压力容器设计 开孔及补强设计

合集下载

压力容器的开孔与补强

压力容器的开孔与补强

压力容器的开孔与补强压力容器是一种用于储存和运输高压气体、液体或气体液体混合物的装置。

由于容器内部承受着巨大的压力,因此对于压力容器的结构设计和制造质量的要求非常高,尤其是它的壁厚和容积大小等参数必须经过精密计算和实验验证。

然而,即使设计和制造工艺都非常优秀,压力容器在使用过程中,也一定会出现开孔或由于压力过高而造成形变或者破裂的情况。

为了避免这种情况的发生,我们可以采用开孔和补强两种方法进行预防和解决。

开孔是一种常见的预防压力容器事故的方法。

通过在容器的垂直和水平方向上开孔,可以使容器内部受到更好的冷却和通风,从而减少容器内部压力的累积。

另一方面,开孔的位置也可根据容器内部压力变化而进行调整,使事故的风险降到最低。

此外,设定开孔的位置和数量还可以为维护和保养提供更大的便利。

例如在容器的底部开孔,可以更轻松地清除容器内部积存的物质。

尽管开孔是一种有效的预防措施,但在一些情况下,由于开孔会改变容器的整体结构,从而降低容器的承载能力。

这时,可以采用补强的方法来保证容器的安全。

补强的方法主要是在容器受力较大的地方加装加强筋或者钢板等材料来提高容器的强度和承载能力。

这种方法的优点是可以增加整个容器的稳定性和韧性,从而避免容器内部压力过高而造成的泄漏和破裂等意外事件的发生。

需要注意的是,在进行压力容器的开孔和补强的时候,我们必须严格遵守国家标准,以确保容器的质量和安全。

另外,在进行相关的维修和改装时必须由具备相关资质、资历的专业人员进行操作,这样可以有效地避免其他安全隐患的发生。

最后,压力容器在工业生产和人们的日常生活中发挥着重要的作用,但与之相关的安全问题也时刻需要引起人们的重视。

因此,在日常生活和工作中,我们应该尽可能地避免对压力容器的摩擦和碰撞,同时,也应该注意对其的定期检查和维修,以避免意外事件的发生。

第十二章压力容器的开孔补强

第十二章压力容器的开孔补强
Rm 3 7 Rm 30 150 T
m
23
(三)应力集中系数的计算
3.椭圆形封头开孔的应力集中系数 椭圆形封头开孔的应力集中系数可以近似的采 用上述球壳开孔接管的曲线,只要将椭圆中心处的 曲率半径折算为球的半径即可
Ri KDi
式中K为修正系数 Di为椭圆封头的内直径 Ri为折算为球壳的当量半径
13
(一)开孔的应力集中
1.平板开小孔的应力集中
σ
σθ
σθ
r
θ σθ σ
max=3σ
σγ
σ
a
r 0
图12-1 平板开小孔时应力集中
平板开孔的最大应力在孔边 孔边沿r=a处: 0,

2

2
max 3
14
一、开孔应力集中及应力集中系数
(一)开孔的应力集中 1.平板开小孔的应力集中
10
第二节 开孔及补强设计
一、开孔应力集中及应力集中系数
二、开孔补强设计的要求
三、等面积补强计算
11
一、开孔应力集中及应力集中系数
容器开孔接管后在应力分布与强度方面会带来下 列影响: 1. 开孔破坏了原有的应力分布并引起应力集中。 2. 接管处容器壳体与接管形成结构不连续应力。 3. 壳体与接管连接的拐角处因不等截面过渡而引 起应力集中。 上述三种因素均使开孔或开孔接管部位的 引力比壳体中的膜应力大,统称为开孔或接管 部位的应力集中。
1
第一节 总体设计问题概述
结果在开孔和接管处的局部地区,应力可能达到很大的数值 。这样高的局部应力,有时再加上接管上还受到其他外部载 荷(例如安装的附加弯短、热应力等)以及开孔结构在制造 过程中难兔产生的残余应力等,于是开孔附近往往就成为容 器的破坏源。因此必须对开孔处进行强度校核,如不能满足 强度要求,则必须进行补强。

压力容器的开孔及补强

压力容器的开孔及补强

第13章 压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中; (2) 开孔补强的原则、补强结构和补强计算; (3) 不另行补强的要求;(4)GB150-98对容器开孔及补强的有关规定。

第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。

容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。

◆ 接管处容器壳体与接管形成结构不连续应力。

◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。

上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。

(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。

若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax=t K (1) 压力容器设计中对于开孔问题研究的两大方向是: ✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。

2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。

承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a ra r r (2) 平板开孔的最大应力在孔边2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r应力集中系数:0.3max==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a ra r r (3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。

容器的开孔补强

容器的开孔补强
环保设 备
容器的开孔补强
一、开孔应力集中现象及其原因
由于各种工艺、结构、操作、维护检修等方面的要求,需要在压力容器上和封头上开孔或安装接 管。例如人孔、手孔、介质的出入口等。容器开孔之后,由于器壁金属的连续性受到破坏,在 孔边附近的局部地区,应力会急剧增加。这种局部的应力增长现象,称为“应力集中”。在应
力集中区城的最大应力值,称之为“应力峰值”。
容器的开孔补强
二、开孔补强设计Hale Waihona Puke 原则与补强结构1.补强设计原则
(1)等面积补强法的设计原则 (2)塑性失效补强原则
2.补强形式
目前采用的补强形式主要有:①内加强平齐接管;②外加强平齐接管;③对称加 强凸出接管;④密集补强
3.补强结构
(1)补强圈补强结构 (2)加强元件补强结构
(3)整体补强结构
4.等面积补强法的设计
(1)开孔有效补强范围的计算 (2)补强面积的计算
容器的开孔补强
环保设 备

压力容器的开孔与补强

压力容器的开孔与补强

第13章 压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中; (2) 开孔补强的原则、补强结构和补强计算; (3) 不另行补强的要求;(4) GB150-98对容器开孔及补强的有关规定。

第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。

容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。

◆ 接管处容器壳体与接管形成结构不连续应力。

◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。

上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。

(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。

若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax=t K (1) 压力容器设计中对于开孔问题研究的两大方向是: ✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。

2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。

承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a ra r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r应力集中系数:0.3max==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a ra r r (3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。

压力容器设计 开孔补强-4页文档资料

压力容器设计 开孔补强-4页文档资料

开孔补强4.5.5.5等面积补强的分析与计算■等面积补强----壳体承受应力所必需的金属截面,因开孔被削去多少,就必须在开孔周围的补强范围内补回同样截面的金属面积。

有效补强的金属面积大于或等于开孔削弱的金属面积A 、判断是否可以不补强和不作进一步补强计算(1)强度裕量(开孔后仍有的)●容器实际壁厚大于计算壁厚(δδφe )●接管厚度大于计算厚度(t et δδφ)●接管根部有填角焊缝 ●所开孔不在焊缝处,但壁厚计算的中径公式仍考虑了焊缝系数,计算壁厚有裕量。

(2)GB150-1998对不另行补强的规定同时满足下列条件时,开孔后可不另行补强:②相邻两孔中心的距离()2d d +≥B、等面积补强计算(1)所需最小补强面积接管有效面积:接管转化为壳体的当量面积:ΔA-----弥补[][]tttσσ≤而需增加的面积;或接管有效承载面积的折减量。

■圆柱壳■外压柱壳或球壳■平盖注:上述平盖和外压容器的公式来由参见丁伯民《压力容器设计----原理及应用》对平盖和外压容器,决定壳体厚度或承载能力的是弯曲应力,开孔削弱的是抗弯截面模量(而不是壁厚截面积)。

为保证开空前后的抗弯截面模量相等(w=w 0),要求k=A/A 0=1/(2+S/S 0),为保守起见,取k=0.5。

s —补强圈厚度,s 0----平盖厚度;A----补强面积,A 0----开孔削弱面积。

(2)补强范围■有效宽度B■接管外侧高度h 1■接管内侧高度h 2{}接管实际内伸高度,min 2nt d h δ=1(3)补强范围内富裕的可作补强的金属面积A e■A 1----壳体有效厚度减去计算厚度之后的多余面积■接管有效厚度减去计算厚度之后的多余面积()()r et r t et f C h f h A 221222-+-=δδδ■A 3----有效补强区内焊缝金属的截面积(4)有效补强区内另外再增加的补强元件的金属截面积A 4若A A e >,则开孔后无需补强。

开孔与开孔补强解读

开孔与开孔补强解读

A 0.5dop p
开孔率(开孔直径与平盖直径之比)大于0.5的 平盖,受力与法兰相近,故其开孔补强按法兰或反 向法兰计算。
有效补强范围:
两个方向的补强范围 (1)沿壳体经线方向的补强范围: B 2dop 是依据受均匀拉伸作用的开小孔大平板,孔 边局部应力集中的衰减范围确定的。 (2)沿接管轴线方向的补强范围:h d op nt 是依据圆柱壳在端部均布载荷作用时,柱壳 中局部环向薄膜应力的衰减范围确定的。
2.2分析法适用的范围
2.3不另行补强的最大开孔直径
3.,属于拉伸强度补偿。为保障内压壳体开 孔局部截面的拉伸强度,从补偿角度讲:壳 体由于开孔丧失的拉伸承载截面积应在孔边 有效补强范围内等面积地进行补偿,俗称等 面积补强。
等面积补强法对开孔边缘的二次应力的 安定性问题是通过限制开孔形状、长短径之 比和开孔范围(开孔率)间接加以考虑的, 使孔边的局部应力得到一定的控制。 等面积补强法对开孔边缘的峰值应力问 题未加考虑,为此不适用于疲劳容器的开孔 补强。
2. GB150.3-2011中开孔补强的计算包括等面 积法和分析法。 2.1适用范围:
3.2单个开孔补强的等面积法适用范围:
3.3补强的结构形式 1)补强圈补强
接管壁厚选用,特别是小接管的壁厚选 用常出现不合理的现象。 对于要求接管与壳体的焊接接头采用全 焊透的结构时,接管壁厚应取≥1/2壳体壁厚 或取接管壁厚≥6mm两者的较小值。 对于坡口熔敷金属量大的焊接接头,当 壳体壁厚大于16mm时接管壁厚应大于8mm; 当壳体壁厚较大(壁厚≥ 20mm)时,接管与 壳体的连接焊缝宜采用双面坡口。 对于低温压力容器,与壳体相焊的接管 壁厚应不小于5mm,其中DN≤50的短接管宜 采用锻造的厚壁管或异径管。

压力容器开孔补强分析及各种补强方法的比较

压力容器开孔补强分析及各种补强方法的比较
CHEN m Y0
( un zo a i G a gh uHu —L —HegC e ia Id s yE u m n C . Ld ,G ag o gG a gh u5 4 C ia n h m cl n ut q i e t o , t. u n d n u nzo 4 2, hn ) r p 1 1
力集 中系数大于法 向接管开孔 , 图 2中的( ) b 的应 力集 如 a 比( )
中系 数 大 。
1 开 孔 附 近 的 应 力 分 析
1 1 平板 开孔 附近 的应 力 .
经分析 … : ①平板 开圆形 孔 ; ②壳体 开孑 ; 平 板开 椭 圆形 L③
孔; ④无 限大平板开 多个孔 。得 出以下结 论 : ①开孔 的应 力集 中区域 内的应 力是 属于 局部 应力 , 衰减很
轴线 , 否则将 使柱壳强度大大降低 ; 图 1中的 ( ) a 好。 如 b 比( )
⑤多个开孔 , 随着 间距 减小 , 孔边 应力 梯度 也减小 , 大 其 最 应力逐渐接近与按作用面积计算 的平均应力 ; ⑥无论是球壳或简体 , 若将开圆孔与椭 圆孔相 比 , 者应 力 后 集 中系数 比前者大 , 故当接管的方 向不在壳体 的法线 时 , 的应 它
的要求 , 使设备能够进行正常的操作 、 测试 和检修 , 在壳 体和端盖 上不可避免地有各种 开孔并连接接管 , 例如 , 物料进 口、 口, 出 测量
和控制点 ( 压力表 、 测温 口)视镜 、 、 液面计 、 人孔和手孔等 。 开孑 的结果 , L 不但会 削弱容器壁 的强 度 , 且在 开孔附 近会 而 形成应 力集中 , 峰值 应力通常达到容 器壁 中薄 膜应力 的数倍 , 其 例如 3倍 , 时甚至达到 5~ 有 6倍 。这样高的局部应力 , 加上接管 上有 时还有其他 的外载荷所产生 的应力 , 温度应 力 , 以及容 器材 质 和开孔 结构在制造过程 中不可 避免地会 形成制造 缺 陷。残 余 应力 、 是开孔 附近 就往往 成为容 器的破 坏源 一主要 是疲 劳破 于 坏 和脆性 裂 口。因此 , 开孔补 强设计 是压 力容 器设 计 中较重 要 的组成部分 , 是保 证容 器安 全操作 的重 要 因素。我 们必 须正 确 分析 开孔 附近的应力集 中, 并采取适 当的补强方法 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 压力容器的整体设计问题
第三章 压力容器的整体设计问题
第二节 开孔及补强设计
埏埴以为器, 埏埴以为器,当 其无,有器之用。 其无,有器之用。
破坏了原有的应力分布并引 起应力集中 接管处形成结构不连续应力 壳体与接管连接的小圆角处 的应力集中
开孔带来的问题
弹性应力集中系数
σ max Kt = σ
一、开孔应力集中及应力集中系数
第三章 压力容器的整体设计问题
2.厚壁接管补强 结构:在开孔处焊上一段厚壁接管, 结构:在开孔处焊上一段厚壁接管,见(b)图。 ) 特点: 补强处于最大应力区域, 特点: 补强处于最大应力区域,能更有效地降低应力集中 系数。接管补强结构简单,焊缝少, 系数。接管补强结构简单,焊缝少,焊接质量容易 检验,补强效果较好。 检验,补强效果较好。 全焊透 应用: 应用: 高强度低合金钢制压力 容器由于材料缺口敏感 性较高, 性较高,一般都采用该 结构, 结构,但必须保证焊缝 全熔透。 全熔透。
本节重点
允许不另行补强的开孔情况; 允许不另行补强的开孔情况; 各种补强结构的特点; 各种补强结构的特点; 等面积补强的原则; 等面积补强的原则; 有效补强区。 有效补强区。
开孔的 应力集 中现象
平板开小圆孔的应力集中
σr = 0
球壳开小圆孔的应力集中
柱壳开小圆孔的应力集中
球壳开孔接管处的变形协调与内力
(c)
第三章 压力容器的整体设计问题
(四)补强圈和焊接的基本要求
(a)外补强-平齐
(b)内补强-平齐
(c)外补强-内伸 (d)内外补强-内伸
图3-11 补强圈补强的基本形式
大多数中低压化工容器采用补强圈补强, 大多数中低压化工容器采用补强圈补强,最常用的是 外补强的平齐接管式, 外补强的平齐接管式,只有在仅靠单向补强不足以达到 补强要求时才采用内外双面补强结构。 补强要求时才采用内外双面补强结构。
(一)开孔应力集中 最大应力在孔边,是应力集中最严重的地方。 最大应力在孔边,是应力集中最严重的地方。 孔边应力集中有局部性,衰减较快。 孔边应力集中有局部性,衰减较快。 (二)开孔并带有接管时的应力集中 (三)应力集中系数的计算
rm ρ= Rm
Rm = T
rm RmT
第三章 压力容器的整体设计问题
二、开孔补强设计的要求
(一)允许不另行补强的最大开孔直径
GB150规定: 规定: 规定
不另行补强的接管最小厚度 mm
第三章 压力容器的整体设计问题
(二)最大开孔的限制 GB150对开孔最大直径的限制: 对开孔最大直径的限制: 对开孔最大直径的限制 a. 圆筒上开孔的限制: 圆筒上开孔的限制: 内径Di≤1500mm时,开孔最大直径d≤ d≤520mm;
第三章 压力容器的整体设计问题
补强区宽度 B=2d B=d+2Tn+2tn 补强区外侧高度 两者中取大值
h1 = dt n
h1=接管实际外伸长度 补强区内侧高度
两者中取小值
h2 = dt n
h2=接管实际内伸长度
两者中取小值
第三章 压力容器的整体设计问题
注意: 注意: 补强材料一般需与壳体材料相同, 补强材料一般需与壳体材料相同,若补强 材料许用应力小于壳体材料许用应力, 材料许用应力小于壳体材料许用应力,则补 强面积应按壳体材料与补强材料许用应力之 比而增加。 比而增加。若补强材料许用应力大于壳体材 料许用应力,则所需补强面积不得减少。 料许用应力,则所需补强面积不得减少。
应用: 应用: 中低压容器应用最多的补强结构, 中低压容器应用最多的补强结构,一般使用在 静载、常温、中低压、 静载、常温、中低压、 材料的标准抗拉强度低于540MPa、 、 材料的标准抗拉强度低于 补强圈厚度小于或等于1.5tn、 补强圈厚度小于或等于 壳体名义厚度t 不大38mm的场合。 的场合。 壳体名义厚度 n不大 的场合 标准: 标准: HG21506-92《补强圈》,JB/T4736-2002《补强圈》 《补强圈》 《补强圈》
(b体连同补强部分做成整体锻件, 将接管和部分壳体连同补强部分做成整体锻件,再与 结构: 结构: 壳体和接管焊接, 壳体和接管焊接,见(c)图。 ) 补强金属集中于开孔应力最大部位, 补强金属集中于开孔应力最大部位,能最有效地降低 优点: 优点: 应力集中系数;可采用对接焊缝,易探伤, 应力集中系数;可采用对接焊缝,易探伤,质量易保 抗疲劳性能好,疲劳寿命只降低10~ 证,抗疲劳性能好,疲劳寿命只降低 ~15%。 。 缺点: 缺点: 锻件供应困难,制造成本较高。 锻件供应困难,制造成本较高。 重要压力容器,如核容器、 重要压力容器,如核容器、材料屈 应用: 应用: 服点在500MPa以上的容器开孔及 服点在 以上的容器开孔及 受低温、高温、 受低温、高温、疲劳载荷容器的大 直径开孔容器等。 直径开孔容器等。
1
第三章 压力容器的整体设计问题
(三)补强结构
整体补强
增加筒体和封头的壁厚 补强圈补强
b 局部补强 厚壁接管补强 2.补强圈的厚度超过被补强件壁厚的1.5倍或超过tmax
1.高强度钢(σ >540MPa)和铬钼钢制造的容器; (碳钢tmax=32mm;16MnR tmax=30mm); 3.设计压力大于等于4MPa; 整锻件补强 4.设计温度大于350℃; 5.容器壳体壁厚大于等于38mm; 6.极度、高度危害介质的压力容器; 7.疲劳压力容器。
第三章 压力容器的整体设计问题
(五)开孔补强的设计准则
开孔补强设计: 开孔补强设计: 指采取适当增加壳体或接管厚度的方法将 应力集中系数减小到某一允许数值。 应力集中系数减小到某一允许数值。
弹性失效设计准则—等面积补强法 弹性失效设计准则 等面积补强法 开孔补强设计准则 塑性失效准则—极限分析法 塑性失效准则 极限分析法
第三章 压力容器的整体设计问题
(四)补强圈和焊接的基本要求 检查孔 M10的螺纹孔 孔 检查的螺纹孔
补强圈与接管及与壳体的焊接是填角焊及搭焊, 补强圈与接管及与壳体的焊接是填角焊及搭焊,视 容器操作条件及设计要求决定是否全焊透。 容器操作条件及设计要求决定是否全焊透。焊缝的成形 应圆滑过渡或打磨至圆滑过渡。 应圆滑过渡或打磨至圆滑过渡。
第三章 压力容器的整体设计问题
等面积补强计算
主要用于补强圈结构的补强计算。 主要用于补强圈结构的补强计算。 基本原则: 使有效补强的金属面积, 基本原则: 使有效补强的金属面积,等于或大于开孔 所削弱的金属面积。 所削弱的金属面积。 有效补强范围: 在一定范围内能起补强作用, 有效补强范围: 在一定范围内能起补强作用,除了此范 则起不到补强作用。 围,则起不到补强作用。 有效补强区: 有效补强区: 见P109图3-12,矩形 图 ,矩形WXYZ。 。
1 Di ,且 2
内径Di>1500mm时,开孔最大直径d≤ D i,且 3 d≤1000mm。
1 b. 凸形封头或球壳上开孔最大直径 凸形封头或球壳上开孔最大直径d≤ D i 。 2
1
GB150对开孔最大直径的限制: c. 锥壳(或锥形封头)上开孔最大直径 锥壳(或锥形封头)上开孔最大直径d≤ D i ,Di 3 为开孔中心处的锥壳内直径。 为开孔中心处的锥壳内直径。 d. 在椭圆形或碟形封头过渡部分开孔时,其孔的中心 在椭圆形或碟形封头过渡部分开孔时, 线宜垂直于封头表面。 线宜垂直于封头表面。
第三章 压力容器的整体设计问题
1.补强圈补强 结构: 补强圈贴焊在壳体与接管连接处, 结构: 补强圈贴焊在壳体与接管连接处,见(a)图。 ) 优点: 结构简单,制造方便,使用经验丰富; 优点: 结构简单,制造方便,使用经验丰富; 缺点: )与壳体金属之间不能完全贴合,传热效果差, 缺点: 1)与壳体金属之间不能完全贴合,传热效果差, 在中温以上使用时,存在较大热膨胀差, 在中温以上使用时,存在较大热膨胀差,在补强 局部区域产生较大的热应力; 局部区域产生较大的热应力; 2)与壳体采用搭接连接, )与壳体采用搭接连接, 难以与壳体形成整体, 难以与壳体形成整体,抗疲 劳性能差。 劳性能差。 (a)
相关文档
最新文档