2012年11月2013级绵阳一诊数学(文)试题及答案

合集下载

绵阳市高2012级第一次诊断性考试数学答案

绵阳市高2012级第一次诊断性考试数学答案

绵阳市高2012级第一次诊断性考试数学(文)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分. BBCD A DAACC BC二、填空题:本大题共4小题,每小题4分,共16分.13.2 14.甲 15.2 16.①④三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.解:由|x -a |≤4有-4≤x -a ≤4,解得a -4≤x ≤a +4,即A ={x |a -4≤x ≤a +4}.……………………………………………………2分 由116<+x 可变形为015<+-x x ,等价于(x +1)(x -5)>0,解得x <-1或x >5,即B ={}51>-<x x x 或.………………………………………………………4分 (Ⅰ)由A ∩B =(]75,知a +4=7,解得a =3. ……………………………7分 (Ⅱ)由A ∩B =A 有A ⊆B ,∴ a +4<-1,或a -4>5, …………………………………………………10分 解得a <-5或a >9. ………………………………………………………12分 18.解:(Ⅰ)由5010.05==n ,于是5.05025==m ,x =50-(4+5+25+6)=10,2.05040==y ,即m =0.5,n =50,x =10,y =0.2. …………………………………………4分 (Ⅱ)据题意,所抽取的两人应分别在(]5.42.4,和(]4.51.5,内取, ∴ 1152112625=+=C C C P .即所求的概率为115. …………………………………………………………7分(Ⅲ)因为采用的是分层抽样,所以样本中共有10名女生, 由题知该校的高三女生人数为13013110=÷人,∴ 全校高三学生人数为130×5=650人.根据频率统计表知,该校高三学生中视力高于4.8的人数为650×(0.2+0.12)=208人. ……………………………………………………12分 19.解:(Ⅰ)设{a n }的公比为q ,则q >0,由已知有⎩⎨⎧⋅==+,,)(9)(164112111q a a q a q a a可解得31=q (31-=q 已舍去),311=a .∴ n n n a )31()31(311=⨯=-. ……………………………………………………6分 (Ⅱ)∵ 2)1(-2)1(3213213)31()31()31()31()31()31(3++++++===⋅⋅⋅⋅=n n n n nnb n,∴2)1(1+-=n n b n,即)111(2)1(2+--=+-=n nn n b n .………………………9分∴n n b b b b S ++++= 321)1113121211(2+-++-+--=n n)111(2+--=n12+-=n n . ………………………………………………………………12分20.解:(Ⅰ)23)2(23)2()(2-+-=-+-=x x x x x h ,∴ xx x h x f 3)2()(+=+=. ……………………………………………………3分设0<x 1<x 2≤3,则)3(3)()(221121x x x x x f x f +-+=- 212121)(3)(x x x x x x ---=2121213)(x x x x x x -⋅-=,∵ 0<x 1<x 2≤3,∴ x 1- x 2<0,x 1x 2<3即x 1x 2-3<0,x 1x 2>0, ∴ f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴ f (x )在(0,3)上是减函数.……………………………………………7分 (Ⅱ)∵xa x x g ++=3)(,∴ 由已知有xa x ++3≥8有a ≥-x 2+8x -3,令t (x )=-x 2+8x -3,则t =-(x -4)2+13,于是t (x )在(0,3)上是增函数. ∴ t (x )ma x =12.∴ a ≥12.……………………………………………………………………12分 21.解:(Ⅰ)由已知有ax x x f 23)(2-=',∴ 0382)38(3)38(2=⨯-⨯='a f ,解得a =4. …………………………………2分于是)83(83)(2-=-='x x x x x f ,令0)(='x f ,得x 0=0或38=x .(Ⅱ)要使f (x )在区间[1,2]内至少有一个实数x ,使得f (x )<0,只需f (x )在[1,2]内的最小值小于0.∵)23(23)(2a x x ax x x f -=-=',且由0)(='x f 知x 1=0,322a x =,①当32a ≤0即a ≤0时,0)(>'x f ,∴ f (x )在[1,2]上是增函数,由023)1()(min <-==a f x f ,解得23>a .这与a <0矛盾,舍去.②当320a <≤1即0<a ≤23时,0)(>'x f ,∴ f (x )在[1,2]上是增函数.由023)1()(min <-==a f x f ,解得23>a .这与0<a ≤23矛盾,舍去.③当1<32a <2即323<<a 时,当1≤32a x <时0)(<'x f ,∴ f (x )在⎪⎭⎫⎢⎣⎡321a ,上是减函数, 当32a ≤x <2时0)(>'x f ,∴ f (x ) 在⎪⎭⎫⎢⎣⎡132,a上是增函数. ∴02744)32()(3min <-==a a f x f ,解得a >3.这与23<a <3矛盾,舍去.④当32a ≥2即a ≥3时,0)(<'x f ,f (x )在[1,2]上是减函数,∴0412)2()(min <-==a f x f ,解得a >3.结合a ≥3得a >3.综上,a >3时满足题意.……………………………………………………12分22.解:(Ⅰ)证明:令x =y =0时,则由已知有)00100()0()0(⨯--=-f f f ,可解得f (0)=0.再令x =0,y ∈(-1,1),则有)010()()0(yy f y f f ⋅--=-,即f (-y )=-f (y ),∴ f (x )是(-1,1)上的奇函数.……………………………………………4分 (Ⅱ)令x =a n ,y =-a n ,于是)12()()(2nn n n a a f a f a f +=--,由已知得2f (a n )=f (a n +1), ∴2)()(1=+n n a f a f ,∴ 数列{f (a n )}是以f (a 1)=1)21(-=f 为首项,2为公比的等比数列.∴.221)(11---=⋅-=n n n a f ……………………………………………………8分 (III )nn n a f b 21)(21=-=,∴ T n = b 1+ b 2+ b 3+…+ b n nn211211)211(21-=--=.……………………………10分于是不等式21441<--+mT m T n n 即为21)211(4)211(41<----+mmn n,整理得212)4(24)4(2<----m m nn.令t =2n (4-m ),于是变形为2124<--t t ,等价于2<t <6.即2<2n (4-m )<6.假设存在正整数m ,n 使得上述不等式成立, ∵ 2n 是偶数,4-m 为整数, ∴ 2n(4-m )=4.于是 ⎩⎨⎧=-=,,1442m n 或⎩⎨⎧=-=,,2422m n 解得⎩⎨⎧==,,23n m 或⎩⎨⎧==.12n m ,因此存在正整数m =2,n =1或m =3,n =2使原不等式成立.…………14分。

四川省绵阳地区2012-2013学年七年级上半期考试数学试卷

四川省绵阳地区2012-2013学年七年级上半期考试数学试卷

四川省绵阳地区2012-2013学年七年级(上)半期考试数学试卷(满分100分,考试时间90分钟)一、选择题(每题只有一个正确答案,请将正确选项代号写在第3页相应位置,每小题3分,共30分)1.“甲比乙大-8岁”表示的意义是A.甲比乙小8岁B.甲比乙大8岁C.乙比甲大-8岁D.乙比甲小8岁 2.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判断墨迹盖住部分的整数共有A.8个B. 9个C. 10个D. 11个3.若a 为有理数,则a -表示的数是A.正数B.负数C.正数或0D.负数或0 4.下列说法正确的是A.单项式y 次数是0,系数是0.B. 单项式253yx -的系数是-5,次数是3.C. 单项式22x y π的系数是2π,次数是3. D. -5是一次单项式.5.下列各对算式结果相等的是A. 32和23B. 24-和2(4)-C. 3(2)--和3|2|--D. 2012(1)-和2013(1)--6.下列说法中正确的是A. 7+a 1是多项式.B.34x -523x y -63y -2是四次四项式.C. 31+x 不是单项式.D. 11m n -是整式.7.下列运算中正确的是A. 4+5ab=9abB. 6xy-xy=6C. 221122a bc cba -+=0 D. 235347x x x += 8.近似数32.710⨯是精确到A. 千位B. 十分位C. 个位D. 百位9. a, b 是有理数,它们在数轴上的对应点的位置如图所示,把a,-a, b,-b 按照从小到大的顺序排列,正确的是A. – b < –a < a < bB. – a < –b < a < bC. – b < a < –a < bD. – b < b < –a < a10.如果342nm x y+与923nx y -是同类项,那么m 、n 的值分别为A. m=2,n=3B. m= -2,n=3C. m= -3,n=2D. m=3,n=2 二、填空题(请将正确答案写在第3页相应的短横线上,每小题2分,共16分) 11. 用含字母的式子表示“a 与b 的平方的差的一半”是______________。

四川省绵阳市2013届高三第三次诊断性考试数学文卷word版含答案

四川省绵阳市2013届高三第三次诊断性考试数学文卷word版含答案

绵阳市高中2013级第三次诊断性考试数学(文科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷l 至2页,第II 卷 3至4页。

满分150分。

考试时间120分钟。

注意事项:1. 答题前,考生务必将自己的姓名、考用0.5毫米的黑色签字笔填写在答题卡上, 并将条形码粘贴在答题卡的指定位置。

2. 选择题使用2B 铅笔填涂在答题卡对应题目标的位置上,非选择题用0.5毫米的 黑色签字笔书写在答题卡的对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷 上答题无效。

3. 考试结束后,将答题卡收回。

第I 卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的.1. 设集合U={l,2, 3, 4}, M={l, 2, 3}, N={2,3, 4},则)(N M C U 等于 A. {1, 2} B. {2, 3} C.{2, 4} D. {1, 4}2.抛物线x 2=-4y 的准线方程是A. x=-1B. x=2C.y=1D. y=-2 3. 若复数z 满足z*i=1+i (i 为虚数单位),则复数z= A. 1+i B. -1-i C. 1-i D. -1+i4. 设数列{a n }是等比数列,则“a 1<a 2广是“数列{a n }是递增数列”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分又不必要条件5. 平面向量a 与b 的夹角为600,a=(2, 0),b =(cosa, sina),则|a+2b|=A.C. 4 D . 126. 函数f(x)=7. 执行如图所示的程序框图,若输出结果为26,则M 处的条件为A. 31≥kB. 15≥kC. k>3lD. k>l58. 己知函数. )|)(|2sin(2)(πθθ<+=x x f ,若函数f(x)在区间)85,6(ππ上单调递增,则0的取值范围是9. )0(122>>=+b a by 与离心率为2的双曲线)0,0(12222>>=+n m ny m x 的公共焦点 是F 1 F 2,点P 是两曲线的一个公共点,若cos 21=∠PF FA.22 C.1010D. 510 10. 已知函数f(x)=ln(e x +a)(e 是自然对数的底数,a 为常数)是实数集R 上的奇函数,若函数f(x)=lnx-f(x)(x 2-2ex+m)在(0, +∞)上有两个零点,则实数m 的取值范围是A. )1,1(2ee e + B. )1,0(2ee +C. ),1(2+∞+e eD. )1,(2ee +-∞第II 卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.11. 若直线x+(a-1)y=4与直线x=1平行,则实数a 的值是____ 12. 如图所示,一个空间几何体的正视图和侧视图都是边长为4 的正方形,俯视图是一个直径为4的圆,则这个几何体的侧 面积是____13.设变量x 、y 满足约束条件:⎪⎩⎪⎨⎧-≥≤+≤11y y x x y ,则目标函数z=2x+y 的最大值是_______15. 定义在区间[a, b]上的函数y=f(x),)(x f '是函数f(x)的导数,如果],[b a ∈∃ξ,使得f(b)-f(a)= ))((a b f -'ξ,则称ξ为三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)从高三学生中抽取n 名学生参加数学竞赛,成绩(单位:分)的分组及各数据绘制的频 率分布直方图如图所示,已知成绩的范围是 区间[40, 100),且成绩在区间[70, 90)的学 生人数是27人.(I) 求n 的值;(II)试估计这n 名学生的平均成绩;(III)若从数学成绩(单位:分)在[40,60)的学生中随机选取2人进行成绩分析,求至少有1人成绩在[40, 50)内的概率.已知{a n }是等差数列,a 1=3, Sn 是其前n 项和,在各项均为正数的等比数列{b n }中, b 1=1 且b 2+S 2=1O, S 5 =5b 3+3a 2.(I )求数列{a n }, {b n }的通项公式;18. (本小题满分12分)如图,ABCD 是边长为2的正方形,ED 丄平面ABCD,ED=1,EF//BD 且EF=BD.(I)求证:BF//平面ACE(II)求证:平面EAC 丄平面BDEF; (III)求几何体ABCDEF 的体积.19. (本小题满分12分)函数)2||,0)(sin()(πϕωϕω<>+=x x f 的部分图象如图示,将y=f(x)的图象向右平移4π个单位后得到函数y=f(x)的 图象.g已知椭圆C: 0(12222>>=+b a b y a x 原点为圆心,椭圆c 的短半轴长为半径的圆与直线02=++y x 相切.A 、B 是椭圆的左右顶点,直线l 过B 点且与x 轴垂直,如图.(I )求椭圆的标准方程;(II)设G 是椭圆上异于A 、B 的任意一点,GH 丄x 轴,H 为垂足,延长HG 到点Q 使得HG=GQ,连接AQ 并延长交直线l 于点M,点N 为MB 的中点,判定直线QN 与以AB 为直径的圆O 的位置关系,并证明你的结论.21. (本小题满分14分)已知函数f(x)=e x-ax(e 为自然对数的底数). (I )求函数f(x)的单调区间;(II)如果对任意],2[+∞∈x ,都有不等式f(x)> x + x 2成立,求实数a 的取值范围; (III)设*N n ∈,证明:nn)1(+nn)2(+nn)3(+…+nnn )(<1-e e绵阳市高中2013级第三次诊断性考试数学(文)参考解答及评分标准一、选择题:本大题共10小题,每小题5分,共50分.DCCBB AABDD二、填空题:本大题共5小题,每小题5分,共25分.11.112.16π13.31415.①④ 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解:(Ⅰ)成绩在区间[)9070,的频率是:1-(0.02+0.016+0.006+0.004)×10=0.54,∴ 27500.54n ==人. ……………………………………………………………3分(Ⅱ)成绩在区间[)8090,的频率是: 1-(0.02+0.016+0.006+0.004+0.03)⨯10=0.24,利用组中值估计这50名学生的数学平均成绩是: 45×0.04+55×0.06+65×0.2+75×0.3+85×0.24+95×0.16=76.2. ……………3分(Ⅲ)成绩在区间[)4050,的学生人数是:50×0.04=2人,成绩在区间[)5060,的学生人数是:50×0.06=3人,设成绩在区间[)4050,的学生分别是A 1,A 2,成绩在区间[)5060,的学生分别是B 1,B 2,B 3,从成绩在[)6040,的学生中随机选取2人的所有结果有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3)共10种情况.至少有1人成绩在[)5040,内的结果有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3)共7种情况.∴ 至少有1人成绩在[)5040,内的概率P =107. ……………………………6分 17.解:(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,由题意可得:11211121054553()2b q a d a d b q a d ⋅++=⎧⎪⎨⨯+⨯=++⎪⎩,, 解得q =2或q =517-(舍),d =2. ∴ 数列{a n }的通项公式是a n =2n +1,数列{b n }的通项公式是12n n b -=. …7分(Ⅱ)由(Ⅰ)知2(321)22n n n S n n ++==+,于是2112n n c S n n ==-+, ∴ 11111111324352n T n n =-+-+-+⋅⋅⋅+-+1111212n n =+--++ 311212n n =--++<32. …………12分 18.解:(Ⅰ)如图,记AC 与BD 的交点为O ,连接EO ,于是DO=OB .∵ EF ∥BD 且EF =12BD ,∴ EF , ∴ 四边形EFBO 是平行四边形, ∴ BF ∥EO .ABCD EF O而BF ⊄平面ACE ,EO ⊂平面ACE ,∴ BF ∥平面ACE .…………………………4分 (Ⅱ)∵ ED ⊥平面ABCD ,AC ⊂平面ABCD , ∴ ED ⊥AC .∵ ABCD 是正方形, ∴ BD ⊥AC ,∴ AC ⊥平面BDEF .又AC ⊂平面EAC,故平面EAC ⊥平面BDEF . ……………………………8分 (Ⅲ)连结FO ,∵ EF DO , ∴ 四边形EFOD 是平行四边形. 由ED ⊥平面ABCD 可得ED ⊥DO , ∴ 四边形EFOD 是矩形. ∵ 平面EAC ⊥平面BDEF .∴ 点F 到平面ACE 的距离等于就是Rt △EFO 斜边EO 上的高,且高h =EF FO OE ⋅=. ∴几何体ABCDEF 的体积E ACD F ACE F ABC V V V V ---=++三棱锥三棱锥三棱锥=111111221+221323232⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ =2.……………………………………………12分19.解:(Ⅰ)由图知:2=4+126πππω(),解得ω=2. 再由()sin(2)11212f ππϕ=⋅+=,得2(Z)62k k ππϕπ+=+∈,即2(Z)3k k πϕπ=+∈.由22ππϕ-<<,得3πϕ=.∴ ()sin(2)3f x x π=+.∴ ()sin[2()]sin(2)4436f x x x ππππ-=-+=-,即函数y =g (x )的解析式为g (x )=sin(2)x π-.………………………………6分(Ⅱ)由已知化简得:sin sin sin A B A B +=.∵ 32sin sin sin sin 3a b c R A B C π====(R 为△ABC 的外接圆半径),∴2R =,∴ sin A =2a R ,sin B =2bR .∴2222a b a b R R R R+=⋅,即 a b +=. ① 由余弦定理,c 2=a 2+b 2-2ab cos C , 即 9=a 2+b 2-ab =(a +b )2-3ab . ②联立①②可得:2(ab )2-3ab -9=0,解得:ab =3或ab =23-(舍去),故△ABC 的面积S △ABC=1sin 2ab C =…………………………………12分20.解:(Ⅰ)由题可得:e=c a =∵ 以原点为圆心,椭圆C 的短半轴长为半径的圆与直线x +y +2=0相切,∴b ,解得b =1.再由 a =b +c ,可解得:a =2.∴ 椭圆的标准方程:2214x y +=.……………………………………………5分(Ⅱ)由(Ⅰ)可知:A (-2,0),B (2,0),直线l 的方程为:x =2. 设G (x 0,y 0)(y 0≠0),于是H (x 0,0),Q (x 0,2y 0),且有220014x y +=,即4y 02=4-x 02.设直线AQ 与直线BQ 的斜率分别为:k AQ ,k BQ ,∵220000220000224412244AQ BQ y y y x k k x x x x -⋅=⋅===-+---,即AQ ⊥BQ , ∴ 点Q 在以AB 为直径的圆上.∵ 直线AQ 的方程为:002(2)2y y x x =++,由002(2)22y y x x x ⎧=+⎪+⎨⎪=⎩,, 解得:00282x y y x =⎧⎪⎨=⎪+⎩,,即008(2)2y M x +,,∴ 004(2)2yN x +,.∴ 直线QN 的斜率为:0000000220000422222442QN y y x x y x y x k x x y y -+---====--,∴ 0000212OQ QN y x k k x y -⋅=⋅=-,于是直线OQ 与直线QN 垂直, ∴ 直线QN 与以AB 为直径的圆O 相切. …………………………………13分 21.解:(Ⅰ)∵a e x f x -=')(,当a ≤0时0)(>'x f ,得函数f (x )在(-∞,+∞)上是增函数. 当a >0时,若x ∈(ln a ,+∞),0)(>'x f ,得函数()f x 在(ln a ,+∞)上是增函数; 若x ∈(-∞,ln a ),0)(<'x f ,得函数()f x 在(-∞,ln a )上是减函数.综上所述,当a ≤0时,函数f (x )的单调递增区间是(-∞,+∞);当a >0时,函数f (x ) 的单调递增区间是(ln a ,+∞),单调递减区间是(-∞,ln a ).…5分 (Ⅱ)由题知:不等式e x -ax >x +x 2对任意[2)x ∈+∞,成立,即不等式2x e x x a x--<对任意[2)x ∈+∞,成立.设2()x e x x g x x --=(x ≥2),于是22(1)()x x e x g x x --'=.再设2()(1)x h x x e x =--,得()(2)x h x x e '=-.由x ≥2,得()0h x '>,即()h x 在[2)+∞,上单调递增, ∴ h (x )≥h (2)=e 2-4>0,进而2()()0h x g x x'=>, ∴ g (x )在[2)+∞,上单调递增, ∴ 2min[()](2)32e g x g ==-,∴ 232e a <-,即实数a 的取值范围是2(3)2e -∞-,.………………………10分(Ⅲ)由(Ⅰ)知,当a =1时,函数f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. ∴ f (x )≥f (0)=1,即e x -x ≥1,整理得1+x ≤e x .令i x n=-(n ∈N*,i =1,2,…,n -1),则01i n <-≤i ne -,即(1)n i n -≤i e -,∴1()n n n -≤1e -,2()n n n -≤2e -,3()n n n -≤3e -,…,1()n n ≤(1)n e --, 显然()n nn ≤0e ,∴ 1231()()()()()n n n n n n n n n n n n n n ---++++⋅⋅⋅+≤0123(1)n e e e e e -----++++⋅⋅⋅+ 11(1)111n n e e e ee e e -----==<---, 故不等式123()()()+1n n n n n en n n n e +++<-…()(n ∈N *)成立.……………4分。

四川省绵阳中学2013届高三第一次诊断性考试数学(文)试题(扫描版)(附答案)

四川省绵阳中学2013届高三第一次诊断性考试数学(文)试题(扫描版)(附答案)

绵阳市高2013级第一次诊断性考试 数学(文)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.CCBAD BAADD AB二、填空题:本大题共4小题,每小题4分,共16分.13.-4 14.2 15.k >-3 16.①③三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.解:(Ⅰ)f (x )=a ·b =(cos2x ,1)· (1x )x+ cos2x =2sin(2x+6π),………………………………………6分∴ 最小正周期22T ππ==. 令2x+6π=2k ππ+,k ∈Z ,解得x=26k ππ+,k ∈Z , 即f (x )的对称轴方程为x=26k ππ+,k ∈Z .…………………………………8分 (Ⅱ)当x ∈[0,2π]时,即0≤x ≤2π,可得6π≤2x+6π≤76π,∴ 当2x+6π=2π,即x=6π时,f (x )取得最大值f (6π)=2;当2x+6π=76π,即x=2π时,f (x )取得最小值f (2π)=-1.即f (x ) 的值域为[-1,2].……………………………………………………12分 18.解:(Ⅰ)设公比为q ,由已知a 6=2,a 3=41,得5211124a q a q ==,, 两式相除得q 3=8,解得q =2,a 1=116, ∴ a n =1512216n n --⨯=.…………………………………………………………6分 (Ⅱ)b n =3log2a n =523log 2n -=3n -15,∴ ()()12123153272222n n n b b n n T n n +-+-===-239243228n ⎛⎫=-- ⎪⎝⎭, 当n =4或5时,T n 取得最小值,最小值为-30.……………………………12分 19.解:(Ⅰ)∵ a sin A =(a -b )sin B +c sin C ,结合0C π<<,得3C π=. …………………………………………………6分(Ⅱ)∵ △ABC 的面积为3,即1sin 2ab C =ab =4,①又c =2,由(Ⅰ)知,224a b ab +-=, ∴ 2()3416a b ab +=+=,得a +b =4,②由①②得a=b=2. ……………………………………………………………12分 20.解:(Ⅰ)由已知y = f (x )是二次函数,且f (x )<0的解集是(0,5),可得f (x )=0的两根为0,5, 于是设二次函数f (x )=ax (x -5),代入点(1,-4),得-4=a×1×(1-5),解得a =1,∴ f (x )=x (x -5). ………………………………………………………………4分 (Ⅱ)h (x )=2f (x )+g (x )=2x (x -5)+x 3-(4k -10)x +5=x 3+2x 2-4kx +5,于是2()344h x x x k '=+-,∵ h (x )在[-4,-2]上单调递增,在[-2,0]上单调递减, ∴ x =-2是h (x )的极大值点,∴ 2(2)3(2)4(2)40h k '-=⨯-+⨯--=,解得k=1. …………………………6分 ∴ h (x )=x 3+2x 2-4x +5,进而得2()344h x x x '=+-. 令22()3443(2)()03h x x x x x '=+-=+-=,得12223x x =-=,. 由下表:可知:h (-2)=(-2)3+2×(-2)2-4×(-2)+5=13,h (1)=13+2×12 -4×1+5=4,h (-3)=(-3)3+2×(-3)2-4×(-3)+5=8,h (23)=(23)3+2×(23)2-4×23+5=9527, ∴ h (x )的最大值为13,最小值为9527.……………………………………12分21.解:(Ⅰ)由题设知(t -1)S 1=2ta 1-t -1,解得a 1=1, 由(t -1)S n =2ta n -t -1,得(t -1)S n+1=2ta n+1-t -1, 两式相减得(t -1)a n +1=2ta n +1-2ta n ,∴ 121n n a t a t +=+(常数).∴ 数列{a n }是以1为首项,21tt +为公比的等比数列.………………………4分 (Ⅱ)∵ q = f (t )=21tt +,b 1=a 1=1,b n +1=21f (b n )= 1n n b b +,∴11111n n n nb b b b ++==+, ∴ 数列1n b ⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列, ∴1nn b =.………………………………………………………………………8分 (III )当t =13时,由(I )知a n =11()2n -,. 于是数列{c n }为:1,-1,12,2,2,21()2,-3,-3,-3,31()2,…设数列{a n }的第k 项是数列{c n }的第m k 项,即a k =k m c ,当k ≥2时,m k =k +[1+2+3+…+(k -1)]=(1)2k k +, ∴ m 9=910452⨯=. 设S n 表示数列{c n }的前n 项和, 则S 45=[1+12+21()2+…+81()2]+[-1+(-1)2×2×2+(-1)3×3×3+…+(-1)8×8×8]. 显然 1+12+21()2+…+81()2=9811()1221212-=--, ∵ -1+(-1)2×2×2+(-1)3×3×3+…+(-1)8×8×8=-1+22-32+42-52+62-72+82=(2+1)(2-1)+(4+3)(4-3)+ (6+5)(6-5)+(8+7)(8-7) =3+7+11+15 =36. ∴ S 45=8122-+36=38-812.∴ S 50=S 45+(c 46+c 47+c 48+c 49+c 50)=38-812+5×(-1)9×9 =17256-.即数列{c n }的前50项之和为17256-.………………………………………12分 22.解:(Ⅰ)由已知:1()f x a x'=-, ∴由题知11(2)22f a '=-=-,解得a =1. 于是11()1xf x x x-'=-=,当x ∈(0,1)时,()0f x '>,f (x )为增函数, 当x ∈(1,+∞)时,()0f x '<,f (x )为减函数,即f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). ……5分 (Ⅱ)∀x ∈(0,+∞),f (x )≤g (x ),即ln x -(k +1)x ≤0恒成立,设()ln (1)h x x k x =-+,有11(1)()(1)k xh x k x x-+'=-+=. ①当k +1≤0,即k ≤-1时,()0h x '>,此时(1)ln1(1)h k =-+≥0与()h x ≤0矛盾. ②当k +1>0,即k >-1时,令()h x '=0,解得11x k =+, 101x k ⎛⎫∈ ⎪+⎝⎭,,()h x '>0,h (x )为增函数,11x k ⎛⎫∈+∞ ⎪+⎝⎭,,()h x '<0,h (x )为减函数, ∴ max 11()()ln 111h x h k k ==-++≤0,即()ln 1k +≥-1,解得k ≥11e-.综合k >-1,知k ≥11e-.∴ 综上所述,k 的取值范围为11e ⎡⎫-+∞⎪⎢⎣⎭,.………………………………10分 (Ⅲ)由(Ⅰ)知f (x )在(0,1)上是增函数,在(1,+∞)上是减函数, ∴ f (x )≤f (1)=0, ∴ ln x ≤x -1.当n =1时,b 1=ln(1+1)=ln2, 当n ≥2时,有ln(n +1)<n ,∵ ()3ln 1n n b n +=321111(1)1n n n n n n n<=<=---, ∴ 1211111112123131n b b b b n n ⎛⎫⎛⎫⎛⎫+++<+-+-++- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭1ln 2(1)n=+-<1+ln2.……………………………………………………14分。

四川省绵阳市 中考数学一诊试卷 (Word版 含解析)

四川省绵阳市 中考数学一诊试卷 (Word版 含解析)

四川省绵阳市中考数学一诊试卷一.选择题(共12小题).1.下列国产车的标志中是中心对称图形的是()A.B.C.D.2.关于x的方程(m﹣1)x2+x+m2+2m﹣3=0的一个根是0,则m的值是()A.7B.﹣3C.1或﹣3D.03.某口罩加工厂今年一月口罩产值达80万元,第一季度总产值达340万元,问二,三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程为()A.80(1+x)2=340B.80+80(1+x)2=340C.80(1+x)+80(1+x)2=340D.80+80(1+x)+80(1+x)2=3404.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣5C.y=(x﹣5)2﹣13D.y=(x+1)2﹣55.如图,在△ABC中,将△ABC绕着点A顺时针旋转后,得到△AB′C′,且点C′在BC上,若∠B′C′B=52°,则∠C的度数为()A.74°B.66°C.64°D.76°6.如图,ABCDEF是中心为原点O,顶点A,D在x轴上,半径为4的正六边形,则顶点F的坐标为()A.(2,2)B.(﹣2,2)C.(﹣2,2)D.(﹣1,)7.如图,A、B、C三点在⊙O上,若∠ACB=∠AOB,则∠AOB的度数是()A.60°B.90°C.100°D.120°8.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲢鱼的概率约为()A.B.C.D.9.如图,矩形ABCD的边长AB=1,BC=2.把BC绕B逆时针旋转,使C恰好落在AD上的点E处,线段BC扫过部分为扇形BCE.若扇形BCE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.C.D.10.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表,下列说法错误的是()x…﹣1013…y…﹣3131…A.a<0B.方程ax2+bx+c=﹣2的正根在4与5之间C.2a+b>0D.若点(5,y1)、(﹣,y2)都在函数图象上,则y1<y211.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=4,CG=3,则CE的长为()A.5B.5C.5D.12.如图,函数y1=|x2﹣m|的图象如图,坐标系中一次函数y2=x+b的图象记为y2,则以下说法中正确的有()①当m=1,且y1与y2恰好有三个交点时b有唯一值为1;②当m=4,且y1与y2只有两个交点时,b>或﹣2<b<2;③当m=﹣b时,y1与y2一定有交点:④当m=b时,y1与y2至少有2个交点,且其中一个为(0,m).A.1个B.2个C.3个D.4个二、填空题(共6小题).13.平面直角坐标系中,P(x,2+y)与Q(2y,x)关于原点对称,则xy=.14.如图,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中∠ABC=90°,AC=50cm,AB=30cm,小明蒙上眼睛用棍子击中了锣面,他击中阴影部分的概率是.15.飞机着陆后滑行的距离s(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=96t﹣1.2t2,那么飞机着陆后秒停下.16.已知△ABC三边的长分别为5、12、13,那么△ABC内切圆的半径为.17.若min{a,b,c}表示a,b,c三个数中的最小值,当y=min{x2,2x+4,12﹣x}时,则y的取值范围是.18.等边△ABC的边长为6,P是AB上一点,AP=2,把AP绕点A旋转一周,P点的对应点为P′,连接BP′,BP′的中点为Q,连接CQ.则CQ长度的最小值是.三、解答题(共7个小题,共90分,解答应写出文字说明、证明过程或演算步骤)19.解方程:x2+2x+1=3x+3.20.在乐善中学组织的体育测试中,小壮掷出的实心球的高度y(m)与水平距离x(m)之间的关系式是y=﹣(x﹣3)2+,求小壮此次实心球推出的水平距离.21.疫情期间,游海中学进行了一次线上数学学情调查,九(1)班数学李老师对成绩进行分析,制作如下的频数分布表和频数分布直方图.60到70之间学生成绩尚未统计,根据情况画出的扇形图如图.请解答下列问题:类别分数段频数(人数)A60≤x<70aB70≤x<8016C80≤x<9024D90≤x<1006(1)完成频数分布表,a=,B类圆心角=°,并补全频数分布直方图;(2)全校九年级共有720名学生全部参加此次测试,估计该校成绩80≤x<100范围内的学生有多少人?(3)九(1)班数学老师准备从D类优生的6人中随机抽取两人进行线上学习经验交流,已知这6人中有两名是无家长管理的留守学生,求恰好只选中其中一名留守学生进行经验交流的概率.22.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(2,4)、B(1,2)、C(5,3).以点(0,0)为旋转中心,将△ABC顺时针旋转90°,得到△A1B1C1.(1)在坐标系中画出△A1B1C1.(2)若△ABC上有一点P(m,n),直接写出旋转后对应点P1的坐标.(3)求旋转中线段AC所经过部分的面积.23.已知关于x的一元二次方程(a﹣3)x2﹣4x+3=0有两个不等的实根.(1)求a的取值范围;(2)当a取最大整数值时,△ABC的三条边长均满足关于x的一元二次方程(a﹣3)x2﹣4x+3=0,求△ABC的周长.24.如图,游仙怡心月季养植园是一个矩形ABCD,AD=32米,AB=20米.为了便于养护与运输,养植园内留有四横四纵等宽道路,养植面积与道路面积比为7:3.(1)求道路的宽度.(2)养植区域内月季盆裁要均匀摆放,即每平方米摆放的盆数一样.每平方米最多能摆放36盆,密度越大,花的品质会下降,每盆月季的出售价也会随之降低.大棚内现在每平米有月季小盆栽10盆,每盆的出售价为5元.分析发现:每平方米每增加5盆,每盆的出售价会下降0.5元.老板准备增加养植数量,以获得最多的出售总额,那么每平米应该养植多少盆月季小盆栽才能使出售总额最多?25.如图1,O是△ABC的边BC的中点,⊙O与BC交于E、F两点,与AB相切于点D,连接AO交⊙O于点P,=.(1)猜想AC与⊙O的位置关系,并证明你的猜想.(2)如图2,延长AO交⊙O于Q点,连接DE、DF,DQ,FQ,FQ=,ED=5,求DQ的长.(3)如图3,若DE=5,连接DF、DP、PF,设DP=x,△DPF的面积为y,求y与x之间的函数关系式.26.如图,抛物线y=ax2+bx+c与x轴交于A(1,0),B(5,0)两点,与y轴交于点C.抛物线顶点纵坐标为﹣4.(1)求抛物线的解析式及C点坐标.(2)如图1,过C作x轴的平行线,与抛物线交于点M,连接AM、BM,在y轴上是否存在点N,使∠ANB=∠AMB?若存在,请求出点N的坐标;若不存在,请说明理由.(3)把线段OC绕O点顺时针旋转,使C点恰好落在抛物线对称轴上的点P处,如图2,再将线段OP绕P点逆时针旋转45°得线段PQ,请计算Q点坐标,并判断Q点在抛物线上吗?参考答案一.选择题(共12小题).1.下列国产车的标志中是中心对称图形的是()A.B.C.D.解:A.不是中心对称图形,不合题意;B.是中心对称图形,符合题意;C.不是中心对称图形,不合题意;D.不是中心对称图形,不合题意;故选:B.2.关于x的方程(m﹣1)x2+x+m2+2m﹣3=0的一个根是0,则m的值是()A.7B.﹣3C.1或﹣3D.0解:把x=0代入方程(m﹣1)x2+x+m2+2m﹣3=0,得m2+2m﹣3=0,解得m=1或﹣3.故选:C.3.某口罩加工厂今年一月口罩产值达80万元,第一季度总产值达340万元,问二,三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程为()A.80(1+x)2=340B.80+80(1+x)2=340C.80(1+x)+80(1+x)2=340D.80+80(1+x)+80(1+x)2=340解:设月平均增长率的百分数为x,80+80(1+x)+80(1+x)2=340.故选:D.4.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣5C.y=(x﹣5)2﹣13D.y=(x+1)2﹣5解:∵y=x2﹣4x﹣4=(x﹣2)2﹣8,∴将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为y=(x﹣2+3)2﹣8+3,即y=(x+1)2﹣5.故选:D.5.如图,在△ABC中,将△ABC绕着点A顺时针旋转后,得到△AB′C′,且点C′在BC上,若∠B′C′B=52°,则∠C的度数为()A.74°B.66°C.64°D.76°解:∵将△ABC绕点A顺时针旋转后,得到△AB′C′,∴AC′=AC,∴∠C=∠AC′C=∠AC′B′,∵∠B′C′B=52°,∴∠CC′B′=180°﹣52°=128°,∴∠C=∠AC′C=∠AC′B′=×128°=64°,故选:C.6.如图,ABCDEF是中心为原点O,顶点A,D在x轴上,半径为4的正六边形,则顶点F的坐标为()A.(2,2)B.(﹣2,2)C.(﹣2,2)D.(﹣1,)解:连接OF.∵∠AOF==60°,OA=OF,∴△AOF是等边三角形,∴OA=OF=4.设EF交y轴于G,则∠GOF=30°.在Rt△GOF中,∵∠GOF=30°,OF=4,∴GF=2,OG=2.∴F(﹣2,2).故选:C.7.如图,A、B、C三点在⊙O上,若∠ACB=∠AOB,则∠AOB的度数是()A.60°B.90°C.100°D.120°解:如图,在优弧AB上取一点D,连接AD,BD.∵∠ACB+∠ADB=180°,∠ACB=∠AOB=2∠ADB,∴2∠ADB+∠ADB=180°,∴∠ADB=60°,∴∠AOB=2∠ADB=120°,故选:D.8.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲢鱼的概率约为()A.B.C.D.解:∵捕捞到草鱼的频率稳定在0.5左右,设草鱼的条数为x,可得:=0.5,解得:x=2400,∴由题意可得,捞到鲢鱼的概率为:=;故选:D.9.如图,矩形ABCD的边长AB=1,BC=2.把BC绕B逆时针旋转,使C恰好落在AD上的点E处,线段BC扫过部分为扇形BCE.若扇形BCE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.C.D.解:∵线段CE由线段BC旋转而成,BC=2,∴BE=BC=2.∵AB=1,∠BAE=90°,∴∠AEB=30°.∵AD∥BC,∴∠EBC=∠AEB=30°,∴S阴影==,设围成的圆锥的底面半径为r,则2πr=,解得:r=.故选:A.10.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表,下列说法错误的是()x…﹣1013…y…﹣3131…A.a<0B.方程ax2+bx+c=﹣2的正根在4与5之间C.2a+b>0D.若点(5,y1)、(﹣,y2)都在函数图象上,则y1<y2解:∵二次函数值先由小变大,再由大变小,∴抛物线的开口向下,∴a<0,故A正确;∵x=﹣1时,y=﹣3,∴x=4时,y=﹣3,∴二次函数y=ax2+bx+c的函数值为﹣2时,﹣1<x<0或3<x<4,即方程ax2+bx+c=﹣2的负根在﹣1与0之间,正根在3与4之间,故B错误;∵抛物线过点(0,1)和(3,1),∴抛物线的对称轴为直线x=,∴﹣=>1,∴2a+b>0,故C正确;∵(﹣,y2)关于直线x=的对称点为(,y2),∵<5,∴y1<y2,故D正确;故选:B.11.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=4,CG=3,则CE的长为()A.5B.5C.5D.解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=7﹣x=BF,FG=CF﹣CG=11﹣x,∴EG=11﹣x,∵∠C=90°,∴Rt△CEG中,CE2+CG2=EG2,即x2+32=(11﹣x)2,解得x=,∴CE的长为,故选:C.12.如图,函数y1=|x2﹣m|的图象如图,坐标系中一次函数y2=x+b的图象记为y2,则以下说法中正确的有()①当m=1,且y1与y2恰好有三个交点时b有唯一值为1;②当m=4,且y1与y2只有两个交点时,b>或﹣2<b<2;③当m=﹣b时,y1与y2一定有交点:④当m=b时,y1与y2至少有2个交点,且其中一个为(0,m).A.1个B.2个C.3个D.4个解:①错误.如图1中,当直线y=x+b与抛物线相切时,也满足条件只有三个交点.此时b≠1,故①错误.②正确.如图2中,当抛物线经过点(﹣2,0)时,0=4﹣m,m=4.由消去y得到x2+x+b﹣4=0,当△=0时,1﹣4b+16=0,∴b=,观察图象可知当b>或﹣2<b<2时,y1与y2有两个交点.故②正确.③错误.如图3中,当b=﹣4时,观察图象可知,y1与y2没有交点,故③错误.④正确.如图4中,当b=4时,观察图象可知,b>0,y1与y2至少有2个交点,且其中一个为(0,m),故④正确.故选:B.二、填空题(共6个小题,每小题4分,共24分,将答案填写在答题卡相应的横线上)13.平面直角坐标系中,P(x,2+y)与Q(2y,x)关于原点对称,则xy=﹣8.解:∵P(x,2+y)与Q(2y,x)关于原点对称,∴,解得:,则xy=﹣4×2=﹣8.故答案为:﹣8.14.如图,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中∠ABC=90°,AC=50cm,AB=30cm,小明蒙上眼睛用棍子击中了锣面,他击中阴影部分的概率是.解:∵∠ABC=90°,AC=50cm,AB=30cm,∴由勾股定理得:BC=40cm,∴S△ABC=AB•BC=×30×40=600(cm2),∴S阴影=S正方形﹣4S△ABC=502﹣4×600=100(cm2),∴小明蒙上眼睛用棍子击中了锣面,他击中阴影部分的概率是=,故答案为:.15.飞机着陆后滑行的距离s(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=96t﹣1.2t2,那么飞机着陆后40秒停下.解:s=96t﹣1.2t2,当t=﹣==40(秒)时,s将取到最大值,即飞机着陆后40秒停下.故答案为:40.16.已知△ABC三边的长分别为5、12、13,那么△ABC内切圆的半径为2.解:如图,圆O为△ABC内切圆,切点分别为D、E、F,连接OF、OE、OD,则OF⊥AC,OE ⊥BC,OD⊥AB.由切线长定理,可知AF=AD,CF=CE,BD=BE,∴OE=OF=CE=CF,又∵52+122=132,∴∠C=90°,∴四边形FCEO为正方形,∴CE===2.故答案为2.17.若min{a,b,c}表示a,b,c三个数中的最小值,当y=min{x2,2x+4,12﹣x}时,则y的取值范围是y≤9.解:如图,当x=3时y有最大值,y最大=12﹣3=9,故答案为y≤9.18.等边△ABC的边长为6,P是AB上一点,AP=2,把AP绕点A旋转一周,P点的对应点为P′,连接BP′,BP′的中点为Q,连接CQ.则CQ长度的最小值是3﹣1.解:如图,取AB中点D,连接DQ,CD,AP',∵AP=2,把AP绕点A旋转一周,∴AP'=2,∵等边△ABC的边长为6,点D是AB中点,∴BD=AD=3,CD⊥AB,∴CD===3,∵点Q是BP'是中点,∴BQ=QP',又∵AD=BD,∴DQ=AP'=1,在△CDQ中,CQ≥DC﹣DQ,∴CQ的最小值为3﹣1,故答案为3﹣1.三、解答题(本大题共7个小题,共90分,解答应写出文字说明、证明过程或演算步骤)19.解方程:x2+2x+1=3x+3.解:∵x2+2x+1=3x+3,∴(x+1)2﹣3(x+1)=0,则(x+1)(x﹣2)=0,∴x+1=0或x﹣2=0,解得x1=﹣1,x2=2.20.在乐善中学组织的体育测试中,小壮掷出的实心球的高度y(m)与水平距离x(m)之间的关系式是y=﹣(x﹣3)2+,求小壮此次实心球推出的水平距离.解:令y=0,则﹣(x﹣3)2+=0,解得:x1=8,x2=﹣2(舍去),故小壮此次实心球推出的水平距离为:8米.21.疫情期间,游海中学进行了一次线上数学学情调查,九(1)班数学李老师对成绩进行分析,制作如下的频数分布表和频数分布直方图.60到70之间学生成绩尚未统计,根据情况画出的扇形图如图.请解答下列问题:类别分数段频数(人数)A60≤x<70aB70≤x<8016C80≤x<9024D90≤x<1006(1)完成频数分布表,a=2,B类圆心角=120°,并补全频数分布直方图;(2)全校九年级共有720名学生全部参加此次测试,估计该校成绩80≤x<100范围内的学生有多少人?(3)九(1)班数学老师准备从D类优生的6人中随机抽取两人进行线上学习经验交流,已知这6人中有两名是无家长管理的留守学生,求恰好只选中其中一名留守学生进行经验交流的概率.解:(1)调查的总人数为:24÷50%=48(人),∴a=48﹣16﹣24﹣6=2,B类圆心角的度数为360°×=120°,故答案为2,120;补全频数分布直方图为:(2)720×=450(人),所以估计该校成绩80≤x<100范围内的学生有450人;(3)把D类优生的6人分别即为1、2、3、4、5、6,其中1、2为留守学生,画树状图如图:共有30个等可能的结果,恰好只选中其中一名留守学生进行经验交流的结果有16个,∴恰好只选中其中一名留守学生进行经验交流的概率为=.22.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(2,4)、B(1,2)、C(5,3).以点(0,0)为旋转中心,将△ABC顺时针旋转90°,得到△A1B1C1.(1)在坐标系中画出△A1B1C1.(2)若△ABC上有一点P(m,n),直接写出旋转后对应点P1的坐标.(3)求旋转中线段AC所经过部分的面积.解:(1)如图,△A1B1C1即为所求作.(2)P1(n,﹣m).(3)线段AC所经过部分的面积=﹣=(OC2﹣OA2)=•(32+52﹣22﹣42)=,23.已知关于x的一元二次方程(a﹣3)x2﹣4x+3=0有两个不等的实根.(1)求a的取值范围;(2)当a取最大整数值时,△ABC的三条边长均满足关于x的一元二次方程(a﹣3)x2﹣4x+3=0,求△ABC的周长.解:(1)∵关于x的一元二次方程(a﹣3)x2﹣4x+3=0有两个不相等的实数根,∴,解得a<且a≠3.(2)由(1)得a的最大整数值为4;∴x2﹣4x+3=0解得:x1=1 x2=3.∵△ABC的三条边长均满足关于x的一元二次方程(a﹣3)x2﹣4x+3=0,∴①三边都为1,则△ABC的周长为3;②三边都为3,则△ABC的周长为9;③三边为1,1,3,因为1+1<3,此情况不存在;④三边为1,3,3,则△ABC的周长为7.24.如图,游仙怡心月季养植园是一个矩形ABCD,AD=32米,AB=20米.为了便于养护与运输,养植园内留有四横四纵等宽道路,养植面积与道路面积比为7:3.(1)求道路的宽度.(2)养植区域内月季盆裁要均匀摆放,即每平方米摆放的盆数一样.每平方米最多能摆放36盆,密度越大,花的品质会下降,每盆月季的出售价也会随之降低.大棚内现在每平米有月季小盆栽10盆,每盆的出售价为5元.分析发现:每平方米每增加5盆,每盆的出售价会下降0.5元.老板准备增加养植数量,以获得最多的出售总额,那么每平米应该养植多少盆月季小盆栽才能使出售总额最多?解:(1)设道路宽x米,则(32﹣4x)(20﹣4x)=32×20×,解得:x1=1,x2=12(不合题意舍去),故x=1,答:道路宽为1米;(2)∵5:0.5=10:1,故设每平方米增加10z盆,则每盆售价降低z元,出售总额为w元/m2,则:w=(10+10z)(5﹣z)=﹣10(z﹣2)2+90,∵10z≤36﹣10,∴z≤2.6,∴0≤z≤2.6,又∵a=﹣10<0,且z=2在0≤z≤2.6内,∴每平米应该养植20盆月季小盆栽才能使出售总额最多.25.如图1,O是△ABC的边BC的中点,⊙O与BC交于E、F两点,与AB相切于点D,连接AO交⊙O于点P,=.(1)猜想AC与⊙O的位置关系,并证明你的猜想.(2)如图2,延长AO交⊙O于Q点,连接DE、DF,DQ,FQ,FQ=,ED=5,求DQ的长.(3)如图3,若DE=5,连接DF、DP、PF,设DP=x,△DPF的面积为y,求y与x之间的函数关系式.解:(1)结论:AC与⊙O相切,理由:过点O作OH⊥AC于H,∵⊙O与AB相切于点D,∴OD⊥AB,∵,点O是圆心,∴∠BOP=∠COP=90°,又∵O是BC的中点,∴AB=AC,∴∠BAO=∠OAC,又∵OD⊥AB,OH⊥AC,∴OD=OH,∴OH是半径,∴AC与⊙O相切.(2)如图2中,过点Q作QN⊥CD于N,QM⊥DE交DE的延长线于M,连接QE.∵AO⊥BC,O是圆心,∴PQ是直径,∴OQ=OF,∴FQ=OF=,∴FO=,∴EF=13,∵EC是直径,∴∠EDC=90°,∵DE=5∴CD===12,∵∠QDC=∠QOF=45°,∴∠QDM=∠QDN=45°,∴=,∴EQ=FQ,∵QM⊥DM,QN⊥DN,∴QM=QN,∵∠M=∠QNF=90°,∴Rt△QME≌Rt△QNF(HL),∴EM=FN,∵∠M=∠MDN=∠DNQ=90°,∴四边形DMQN是矩形,∵QM=QN,∴四边形DMQN是正方形,∴DM=DN,∴DE+DF=DM﹣EM+DN+NF=2DM=17,∴DM=DN=,∴DQ=DN=.(3)如图3中,过点F作FH⊥DP交DP的延长线于H.∵∠PDF=∠POC=45°,∠H=90°,∴∠HDF=∠DFH=45°,∴DH=FH,DF=FH,∵∠EDF=∠H=90°,∠EFP=∠DFH=45°,∴∠EFD=∠PFH,∴△EFD∽△PFH,∴==,∵DE=5,∴PH=,∴DH=FH=x+,∴y=S△PDF=•DP•FH,∴y=×x×(x+)=x2+x(x>0).26.如图,抛物线y=ax2+bx+c与x轴交于A(1,0),B(5,0)两点,与y轴交于点C.抛物线顶点纵坐标为﹣4.(1)求抛物线的解析式及C点坐标.(2)如图1,过C作x轴的平行线,与抛物线交于点M,连接AM、BM,在y轴上是否存在点N,使∠ANB=∠AMB?若存在,请求出点N的坐标;若不存在,请说明理由.(3)把线段OC绕O点顺时针旋转,使C点恰好落在抛物线对称轴上的点P处,如图2,再将线段OP绕P点逆时针旋转45°得线段PQ,请计算Q点坐标,并判断Q点在抛物线上吗?解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣1)(x﹣5)=a(x2﹣6x+5),函数的对称轴为x=3,当x=3时,y=a(x2﹣6x+5)=﹣4a=﹣4,解得a=1,故抛物线的表达式为y=x2﹣6x+5,当x=0时,y=5,故点C(0,5);(2)存在,理由:根据点的对称性,点C(0,5),函数对称轴为x=3,故点M(6,5),∵∠ANB=∠AMB,则点N、M、B、A四点共圆,∵△ABM的外接圆圆心在抛物线的对称轴上,故设圆心为H(3,m),设点N(0,t),则MH=BH,即(5﹣3)2+(m﹣0)2=(5﹣3)2+(m﹣5)2,解得m=3,故点H(3,3),同样HM=HN,即(5﹣3)2+(m﹣0)2=(0﹣3)2+(t﹣3)2,解得t=1或5,故点N的坐标为(0,1)或(0,5),根据图象的对称性,符合条件的点N还有(0,﹣1)或(0,﹣5),故点N的坐标为(0,1)或(0,5)或(0,﹣1)或(0,﹣5);(3)不在,理由:设函数对称轴交x轴于点D,在Rt△OPD中,OP=OC=5,OD=3,则PD=4,故P(3,4),则OP=5,设直线PQ交x轴于点K,则KR⊥OP于点R,tan∠POD=,在Rt△ORK中,设RK=4x,则OR=3x,OK=5x,在Rt△RKP中,∠RPK=45°,则PR=RK=4x,则OP=OR+PR=7x=5,解得x=,故OK=5x=,故点K(,0),由点P、K的坐标得,直线PK的表达式为y=﹣7x+25,设点Q的坐标为(s,﹣7s+25),由PQ=PO=5得:(3﹣s)2+(4+7s﹣25)2=25,解得s=(不合题意值已舍去),故点Q的坐标为(,),当x=时,y=x2﹣6x+5=﹣3.5≠,故点Q不在抛物线上.。

绵阳市一诊语文试卷含答案.doc

绵阳市一诊语文试卷含答案.doc

绵阳市高中2012级第一次诊断性考试语文参考答案及评分标准第Ⅰ卷(单项选择题共27分)一、(12分,每小题3分)1.C(A.蔫.niān头蔫脑B.狙.jū击D.胳.gā肢窝)2.B(A.涸泽而渔.C.宫阙.毁家纾.难D.察言.观色)3.A(B.应为“启用”。

启用:开始使用,多用于物。

起用:重新任用或提拔使用,多用于人。

C.应为“定心丸”。

定心丸:比喻能使人思想情绪安定下来的言论或行动。

开心果:借指能给人带来快乐的人,含诙谐意。

D.绠,打水用的绳子;汲,从下往上打水。

吊桶的绳子很短,却要从深井里打水,比喻能力微薄,任务重大,难以胜任。

多用作谦辞。

)4.A(B.语序不当,应为“搜集、整理和分析”。

C.不合逻辑,应为“冠军争夺战”。

D.搭配不当,“成功连任”的是约翰•基,而不是“约翰•基夫妇”。

)二、(9分,每小题3分)5.D(A.第①段1~3行,“一眨眼”相对于宇宙演变而言,非实指。

B.第①段4~5行,原文为或然判断“可能”;“主要成分”错。

C.第②段1~2行,“率先”无中生有。

)6.D(第⑦段,“同时”错,原文中是“或者”;“就会”说法太肯定,原文中有“如果”)7.A(“这种恒星”指第一批恒星,它形成于气团,“由一种气体聚结而成”无依据)三、(6分,每小题3分)8.B(A.具:具备,引申为记载。

C.宣言:散布消息。

D.黜:消除。

)9.C(A.动词,参与/ 介词,和。

B.介词,把/ 连词,表修饰。

C.连词,表转折。

D.副词,与“诣”构成所字结构/ 介词,为……所,表被动。

)第Ⅱ卷(非选择题共123分)四、(31分)10.(9分)(1)皇上认为当前急于用人,应当选拔学问、品行兼优的人,并以学问作为经世济民管理国家的标准,选拔翰林院的官员。

(5分,划线处各1分,大意2分)(2)否则将讲论和实践分离成两件事,社会风气凭借什么(变好)呢?(4分,划线处各1分,大意2分)11.(4分)①恪守孝道;②为人、为官正直;③勤奋好学;④治学严谨。

绵阳育才学校2012-2013学年度下期六年级诊断性考试(一)数学试卷

绵阳育才学校2012-2013学年度下期六年级诊断性考试(一)数学试卷

绵阳育才学校2012-2013学年度下期六年级诊断性考试(一)数学试卷(考试时间80分钟,满分100分)一、书写。

(2分)要求:①卷面整洁 ② 字迹工整 ③行款整齐二、填空题。

(每空0.5分,共17分)1、“爱的奉献”赈灾义演晚会,共为四川灾区募捐善款1514290000元。

这个数读作( )元,改写成用“亿”作单位的数是( )元。

2、( )6 = 5:2= 20( ) =( )÷( )=( )% 3、把45 m 长的绳子平均剪成4段,每段长( )( ) m ,每一段长是这根绳子的( )( )。

4、2时24分=( )时 7.5dm 3=( )L( )mL5、有一张长方形纸,长60cm ,宽50cm 。

如果要剪成若干同样大小的正方形而没有剩余,剪出的小正方形的边长最大( )cm 。

6、31.4×1.2○31.4 79 ÷78 ○79-14 ○-13 78○100.1% 7、一串数按1,1,2,2,3,3,4,4,5,5……排列,从左边第一个数起,第35个数是( ),前36个数的和是( )。

8、小红的妈妈要将 2.5千克香油分装在一些玻璃瓶里,每个瓶最多可盛0.4千克。

需要准备()个瓶。

9、小兰把一个底面积是12.56cm2,高1.5cm的圆锥体橡皮泥做成了一个底面积约3.14cm2的圆柱,这个圆柱的高约是()cm。

10、把体积是1m3的正方体木块,切成棱长为1dm的小正方体木块,可以切成()块。

11、已知3x=4y,那么x:y=( ): ( )12、136的分数单位是(),再添上()个这样的分数单位就是最小的合数。

13、()比25吨多12吨;50米比()多25%。

14、空气中氧气和氮气的体积比是21:78。

660m3空气中有氧气()m3,氮气()m3。

15、在竹杆保持平衡的实验中,左边在刻度4上放3个棋子,右边在刻度2上应放()个棋子才能使竹杆平衡。

16、把红、黄、蓝、白四种颜色的球各10个放到一个袋子里,至少取()个球,才能保证取到两个颜色相同的球。

2013年11月2011级绵阳一 数学(理科)试题及答案

2013年11月2011级绵阳一 数学(理科)试题及答案
解得 ≤ .
经检验 时, 的零点为 ,2(舍去),∴ < .
②若1≤x1<x2<2时
即 得:-5≤ .
∴综上所述b的取值范围为 .……………………………12分
20.解:(I)由 解得 .即 .……………2分
∵ ,
令2x=t,则 , ,
∴g(t)在 上是增函数.
∴g(t)在 上无最小值,即f(x)在M上无最小值.
在△BCD中,设∠CBD=θ,则∠BDC=180º-120º-θ=60º-θ.
由正弦定理有 ,
∴ , ,…………………………………9分


∴当且仅当 时,折线段BCD最长,最长为 千米.…………12分
19.解:(I)由于f(3+x)=f(-x)知函数f(x)关于 对称,
即 ,解得b=-3,于是f(x)=x2-3x+2.………………………………3分
1.若集合A={x|1<x<4},集合B={y|y2<4},则A∩B=
A.B.{1,2}
C.(1,2)D.(1,4)
2.对于非零向量a,b,“a//b”是“a+b=0”的
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件
3.若向量a=(1,2),b=(1,-1),则2a+b与b的夹角为
1若函数f(x)为美好函数,则f(0)=0;
2函数g(x)=2x-1(x∈[0,1])不是美好函数;
3函数h(x)=xα(α∈(0,1),x∈[0,1])是美好函数;
4若函数f(x)为美好函数,且 x0∈[0,1],使得f(f(x0))=x0,则f(x0)=x0.
以上说法中正确的是___________.(写出所有正确结论的序号)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绵阳市高2013级第一次诊断性考试
数学(文)参考解答及评分标准
一、选择题:本大题共12小题,每小题5分,共60分.
CCBAD BAADD AB
二、填空题:本大题共4小题,每小题4分,共16分.
13.-4 14.2 15.k >-3 16.①③
三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.
17.解:(Ⅰ)f (x )=a ·b =(cos2x ,1)·(1x )
x+ cos2x =2sin(2x+
6
π
),………………………………………6分
∴ 最小正周期22
T π
π==. 令2x+
6
π
=2k π
π+
,k ∈Z ,解得x=
26
k ππ
+,k ∈Z , 即f (x )的对称轴方程为x=26
k ππ
+,k ∈Z .…………………………………8分 (Ⅱ)当x ∈[0,2π]时,即0≤x ≤2π,可得6π≤2x+6
π
≤76π,
∴ 当2x+
6
π
=

,即x=

时,f (x )取得最大值f (
6
π
)=2;
当2x+6π=76π,即x=2π时,f (x )取得最小值f (2
π)=-1.
即f (x ) 的值域为[-1,2].……………………………………………………12分 18.解:(Ⅰ)设公比为q ,由已知a 6=2,a 3=
41
,得5211124
a q a q ==,, 两式相除得q 3=8,解得q =2,a 1=116
, ∴ a n =
151
2216n n --⨯=.…………………………………………………………6分 (Ⅱ)b n =3log2a n =523log 2n -=3n -15, ∴ ()()
12123153272222n n n b b n n T n n +-+-===-2
39243
228
n ⎛⎫=-- ⎪⎝⎭, 当n =4或5时,T n 取得最小值,最小值为-30.……………………………12分 19
结合0C π<<,得3
C =
. …………………………………………………6分
(Ⅱ)∵ △ABC 的面积为3,即1
sin 2
ab C ab =4,①
又c =2,由(Ⅰ)知,224a b ab +-=, ∴ 2()3416a b ab +=+=,得a +b =4,②
由①②得a=b=2. ……………………………………………………………12分 20.解:(Ⅰ)由已知y = f (x )是二次函数,且f (x )<0的解集是(0,5),
可得f (x )=0的两根为0,5, 于是设二次函数f (x )=ax (x -5),
代入点(1,-4),得-4=a×1×(1-5),解得a =1,
∴ f (x )=x (x -5). ………………………………………………………………4分 (Ⅱ)h (x )=2f (x )+g (x )=2x (x -5)+x 3-(4k -10)x +5=x 3+2x 2-4kx +5, 于是2()344h x x x k '=+-,
∵ h (x )在[-4,-2]上单调递增,在[-2,0]上单调递减, ∴ x =-2是h (x )的极大值点,
∴ 2(2)3(2)4(2)40h k '-=⨯-+⨯--=,解得k=1. …………………………6分 ∴ h (x )=x 3+2x 2-4x +5,进而得2()344h x x x '=+-. 令22()3443(2)()03h x x x x x '=+-=+-=,得12223
x x =-=,. 由下表:
可知:h (-2)=(-2)3+2×(-2)2-4×(-2)+5=13,h (1)=13+2×12 -4×1+5=4, h (-3)=(-3)3+2×(-3)2-4×(-3)+5=8,h (23)=(23)3+2×(23)2-4×23+5=95
27
, ∴ h (x )的最大值为13,最小值为
95
27
.……………………………………12分 21.解:(Ⅰ)由题设知(t -1)S 1=2ta 1-t -1,解得a 1=1,
由(t -1)S n =2ta n -t -1,得(t -1)S n+1=2ta n+1-t -1, 两式相减得(t -1)a n +1=2ta n +1-2ta n ,
∴ 121
n n a t a t +=+(常数).
∴ 数列{a n }是以1为首项,21
t
t +为公比的等比数列.………………………4分 (Ⅱ)∵ q = f (t )=21
t
t +,b 1=a 1=1,b n +1=21f (b n )= 1n n b b +,

111
11n n n n
b b b b ++==+, ∴ 数列1n b ⎧⎫
⎨⎬⎩⎭
是以1为首项,1为公差的等差数列, ∴
1
n
n b =.………………………………………………………………………8分 (III )当t =
13时,由(I )知a n =11
()2
n -,.
于是数列{c n }为:1,-1,
12,2,2,21
()2
,-3,-3,-3,31()2,… 设数列{a n }的第k 项是数列{c n }的第m k 项,即a k =k m c ,
当k ≥2时,m k =k +[1+2+3+…+(k -1)]=(1)
2
k k +, ∴ m 9=
910
452
⨯=. 设S n 表示数列{c n }的前n 项和, 则S 45=[1+
12+21()2+…+81
()2
]+[-1+(-1)2×2×2+(-1)3×3×3+…+(-1)8×8×8]. 显然 1+12+21()2+…+81()2=9
8
11()1221212
-=--, ∵ -1+(-1)2×2×2+(-1)3×3×3+…+(-1)8×8×8
=-1+22-32+42-52+62-72+82
=(2+1)(2-1)+(4+3)(4-3)+(6+5)(6-5)+(8+7)(8-7) =3+7+11+15 =36. ∴ S 45=8122-
+36=38-8
12. ∴ S 50=S 45+(c 46+c 47+c 48+c 49+c 50)
=38-812+5×(-1)9×9 =17256
-.
即数列{c n }的前50项之和为1
7256
-.………………………………………12分 22.解:(Ⅰ)由已知:1
()f x a x
'=
-, ∴由题知11
(2)22f a '=
-=-,解得a =1. 于是11()1x
f x x x
-'=-=,
当x ∈(0,1)时,()0f x '>,f (x )为增函数, 当x ∈(1,+∞)时,()0f x '<,f (x )为减函数,
即f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). ……5分 (Ⅱ)∀x ∈(0,+∞),f (x )≤g (x ),即ln x -(k +1)x ≤0恒成立,
设()ln (1)h x x k x =-+,有11(1)()(1)k x
h x k x x
-+'=
-+=
. ①当k +1≤0,即k ≤-1时,()0h x '>,
此时(1)ln1(1)h k =-+≥0与()h x ≤0矛盾. ②当k +1>0,即k >-1时,令()h x '=0,解得1
1
x k =
+, 101x k ⎛
⎫∈ ⎪+⎝⎭
,,()h x '>0,h (x )为增函数,
11x k ⎛⎫∈+∞ ⎪+⎝⎭
,,()h x '<0,h (x )为减函数, ∴ max 11
()()ln 111
h x h k k ==-++≤0,
即()ln 1k +≥-1,解得k ≥1
1e
-.
综合k >-1,知k ≥1
1e
-.
∴ 综上所述,k 的取值范围为11e ⎡⎫
-+∞⎪⎢⎣⎭
,.………………………………10分 (Ⅲ)由(Ⅰ)知f (x )在(0,1)上是增函数,在(1,+∞)上是减函数, ∴ f (x )≤f (1)=0, ∴ ln x ≤x -1.
当n =1时,b 1=ln(1+1)=ln2, 当n ≥2时,有ln(n +1)<n ,
∵ ()3
ln 1n n b n +=321111
(1)1n n n n n n n
<=<=---, ∴ 12111111
12123131n b b b b n n ⎛⎫⎛⎫⎛⎫+++<+-+-++-
⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭
1ln 2(1)n
=+-
<1+ln2.……………………………………………………14分。

相关文档
最新文档