,通过适当的轧制和热处理,它们能够具备高导磁率,同时也可以合理搭配铁和镍的含量,获得比较高的饱和磁感应强度.但是,这种坡莫合金的电阻率低,力学性能不好,所以实际应用并不很多.目前大量应用的坡莫合金是在铁镍的基础上添加一些其它元素,例如钼、铜等.添加这些元素的目的是增加材料的电阻率,以减小做成铁芯后的涡流损失.同时,添加元素也可以提高材料的硬度,这尤其有利于作为磁头等有磨损的应用.坡莫合金的生产过程比较复杂.例如,板材轧制的工艺、退火温度、时间、退火后的冷却快慢等都对材料最终的磁性能有很大影响.我国的坡莫合金牌号是1JXX.其中,J表示“精密合金”,“1”表示软磁,后面的数字为序号,通常表示合金中的含镍量.例如1J50、1J851等.坡莫合金具有高的导磁率,所以常常用在中高频变压器的铁芯或者对灵敏度有严格要求的器件中,例如高频(数十KHz)开关电源变压器、精密互感器、漏电开关互感器、磁屏蔽、磁轭等.软磁铁氧体:铁氧体是一系列含有氧化铁的复合氧化物材料(或者称为陶瓷材料).铁氧体的特点是饱和磁感应强度很低(0.5T以下),但导磁率比较高,而且电阻率很高(这时因为铁氧体是由很小的颗粒压制成的,颗粒之间的接触不好,所以导电不佳),因此非常有利于降低涡流损耗.正因为如此,铁氧体能够在很高的频率下(可以达到兆Hz甚至更高)使用,而它的饱和磁感应强度低,因此不适合在低频下使用.铁氧体最广泛的用途是高频变压器铁芯和各种电感铁芯.常用软磁元器件:变压器:所谓变压器,就是利用电磁感应实现交流电压变换的器件.变压器的原理已经在“电磁感应”中说明.因为变压器的铁芯处于不断变化的电磁场中,铁芯材料的磁化强度和磁感应强度也是不断改变的.这就自然要求铁芯材料对这种变化的阻力小,变化足够灵敏.所以,几乎对所有的变压器铁芯,都要求导磁率高.同时,交变的电磁场必然会在铁芯中产生能量损耗(例如涡流),所有还要求材料的铁损低,以降低铁芯的温升,提高变压器效率.变压器的形式和品种繁多.在不同的场合,变压器的工作方式大不相同,所以对变压器铁芯的具体要求也存在很大差别.低频变压器:工作频率较低(例如低于1KHz)一般地,工作点较低时电流和电压都是正弦波.由于频率低,铁芯损耗不大,所以铁芯的工作磁感可以设计得比较高.因此这时需要高饱和磁感的软磁材料作铁芯,例如硅钢.硅钢片作为配电变压器铁芯时,工作磁感可以达到1.4T以上.铁基非晶合金作为变压器铁芯时,工作点可以达到1.3T.为了提高变压器效率,要求铁芯材料的铁损低,同时要求材料导磁率高,以减小初级线圈的激磁电流,降低因线圈电阻带来的损耗(称为铜损).高频变压器:随着技术的进步,高频电源已经大量应用.之所以发展高频电源,是因为传统的工频电源效率不高.从电磁感应原理不难推出,变压器铁芯所能够传输的功率与磁通变化的频率成正比.因此,如果提高变压器的工作频率,那么变压器铁芯的体积便可以大幅度缩小,重量减轻,并且提高电源的效率,降低各种损耗.所以,自从七十年代以来,高频电源的发展非常迅猛.但另一方面,工作频率的提高会导致变压器铁芯铁损的急剧增大.要解决这个问题,一是降低铁芯的工作磁感,二是采用更好的软磁材料.通常,高频变压器铁芯不能再使用硅钢片,而是要用损耗更小的铁镍合金(坡莫合金)、铁氧体或者非晶合金滤波电感、扼流圈及电抗器:在稳压电源和开关电源中,为了消除晶体管整流产生的巨大纹波、得到平滑的直流输出而使用的器件.我们知道,电感就是一个通交流电的螺线管线圈(可以含有铁芯).由于线圈在通电的瞬间会产生感应电压,而该感应电压的反向是反抗所通电流形成的磁通,因此电感器件对变化的电流存在一种阻碍作用,使其不能通过,这称为感抗.所通信号变化越快,感抗就越大,因此电感器件的特点是信号的频率越高,器件对该信号的阻碍就越强.如果对电感通上一个直流信号,那么器件对信号没有阻碍.电感器件对交流电的阻碍作用使用在电源上,安装在整流后的电路中,可以挡住交流信号,而让直流信号通过,仿佛是把交流信号过滤掉了.所以,电感(或者电感和其它元器件的组合)又称为滤波器. 因为电感铁芯工作在交直流叠加状态,所以铁芯不但要承受交流信号的磁化,而且还有直流电流的磁化(称为偏磁).这时,铁芯既要有较高的导磁率,用来产生电感量,以阻止交流信号的通过,又要防止因直流信号的偏磁导致铁芯被磁化到饱和.为了做到这一点,经常采用的手段是把铁芯切口,这样可以使铁芯在较大直流电流磁化时不饱和.另外就是采用粉末做的铁芯.粉末铁芯一般是用软磁材料的粉末和粘接剂、绝缘剂压制成的.由于粉末颗粒之间被粘接剂和绝缘剂隔离开来,铁芯虽然被压制成了一个整体,但实际上磁路是断开的,就好象在铁芯的磁路上开了许多小小的切口,这样也就防止了铁芯被磁化饱和.一.关于CAD辅助设计软件与网络分析仪对于高频电路设计,当前已经有了很好的CAD类软件,其强大的功能足以克服人们在设计经验方面的不足及繁琐的参数检索与计算,再配合功能强大的网络分析仪,按理应该是稍具经验者便能完成质量较好的射频部件.但是,实际中却不是这回事.CAD设计软件依靠的是强大的库函数,包含了世界上绝大部分无线电器件生产商提供的元器件参数与基本性能指标.不少射频工程师错误地认为:只要利用该工具软件进行设计,就不会有多大问题.但实际结果却总是与愿望相反,原因是他们在错误认识下放弃高频电路设计基本概念的灵活应用及基本设计原则的应用经验积累,结果在软件工具的应用中常犯下基本应用错误.射频电路设计CAD软件属于透明可视化软件,利用其各类高频基本组态模型库来完成对实际电路工作状态的模拟.至此,我们已经可以明白其中的关键环节棗高频基本组态模型有两类,一类属于集中参数形态之元器件模型,另一类属于常规设计中的局部功能模型.于是存在如下方面问题:(1)元器件模型与CAD软件长期互动发展,日趋完善,实际中可以基本相信模型的*真度.但元器件模型所考虑的应用环境(尤其是元器件应用的电环境)均为典型值.多数情况下,必须利用经验确定系列应用参数,否则其实际结果有时甚至比不借助CAD软件的设计结果相差更远.(2)CAD软件中建立的常规高频基本组态模型,通常限于目前应用条件下可预知的方面,而且只能局限于基本功能模型(否则产品研发无须用人,仅靠CAD一手包办而诞生各类产品).(3)特别值得注意的是:典型功能模型的建立,是以典型方式应用元器件并以典型完善的工艺方式构造(包括PCB构造)下完成的,其性能也达到“典型”的较高水平.但在实际中,就是完全模仿,也与模型状态相差甚远.原因是:尽管选用的元器件及其参数一致,但它们的组合电环境却无法一致.在低频电路或数字电路中,这种相差毫厘的情况妨碍不大,但在射频电路中,往往发生致命的错误.(4)在利用CAD软件进行设计中,软件的容错设计并不理睬是否发生与实际情况相违背的错误参数设置,于是,按照其软件运行路径给出一理想的结果,实际中却是问题百出的结果.可以知道其关键错误环节在于没有利用射频电路设计的基本原则去正确应用CAD软件.(5)CAD软件仅仅属于设计辅助工具,利用其具备的实时模拟功能、强大的元器件模型库及其函数生成功能、典型应用模型库等等方面来简化人们的繁琐设计与计算工作,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 3 t 23[(2123 12e2 t )e t ] 21 12 23 e
21[( 23 12e t )e t ] 2123 12e2 t
23[(2123 12e2 t )e t ] 12 23 2123e3 t

Zm 3.69 107 r f / r 6.68 105 Ω
Zwm 2π0 fr 0.08Ω Zm
0.1 A 0.2 A B 10 lg 1 2 10 cos(0.23 A ) 10 1.81dB

SE Rm +A+B 49.4+7.24 1.81 54.83dB
b. 近场(以电场为主):
Z we
1 2 f 0 r
c. 近场(以磁场为主):
Zwm 2 f 0r
2. 单层屏蔽体的屏蔽效能
均匀平面波垂直入射到无限大、厚度为t的导体板上
78
反射系数:
12
Z 2-Z1 Z 2+Z1
1
2
透射系数:
12 1+12
设入射波场强

E0 1
当 A 10dB 时,通常可忽略B。

1 K Zm Zw 1 K Zm Zw
20 lg[1 2 100.1 A cos(0.23 A) 100.2 A ]
83
例 有一个大功率线圈的工作频率为20kHz ,在离线圈0.5m处放置一铝板
以屏蔽线圈对设备的影响。设铝板厚度为0.5mm ,相对电导率为0.61。试计 算其屏蔽效能。
在直角坐标系下,电磁场基本方程中的旋度方程为
1
2
3
4
5
6
7
8
相关推导
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
Zwm 2 f 0r
r 2 Rm 14.56 10 lg( r f ) r
82
③ 多次反射修正 B(dB)
e

2 t
2 t
e
21 j t
0.1 A
e2t e j 2t
( A 20lget et 10A/ 20 )
e
10
2 t ln100.1A 0.23 A
返回
84
1 K 2 2 t B 20 lg 1 ( ) e 1 K
K Z2 / Z1
Z3 Z1
良导体
① 吸收损耗 A (dB)
A 20 lg e
rt
20 lg e
t
20 t lg e 8.98 t 0.131t f r r (dB)
r r
——相对于铜的电导率,铜:
—— 相对磁导率;
5.82 10 S/m
7
81
t —— 厚度(mm)。
② 反射损耗 R (dB)
Zw Zm
波阻抗
Zw ( Z w Z m )2 (1 K ) 2 R 20 lg 20 lg 20 lg 4K 4Z w Z m 4 Zm
良导体:
a. 远场:
Zm 2 f / 3.69 10
76
电磁屏蔽分析
1. 机理
机理: ①表面反射(R— 反射损耗)
② 屏蔽材料吸收衰减(A— 吸收损耗)
③ 多次反射(B — 多次反射修正)

t
屏蔽效能:
SE R A B(dB)
j Z , c j
Zm j

媒质的本征阻抗:
c j
良导体
7
r f / r
媒质本 征阻抗
Zw 120π 377Ω
1 2 f 0 r
Rw 168.1 10lg(r f / r )
频率升高,反射损耗减小
b.近场:电场源
Z we
r 2 3 Re 321.7 10lg( r f ) r
频率升高,反射损耗增加
c.近场:磁度不同的效果
一根屏蔽线,设置在b位置,与B相线水平位置15米,离地高度 分别为10米,8.08米,6.16米,其测量结果如下图。
72
架设两根屏蔽线后的效果
两根屏蔽线,对地高度为10米,设置的位置分别为a-b,a-c,aa’ 的垂直排列(相距2米,下同),其测量结果如下。
73
架设三根屏蔽线后的工频电场屏蔽情况
三根屏蔽线位置分别在a,b和c,构成一组,离地面高度分别
为10米,8.08米和6.16米时,输电线下工频电场测量结果如下:
74
架设屏蔽网后的电场测量
75
屏蔽线的屏蔽效果预测
线路参 数 序号 1 2 3 4 5 6 7 500kV,四分裂,导线三相三角形排列,三相高度分别为 18.5米, 22米,18.5 米,水平位置分别为:-11米、0、11米。避雷线高度都为25米,水平位置分别 为:-7,7。 屏蔽线 屏蔽线位置(米) 高度(米) 根数(根) 间距(米) 0 / / 3 1.5 11,12.5,14 3 2 11,13,15 3 3 11,14,17 9 5 1 11,12,13,14,15 5 2 10,12,14,16,18 5 3 8,11,14,17,20
Z 2-Z1 12 Z 2+Z1
t
一次透射:x = 0 面上: 反射波: x = t 面上: 反射波: 21 ( 12e 透射波:
1
2
3
12 1+12
),
透射波:
23 ( 12e )
t
t
x
79

二次透射:x = 0 面上: 反射波: x = t 面上: 反射波: 透射波: 第n 次透射: ……
• 屏蔽装置的架设
• 在输电线下,沿输电线路的走向,平行设置长为40米的屏蔽线, 线路的高度、各种形式的屏蔽线以及屏蔽网的相对位置、测量点 的布置如图2-1所示。
屏蔽装置的架设
70
架设一根屏蔽线后的效果
一根屏蔽线,架设高度相同,水平位置不同。
采用一根离地高度为10米的屏蔽线,其位置离输电线路的B相线 分别为14.1米, 15米, 15.9米。
12 23e
t

1 1 2123e2 t
80
故:
SE 20lg
1
T
20lg
1
12 23
4K (1 K )
20lg e t 20lg 1 12 23e2 t
即:
R 20lg 12 23 20lg
A 20 lg e t
( ) :

(1 j )
r f f 3.69107 r
77

传播常数:
j j c
j j
良导体:

j j (1 j) f
波阻抗:
a. 远场:
Zw
0 120 377Ω 0
故:
e2 t 100.1A e j 0.23 A

Z m Z w 2 0.1 A j 0.23 A B 20 lg 1 ( ) 10 e Zm Zw Z Zw 2 Zw Zm 时, ( m ) 1 Zm Zw
B 20 lg 1 100.1 A e j 0.23 A
解: 屏蔽体所处场区:
c 1.5 104 m —— 近场 f 对于大功率线圈—— 产生强磁场,主要为磁屏蔽。

r 1 , r 0.61, 故 r 2 Rm 14.56 10lg( r f ) 14.56 34.84 49.4(dB) r A 0.131t f r r 7.24(dB)
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
高压输电线路工频电场屏蔽研究
• 试验环境
• 选择500kV输电线下的开阔区域,分别测量架设多种形式的屏蔽线 (网)前后的工频电场值。 • 架设的屏蔽线(网)接地良好,测量点取距地面1.5m高处,依照 中华人民共和国电力行业标准《高压交流架空送电线路、变电站 工频电场和磁场测量方法》(DL/T988-2005)进行测量。
n 12 23 21 23
n 1
e 2 n 1 t
总 透 射 场 强
T 12 23e t 12 232123e3 t 12 23 (2123 )n1e(2n1) t
12 23e t [1 2123e2 t (2123e2 t )n1 ]
相关文档
最新文档