2011八年级数学上期期终考试试题

合集下载

八年级上册数学期中考试题(附答案)

八年级上册数学期中考试题(附答案)

八年级上册数学期中考试题(附答案)在复习中我们要争取做到全面、细致,有计划、有步骤地复习归纳各方面知识,编辑老师为同学们整理八年级上册数学期中考试题,望同学们采纳!!!一、选择题(每题2分,满分20分)1.知一个Rt△的两边长分别为3和4,则第三边长的平方是( )A. 25B. 14C. 7D. 7或252.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3 ,4 ,5 .其中能构成直角三角形的有( )组.A. 2B. 3C. 4D. 53.下列说法中,正确的是( )A. 数轴上的点表示的都是有理数B. 无理数不能比较大小C. 无理数没有倒数及相反数D. 实数与数轴上的点是一一对应的4.下列各式中,正确的是( )A. B. C. D.5.给出下列说法:①﹣6是36的平方根;②16的平方根是4;③ 是无理数;④﹣=2;⑤一个无理数不是正数就是负数.其中,正确的说法有( )A. ①③⑤B. ②④C. ①③D. ①6.下列各组数中互为相反数的是( )A. 5和B. ﹣5和C. ﹣5和D. ﹣|﹣5|和﹣(﹣5)7.下列一次函数中,y随x增大而减小的是( )A. y=3xB. y=3x﹣2C. y=3x+2xD. y=﹣3x﹣28.下列函数中,y是x的正比例函数的是( )A. y=2x﹣1B. y=C. y=2x2D. y=﹣2x+19.一次函数y=﹣5x+3的图象经过的象限是( )A. 一,二,三B. 二,三,四C. 一,二,四D. 一,三,四10.下列各图给出了变量x与y之间的函数是( )A. B. C. D.二、填空题(每小题2分,共20分)11. 的平方根是 .12.比较大小:﹣﹣3.13.已知一个数的平方根为a+3与2a﹣15,则这个数是 .14.若函数y=(m﹣2) 是正比例函数,则m的值是 .15.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为 .16.边长为1的正方形的对角线长是 .17.直线y=4x﹣8与x轴的交点坐标是,与y轴的交点坐标是 .18.若将直线y=﹣2x向上平移4个单位,则所得直线的表达式为 .19.点A在x轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点的坐标为20.点(﹣5,7)关于y轴对称的点的坐标是,关于原点对称的点的坐标是 .三、解答题(满分60分)21.计算题(1) ﹣(2)(2 ﹣1)2(3)(2+ )(2﹣ )(4) ﹣(1﹣ )0(5) ﹣4(1+ )+(6)( ﹣1.414)0﹣﹣( )﹣1+|1﹣ |22.在同一平面直角坐标系内画出函数y=2x、y=2x+1、y=2x ﹣1的图象.23.如图是边长为4的正三角形ABC,建立适当的直角坐标系,写出各个顶点的坐标.24.在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.某弹簧不挂物体时长14.5kg;当所挂物体的质量为3kg时,弹簧长16cm.(1)写出y与x之间的关系式;(2)求当所挂物体的质量为5kg时弹簧的长度.25.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?26.已知函数y=(2m+1)x+m+3(1)若函数图象经过原点,求m的值;(2)若函数图象与y轴的交点为(0,﹣2),求m的值;(3)若函数的图象平行于直线y=3x﹣3,求m的值.27.如图,l1反映了某公司产品的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,根据图象填空:(1)当销售量为2t时,销售收入是元,销售成本是3000元;(2)当销售量为6t时,销售收入是6000元,销售成本是5000元;(3)当销售量等于时,销售收入等于销售成本;(4)当销售量时,该公司盈利(收入大于成本);(5)当销售量时,该公司亏损(收入小于成本);(6)l1对应的函数表达式是 ;(7)l2对应的函数表达式是 .参考答案与试题解析一、选择题(每题2分,满分20分)1.知一个Rt△的两边长分别为3和4,则第三边长的平方是( )A. 25B. 14C. 7D. 7或25考点:勾股定理的逆定理.分析:已知的这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答.解答:解:分两种情况:(1)3、4都为直角边,由勾股定理得,斜边为5;(2)3为直角边,4为斜边,由勾股定理得,直角边为 .第三边长的平方是25或7,2.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3 ,4 ,5 .其中能构成直角三角形的有( )组.A. 2B. 3C. 4D. 5考点:勾股定理的逆定理.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解答:解:因为①62+82=102,②132=52+122,④92+402=412,符合勾股定理的逆定理,所以能构成直角三角形的有三组.故选B.3.下列说法中,正确的是( )A. 数轴上的点表示的都是有理数B. 无理数不能比较大小C. 无理数没有倒数及相反数D. 实数与数轴上的点是一一对应的考点:实数与数轴;无理数.专题:数形结合.分析: A、根据实数与数轴上的点的对应关系即可确定;B、根据无理数的定义即可判定;C、根据无理数的定义及性质即可判定;D、根据实数与数轴上的点的对应关系即可确定.解答:解:A、数轴上的点表示的不一定是有理数,有的是无理数,故选项错误;B、无理数可以比较大小,故选项错误;C、无理数有倒数及相反数,故选项错误;4.下列各式中,正确的是( )A. B. C. D.考点:立方根;平方根;算术平方根.分析: A、根据算术平方根的性质即可判定;B根据算术平方根的性质计算即可判定、C、根据立方根的定义即可判定;D、根据平方根的定义计算即可判定.解答:解:A、,应该=2,故选项错误;B、,应该等于3,故选项错误;C、,不能开立方,故选项错误;5.给出下列说法:①﹣6是36的平方根;②16的平方根是4;③ 是无理数;④﹣=2;⑤一个无理数不是正数就是负数.其中,正确的说法有( )A. ①③⑤B. ②④C. ①③D. ①考点:实数.分析:根据开方运算,可判断①②③④,根据无理数是无限不循环小数,可判断⑤.解答:解:①﹣6是36的平方根,故①正确;②16的平方根是4,故②错误;③27的立方根是3,3是有理数,故③错误;④﹣ =2,故④正确;6.下列各组数中互为相反数的是( )A. 5和B. ﹣5和C. ﹣5和D. ﹣|﹣5|和﹣(﹣5)考点:实数的性质.分析:根据只有符号不同的两个数互为相反数,可得答案. 解答:解:A、两个数相等,故A错误;B、两个数互为倒数,故B错误;C、两个数相等,故C错误;7.下列一次函数中,y随x增大而减小的是( )A. y=3xB. y=3x﹣2C. y=3x+2xD. y=﹣3x﹣2考点:一次函数的性质;正比例函数的性质.分析:由一次函数的性质,在直线y=kx+b(k0)中,当k0时,y随x的增大而增大;当k0时,y随x的增大而减小.解答:解:在y=kx+b中,当k0时,y随x的增大而增大;当k0时,y随x的增大而减小.A、函数y=3x中的k=30,故y的值随着x值的增大而增大.故本选项错误;B、函数y=3x﹣2中的k=30,y的值随着x值的增大而增大.故本选项错误;C、函数y=3x+2x=5x中的k=50,y的值随着x值的增大而增大.故本选项错误;D、函数y=﹣3x﹣2中的k=﹣30,y的值随着x值的增大而减小.故本选项正确;8.下列函数中,y是x的正比例函数的是( )A. y=2x﹣1B. y=C. y=2x2D. y=﹣2x+1考点:正比例函数的定义.分析:根据正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k0)的函数,那么y就叫做x的正比例函数.9.一次函数y=﹣5x+3的图象经过的象限是( )A. 一,二,三B. 二,三,四C. 一,二,四D. 一,三,四考点:一次函数的性质.分析:根据直线解析式知:k0,b0.由一次函数的性质可得出答案.解答:解:∵y=﹣5x+310.下列各图给出了变量x与y之间的函数是( )A. B. C. D.考点:函数的图象.分析:函数就是在一个变化过程中,有两个变量x,y,对于x的每一个值,y都有唯一的值与其对应,则x叫自变量,y是x的函数.在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.解答:解:A、B、C中对于x的值y的值不是唯一的,因而不符合函数的定义;二、填空题(每小题2分,共20分)11. 的平方根是 3 .考点:平方根;算术平方根.分析:首先化简,再根据平方根的定义计算平方根.12.比较大小:﹣﹣3.考点:实数大小比较.分析:先把﹣3变为9算术平方根的相反数,再根据比较实数大小的方法进行比较即可.13.(2分)(春鄂州校级期中)已知一个数的平方根为a+3与2a﹣15,则这个数是 49 .考点:平方根.分析:根据两个平方根互为相反数,即可列方程得到a的值,然后根据平方根的定义求得这个数.解答:解:根据题意得:a+3+(2a﹣15)=0,14.若函数y=(m﹣2) 是正比例函数,则m的值是﹣2 .考点:正比例函数的定义.分析:直接利用正比例函数的定义直接得出答案.解答:解:∵函数y=(m﹣2) 是正比例函数,m2﹣3=1,m﹣20,15.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为 y=3x .考点:待定系数法求正比例函数解析式.专题:计算题;待定系数法.分析:直接将点的坐标代入函数关系式中,即可得到k,继而可得出解析式.解答:解:有y=kx,且点(1,3)在正比例函图象上16.边长为1的正方形的对角线长是 .考点:算术平方根.分析:很据勾股定理,可得答案.本文由一线教师精心整理/word可编辑17.直线y=4x﹣8与x轴的交点坐标是 (2,0) ,与y轴的交点坐标是 (0,﹣8) .考点:一次函数图象上点的坐标特征.分析:根据一次函数直线与x轴相交时,y=0;与y轴相交时,x=0,分别进行计算即可.解答:解:当直线y=4x﹣8与x轴相交时,y=0,因此4x﹣8=0,解得:x=2,故与x轴的交点坐标是(2,0);当直线y=4x﹣8与y轴相交时,x=0,因此40﹣8=y,解得:y=﹣8,为大家推荐的八年级上册数学期中考试题的内容,还满意吗?相信大家都会仔细阅读,加油哦!11 / 11。

人教版八年级上册数学期中考试试卷附答案

人教版八年级上册数学期中考试试卷附答案

人教版八年级上册数学期中考试试题一、单选题1.下列四个图形中,不是轴对称图形的是( )A .B .C .D . 2.下列图形中具有稳定性的是( )A .正三角形B .正方形C .正五边形D .正六边形3.一定能确定△ABC△△DEF 的条件是( )A .AB=DE,BC=EF,△A=△DB .△A=△E,AB=EF,△B=△DC .△A=△D,AB=DE,△B=△ED .△A=△D,△B=△E,△C=△F4.已知等腰三角形的一边长为4cm ,周长是18cm ,则它的腰长是( )A .4cmB .7cmC .10cmD .4cm 或7cm5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A .ASAB .SASC .AASD .SSS6.下列命题中正确的是( )A .一个三角形最多有2个钝角B .直角三角形的外角不可以是锐角C .三角形的两边之差可以等于第三边D .三角形的外角一定大于相邻内角 7.如图,把长方形ABCD 沿EF 对折,若150∠=︒,则AEF ∠的度数为( )A .110︒B .115︒C .120︒D .130︒8.如图,在△ABC 中,AB =8cm ,BC =6cm ,AC =5cm .沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长是( )A .5cmB .6cmC .7cmD .8cm9.一个多边形少算一个内角,其余内角之和是1500°,则这个多边形的边数是( ) A .8 B .9 C .10 D .1110.如图,△ACB 和△DCE 均为等腰直角三角形,且△ACB =△DCE =90°,点A 、D 、E 在同一条线上,CM 平分△DCE ,连接BE .以下结论:△AD =CE ;△CM△AE ;△AE =BE+2CM ;△S △COE >S △BOE ,正确的有( )A .1个B .2个C .3个D .4个二、填空题11.在平面直角坐标系中,点(2,1)-关于x 轴对称的点的坐标为________.12.若从一个多边形的一个顶点出发,最多可以引9条对角线,则它是_____边形. 13.如图,在ABC 中,AB AC =,点D 为BC 中点,35BAD ∠=︒,则C ∠的度数为_____.14.已知ABC 的周长为30,面积为20,其内角平分线交于点O ,则点O 到边BC 的距离为________.15.如图△ABC ,DE 垂直平分线段AC ,AF△BC 于点F ,AD 平分△FAC ,则FD :DC =______.16.△ABC中,已知点D,E,F分别是BC,AD,CE边上的中点,且S△ABC=16cm2,则S△CDF的值为_______cm2.17.如图,一种机械工件,经测量得△A=20°,△C=27°,△D=45°.那么不需工具测量,可知△ABC= __________°.三、解答题18.如图,AC和BD相交于点0,OA=OC,OB=OD,求证:DC//AB19.在△ABC中,△B=△A+20°,△C=△B+20°,求△ABC的三个内角的度数.20.如图,△ABC是等腰直角三角形,BD△AE,CE△AE,垂足为D,E,CE=3,BD=7,(1)求证:△ABD△△CAE;(2)求DE 的长度.21.如图,在正方形网格中,每个小正方形的边长都为1,ABC 在网格中的位置如图所示,ABC 的三个顶点都在格点上.将A 、B 、C 的横坐标和纵坐标都乘以1 ,分别得到点1A 、1B 、1C .(1)写出111A B C △三个顶点的坐标_______;(2)若ABC 与222A B C △关于x 轴对称,在平面直角坐标系中画出222A B C △;(3)若以点A 、C 、P 为顶点的三角形与ABC 全等,直接写出所有符合条件的点P 的坐标.22.如图,在四边形ABCD 中,△A =△C =90°,BE 平分△ABC ,DF 平分△ADC . 求证:BE△DF .23.如图,在△ABC 中,AC =BC ,△ACB =90°,D 为△ABC 内一点, △BAD =15°,AD =AC ,CE△AD 于E ,且CE =5.(1)求BC 的长;(2)求证:BD =CD .24.如图,已知△ABC 中AB =AC =12厘米,BC =9厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.△若点P 点Q 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由; △若点P 点Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以△中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间,点P 与点Q 第一次在△ABC 的哪条边上相遇?此时相遇点距到达点B 的路程是多少?25.在等腰ABC 中,AB AC =,点D 是AC 上一动点,点E 在的BD 延长线上且AB AE =,AF 平分CAE ∠交DE 于点F 连接FC .(1)如图1,求证:ABE ACF ∠=∠;(2)如图2,当60ABC ∠=︒时,求证:AF EF FB +=;(3)如图3,当45ABC ∠=︒,且//AE BC 时,求证:2BD EF =.参考答案1.A【解析】【分析】根据轴对称图形的定义逐项分析即可,轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】A.不是轴对称图形,符合题意;B.是轴对称图形,不符合题意;C. 是轴对称图形,不符合题意;D. 是轴对称图形,不符合题意;故选A【点睛】本题考查了轴对称图形的定义,找到对称轴是解题的关键.2.A【解析】【详解】解:△三角形具有稳定性,△A正确,B.C、D错误.故选A.3.C【解析】【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,4种,看看给出的条件是否符合即可.【详解】A. 根据AB=DE,BC=EF,△A=△D不能推出两三角形全等,故本选项不符合题意;B.△A和△D对应,△B和△E对应,即根据△A=△E,AB=EF,△B=△D不能推出两三角形全等,故本选项不符合题意;C. 在△ABC和△DEF中△A D AB DEB E ∠=∠⎧⎪=⎨⎪∠=∠⎩,△△ABC△△DEF(ASA),故本选项符合题意;D. 根据△A=△D,△B=△E,△C=△F不能推出两三角形全等,故本选项不符合题意;故选:C.【点睛】考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.4.B【解析】【分析】分4cm为等腰三角形的腰长和底边长两种情况,结合三角形的三边关系解答即可.【详解】解:若4cm为等腰三角形的腰长,则底边长=18-4-4=10cm,由于4+4<10,此时不能构成三角形,故此种情况须舍去;若4cm为等腰三角形的底边长,则腰长=(18-4)÷2=7cm,此时三角形的三边长分别为7cm、7cm、4cm,能构成三角形.故选:B.【点睛】本题考查了等腰三角形的定义和三角形的三边关系,属于基础题型,正确分类、熟练掌握基本知识是解题关键.5.A【解析】【分析】根据ASA:有两角及夹边对应相等的两个三角形全等即可判断.【详解】解:由图可知三角形的两个角和夹边可以确定全等三角形,△可由ASA判断全等;故选:A.【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.6.B【解析】【分析】利用三角形的内角的性质、直角三角形的性质、三角形的三边关系及三角形的外角的性质分别判断后即可确定正确的选项.【详解】解:A、一个三角形最多有1个钝角,故原命题错误,不符合题意;B、直角三角形的外角不可以是锐角,正确,符合题意;C、三角形的两边之差小于第三边,故原命题错误,不符合题意;D、三角形的外角不一定大于相邻的内角,故原命题错误,不符合题意,【点晴】本题考查了命题与定理的知识,解题的关键是了解三角形的内角的性质、直角三角形的性质、三角形的三边关系及三角形的外角的性质等知识,难度不大.7.B【解析】【分析】根据折叠的性质及△1=50°可求出△BFE的度数,再由平行线的性质即可得到△AEF的度数.【详解】解:根据折叠以及△1=50°,得△BFE=12△BFG=12(180°﹣△1)=65°.△AD△BC,△△AEF=180°﹣△BFE=115°.故选:B.【点睛】本题考查的是平行线的性质及图形翻折变换的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.C【解析】【分析】由折叠的性质可得DE=DC,BE=BC,从而易得周长的值.【详解】由折叠的性质可得DE=DC,BE=BC=6cm△AE=AB-BE=8-6=2(cm)△△AED 的周长=AD+DE+AE=AD+DC+AE=AC+AE=5+2=7(cm)故选:C.【点睛】本题考查了折叠的性质,三角形的周长等知识,关键是掌握折叠的性质.9.D【分析】根据n 边形的内角和是(n -2)•180°,可以得到内角和一定是180度的整数倍,即可求解.【详解】1150018083÷=, 则正多边形的边数是8+1+2=11.故选:D .【点睛】本题考查了根据多边形的内角和计算公式求多边形的边数,掌握n 边形的内角和公式(n -2)•180°是解题的关键.10.B【解析】【分析】由“SAS”可证△ACD△△BCE ,可得AD =BE ,△ADC =△BEC ,可判断△,由等腰直角三角形的性质可得△CDE =△CED =45°,CM△AE ,可判断△,由三角形的面积公式可判断△,由线段和差关系可判断△,即可求解.【详解】解:△△ACB 和△DCE 均为等腰直角三角形,△CA =CB ,CD =CE ,△ACB =△DCE =90°,△△ACD =△BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,△△ACD△△BCE (SAS ),△AD =BE ,故△错误,△△DCE 为等腰直角三角形,CM 平分△DCE ,△CM△AE ,故△正确,△CD =CE ,CM△DE ,△DM =ME .△△DCE=90°,△CDE=△CED=45°△DM=ME=CM.△AE=AD+DE=BE+2CM.故△正确,由△ACD△△BCE(SAS)得△ADC=△BEC,△△DCE+△CED=△AEB+△CED,△△AEB=△DCE=90°,△S△COE=12OE•CM,S△BOE=12OE•BE,△CM不一定大于BE,△S△COE不一定大于S△BOE,故△错误,故选:B.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质、三角形外角性质,证明△ACD△△BCE是本题的关键.11.(2,1).【解析】【分析】根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数解答即可.【详解】点(2,1)关于x轴对称的点的坐标是(2,1).故答案为:(2,1).【点睛】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.12.十二【解析】【分析】可根据n边形从一个顶点引出的对角线与边的关系:n-3,列方程求解.【详解】设多边形有n条边,则n-3=9,解得:n=12,故多边形的边数为12,即它是十二边形,故答案为:十二.【点睛】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n-3)条,经过多边形的一个顶点的所有对角线把多边形分成(n-2)个三角形.13.55°【解析】【分析】由等腰三角形的三线合一性质可知△BAC=70°,再由三角形内角和定理和等腰三角形两底角相等的性质即可得出结论.【详解】解:AB=AC,D为BC中点,△AD是△BAC的平分线,△B=△C,△△BAD=35°,△△BAC=2△BAD=70°,△△C=12(180°-70°)=55°.故答案为:55°.【点睛】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.14.4 3【解析】【分析】过O作OD△BC于D,OE△AB于E,OF△AC于F,连接OA、OB、OC,根据三角形的内心和角平分线的性质得出OE=OD=OF,再根据三角形的面积公式求出即可.【详解】如图,过O作OD△BC于D,OE△AB于E,OF△AC于F,连接OA、OB、OC,△O是△ABC内角平分线的交点,△OE=OF=OD,△△ABC的面积是20,△S△AOB+S△BOC+S△AOC=20,△111AB OE BC OD222⨯⨯+⨯⨯+×AC×OF=20,△(AB+BC+AC)×OD=40,△△ABC的周长为30,△AB+BC+AC=30,△OD=404 303=,△即O到BC的距离是43,故答案为:43.【点睛】本题考查了三角形的内心,角平分线的性质和三角形的面积等知识点,能求出OD=OE=OF 是解此题的关键.15.1:2【解析】【分析】根据线段垂直平分线的性质得到DA=DC,得到△DAC=△C,根据角平分线的定义、直角三角形的性质求出△DAF=30°,根据直角三角形的性质解答即可.解:△DE垂直平分线段AC,△DA=DC,△△DAC=△C,△AD平分△FAC,△△DAC=△DAF,△△DAC=△C=△DAF,△AF△BC,△△DAF=30°,△AD=2DF,△FD:DC=1:2,故答案为:1:2.【点睛】本题考查的是线段的垂直平分线的性质、直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.2【解析】【分析】根据三角形的中线平分三角形的面积用△ABC的面积先后表示出△ACD、△CDE、△CDF的面积,然后代入数据进行计算即可得解.【详解】解:△点D,E,F分别是BC,AD,CE边上的中点,△S△ABD=S△ACD=12S△ABC,S△CDE=12S△ACD=14S△ABC,S△CDF=12S△CDE=18S△ABC,△S△ABC=16cm2,△S△CDF=18×16=2cm2.故答案为:2.本题考查了三角形的面积,根据三角形的中线平分三角形的面积推出△CDF与△ABC的面积的关系是解题的关键,也是本题的难点.17.92【解析】【分析】延长CB,交AD于点E,根据三角形外角的性质得出△AEC=△C+△D=72°,△ABC=△A十△AEC=92°.【详解】延长CB,交AD于点E.△△C=27°,△D=45°,△△AEC=△C+△D=72°,△△A=20°,△△ABC=△A+△AEC=92°.故答案为92°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和,正确作出辅助线是解题的关键.18.证明见解析【解析】【分析】根据SAS可知△AOB△△COD,从而得出△A=△C,根据内错角相等两直线平行的判定可得结论.【详解】解:△OA=OC,△AOB=△COD,OB=OD,△△AOB△△COD(SAS).△△A=△C.△AB△CD.【点睛】本题考查了1.全等三角形的的判定和性质;2.平行线的判定.19.△A=40°,△B=60°,△C=80°【解析】【详解】△在△ABC 中,△B=△A+20°代入△C=△B+20°中,得△C=△A+40°设△A=x△△A+△B+△C=180°,得x+x+20°+x+40°=180°解方程得x=40°△ △A=40°, △B=60°,△C=80°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和是180°是解答此题的关键.20.(1)见解析;(2)4.【解析】【分析】(1)利用AAS 判定△ABD△△CAE ;(2)因为BD=AE ,AD=CE ,AE=AD+DE=CE+DE ,所以BD=DE+CE .【详解】(1)证明:△△ABC 是等腰直角三角形,△AB=AC ,△BAC=90°,△BD△AE 于D ,CE△AE 于E ,△△BDA=△AEC=90°,△DBA+△BAD=90°,△BAD+△EAC=90°,△△DBA=△EAC ,在△ABD 和△CAE 中,DBA EACBDA AEC AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ABD△△CAE (AAS );(2)解:由(1)知,△ABD△△CAE ,△AD=CE ,BD=AE ,△AE=AD+DE ,△BD=DE+CE ,△CE=3,BD=7,△DE=7-3=4.【点睛】本题考查了全等三角形的性质和判定,三角形的内角和定理的应用,关键是推出BD=DE+CE .21.(1)1(3,1)A -、1(1,4)B -、1(1,1)C -;(2)如图所示,见解析;(3)点P 的坐标为(3,2)--、()3,4-、(1,2)--.【解析】【分析】(1)根据平面直角坐标系写出A 、B 、C 各点的坐标,将点A 、B 、C 的横坐标和纵坐标都乘以1-,分别得到点1A 、1B 、1C 即可,(2)先作出A 、B 、C 关于x 轴的对称点A 2、B 2、C 2,然后顺次连接即可;(3)根据全等三角形对应边相等,分△CAP=△ACB=90°和△ACP=△ACB=90°两种情况讨论求解.【详解】(1)先求出ABC 三点坐标分别为A (-3,1),B (-1,4),C (-1,1)将点A 、B 、C 的横坐标和纵坐标都乘以1-,分别得到点1A 、1B 、1C ,则A 1(3,-1)、B 1(1,-4)、C (1,-1); 故答案为:1(3,1)A -、1(1,4)B -、1(1,1)C -;(2)如图所示,先作A 、B 、C 三点关于x 轴的对称点A 2、B 2、C 2,然后连接A 2B 2、B 2C 2、C 2A 2,,则△A 2B 2C 2为所求;(3)若90CAP ACB ︒∠=∠=,则点P 的坐标为(3,2)--或()3,4-,若90ACP ACB ︒∠=∠=,则点P 的坐标为(1,2)--,综上所述,点P 的坐标为(3,2)--、()3,4-、(1,2)--.【点睛】本题考查了全等三角形的判定,解题的关键是熟练的掌握全等三角形的判定与性质.22.证明见解析【解析】【分析】根据四边形内角和为360°可得△ABC+△ADC =180°,根据角平分线的定义可得△EBC+△FDC =90°,根据同角的余角相等可得△EBF =△DFC ,即可证明BE//DF.【详解】△在四边形ABCD 中,△A =△C =90°,△△ABC+△ADC =180°,△BE 平分△B ,DF 平分△D ,△△ABE=△EBC ,△ADF=△FDC ,△△EBC+△FDC=90°,△△C=90°,△△DFC+△FDC=90°,△△EBF=△DFC,△BE△DF.23.(1)10;(2)证明见解析【解析】(1)根据等腰直角三角形的性质得出△BAC=45°,从而得出△CAD=30°,根据垂直得出AC=BC=10;(2)过D作DF△BC于F,然后证明Rt△DCE和Rt△DCF全等,从而得出CF=CE=5,根据BC=10得出BF=FC,从而得出答案.【详解】(1)在△ABC中,△AC=BC,△ACB=90°,△△BAC=45°,△△BAD=15°,△△CAD=30°,△CE△AD,CE=5,△AC=10,△BC=10.(2)过D作DF△BC于F,在△ADC中,△CAD=30°,AD=AC,△△ACD=75°,△△ACB=90°,△△FCD=15°,在△ACE中,△CAE=30°,CE△AD,△△ACE=60°,△△ECD=△ACD-△ACE=15°,△△ECD=△FCD,△DF=DE,在Rt△DCE与Rt△DCF中,{DC DC DE DF==,△Rt△DCE△Rt△DCF,△CF=CE=5,△BC=10,△BF=FC,△DF△BC,△BD=CD.24.(1)△全等,理由见解析;△4厘米/秒;(2)经过24秒,点P与点Q第一次在BC边上相遇;相遇点距到达点B的路程是6厘米.【解析】(1)△根据速度×时间=距离可得BP=CQ=3,PC=BD=6,根据等腰三角形的性质可得△B =△C,利用SAS即可得△BPD△△CQP;△VP≠VQ可得BP≠CQ,根据△B=△C,要使△BPD与△CQP全等,只能BP=CP,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ的长即可求得Q的运动速度;(2)根据VQ>VP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可得答案.【详解】(1)△全等,理由如下:△t=1(秒),点P、Q的速度为3厘米/秒,△BP=CQ=3(厘米)△AB=12,D为AB中点,△BD=6(厘米)△PC=BC﹣BP=9﹣3=6(厘米)△PC=BD△AB =AC ,△△B =△C ,在△BPD 与△CQP 中,BP CQ B C BD PC =⎧⎪∠=∠⎨⎪=⎩,△△BPD△△CQP .△△VP≠VQ ,△BP≠CQ ,△△B =△C ,△要使△BPD△△CPQ ,只能BP =CP =12BC=4.5, △△BPD△△CPQ ,△CQ =BD =6.△点P 的运动时间t =3BP =4.53=1.5(秒), 此时VQ =CQ t =61.5=4(厘米/秒). △当点Q 的运动速度为4厘米/秒时,能够使△BPD 与△CQP 全等.(2)△VQ >VP ,△只能是点Q 追上点P ,即点Q 比点P 多走AB+AC 的路程,设经过x 秒后P 与Q 第一次相遇,依题意得4x =3x+2×12,解得:x =24(秒),此时P 运动了24×3=72(厘米),△△ABC 的周长为33厘米,72=33×2+6,△此时相遇点距到达点B 的路程是6厘米,△点P 、Q 在BC 边上相遇,即经过了24秒,点P 与点Q 第一次在BC 边上相遇. 25.(1)见解析;(2)见解析;(3)见解析【解析】(1)利用“SAS”证明△ACF△△AEF ,根据全等三角形的性质得到△E=△ACF ,根据等腰三角形的性质得到△E=△ABE ,等量代换证明结论;(2)在FB 上截取BM=CF ,连接AM ,证明△ABM△△ACF ,根据全等三角形的性质得到AM=AF ,△BAM=△CAF ,进而证明△AMF 为等边三角形,结合图形证明结论;(3)延长BA 、CF 交于N ,证明△BFN△△BFC ,得到CN=2CF=2EF ,再证明△BAD△△CAN ,得到BD=CN ,等量代换得到答案.【详解】(1)△AF 平分△CAE ,△△EAF=△CAF ,△AB=AC ,AB=AE ,△AE=AC ,在△ACF 和△AEF 中,AE ACCAF EAF AF AF=⎧⎪∠=∠⎨⎪=⎩,△△ACF△△AEF (SAS ),△△E=△ACF ,△AB=AE ,△△E=△ABE ,△△ABE=△ACF ;(2)如图,在FB 上截取BM=CF ,连接AM ,△△ACF△△AEF ,△EF=CF ,△E=△ACF=△ABM ,在△ABM 和△ACF 中,AB ACABM ACF BM CF=⎧⎪∠=∠⎨⎪=⎩,△△ABM△△ACF (SAS ),△AM=AF ,△BAM=△CAF ,△AB=AC ,△ABC=60°,△△ABC 是等边三角形,△△BAC=60°,△△MAF=△MAC+△CAF=△MAC+△BAM=△BAC=60°, △AM=AF ,△△AMF 为等边三角形,△AF=AM=MF ,△AF+EF=BM+MF=FB ;(3)如图,延长BA 、CF 交于N ,△AE△BC ,△△E=△EBC ,△AB=AE ,△△ABE=△E ,△△ABF=△CBF ,△△ABC=45°,△△ABF=△CBF=22.5°,△ACB=45°,△BAC=180°-45°-45°=90°, △△ACF=△E=△ABF=22.5°,△△BFC=180°-22.5°-45°-22.5°=90°,△△BFN=△BFC=90°,在△BFN 和△BFC 中,NBF CBFBF BF BFN BFC∠=∠⎧⎪=⎨⎪∠=∠⎩,△△BFN△△BFC (ASA ),△CF=FN ,即CN=2CF=2EF ,△△BAC=90°,△△NAC=△DAB=90°, 在△BAD 和△CAN 中, ABD ACN AB AC BAD CAN ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△BAD△△CAN (ASA ), △BD=CN , △BD=2EF .。

人教版八年级上册数学期中考试试卷带答案

人教版八年级上册数学期中考试试卷带答案

人教版八年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.下列图形具有稳定性的是()A .六边形B .五边形C .平行四边形D .等腰三角形3.下列图形中,对称轴最多的是()A .等边三角形B .矩形C .正方形D .圆4.点M(3,-2)关于x 轴对称的对称点的坐标是()A .(-3,2)B .(3,2)C .(-3,-2)D .(2,3)5.能把一个三角形分成两个面积相等的三角形是三角形的()A .中线B .高线C .角平分线D .以上都不对6.如果三角形的两边长分别为3和5,则第三边L 的取值范围是()A .2<L<15B .L<8C .2<L<8D .10<L<167.已知:△ABC ≌△DEF ,AB=DE,∠A=70°,∠E=30°,则∠F 的度数为()A .80°B .70°C .30°D .100°8.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是()A .PQ≤5B .PQ<5C .PQ≥5D .PQ>59.如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则∠BDC 的度数为()A .72°B .36°C .60°D .82°10.在ABC ∆中,已知::1:2:3A B C ∠∠∠=,则三角形的形状是()A .钝角三角形B .直角三角形C .锐角三角形D .无法确定11.一个正多边形的每个外角都等于60°,那么它是()A .正十二边形B .正十边形C .正八边形D .正六边形12.如图,已知AB⊥BC,BC⊥CD,AB=DC,可以判定△ABC≌△DCB,判定的根据是()A.HL B.ASA C.SAS D.AAS二、填空题13.等边三角形的每个内角都是____°.14.已知点P(2,3),点A与点P关于y轴对称,则点A的坐标是______.15.已知一个三角形的三边长a、b、c,满足(a-b)2+|b-c|=0,则这个三角形是____三角形. 16.若n边形的内角和是它的外角和的2倍,则n=_______.17.如图,已知正方形ABCD的边长为4cm,则图中阴影部分的面积为__________2cm.18.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是____________.三、解答题19.求出图形中x的值.20.在△ABC中,已知∠A=30°,∠B=2∠C,求∠B和∠C的度数.21.尺规作图:如图,在直线MN 上求作一点P ,使点P 到∠AOB 两边的距离相等(不要求写出作法,但要保留作图痕迹,写出结论)22.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .23.已知,,a b c 为ABC ∆的三边长,且222222222a b c ab ac bc ++=++,试判断ABC ∆的形状,并说明理由.24.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长.25.数学中的对称美、统一美、和谐美随处可见,在数的运算中就有一些有趣的对称形式.(1)我们发现:12=1,112=121,1112=12321,11112=1234321,…请你根据发现的规律,接下去再写两个等式;(2)对称的等式:12×231=132×21.仿照这一形式,完成下面的等式,并进行验算:12×462=_______,18×891=_______.26.如图,在△ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,①求证:△ADC ≌△CEB .②求证:DE=AD+BE.(2)当直线MN 绕点C 旋转到图2的位置时,判断ADC ∆和CEB ∆的关系,并说明理由.参考答案1.A 【详解】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A 沿任意一条直线折叠直线两旁的部分都不能重合.故选A .考点:轴对称图形.2.D 【分析】根据三角形的稳定性判断即可.【详解】六边形、五边形、平行四边形都不具有稳定性;等腰三角形是三角形的一种,所以它具有稳定性.【点睛】本题考查了三角形的稳定性.在所有的图形里,只有三角形具有稳定性,也是三角形的特性,应牢牢掌握.3.D【解析】试题分析:因为等边三角形有三条对称轴;矩形有两条对称轴;正方形有四条对称轴;圆有无数条对称轴.一般地,正多边形的对称轴的条数等于边数.故选D.考点:轴对称图形的对称轴.4.B【分析】根据平面直角坐标系内关于x轴对称:纵坐标互为相反数,横坐标不变可以直接写出答案.【详解】点M(3,-2)关于x轴对称的对称点的坐标是(3,2).故答案为:B.【点睛】本题主要考查了关于x轴对称点的坐标特点,关键是掌握点的变化规律.5.A【分析】根据等底等高的两个三角形的面积相等解答.【详解】解:三角形的中线把三角形分成两个等底等高的三角形,面积相等.故选A.【点睛】本题考查了三角形的面积,熟知等底等高的两个三角形的面积相等是解答此题的关键. 6.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,即可求得第三边的取值范围.由三角形三边关系定理及其推论得:5-3<L<5+3,即2<L<8.故答案为:C.【点睛】此题考查了三角形的三边关系,能正确运用三角形的三边关系是解此题的关键.7.A【分析】根据全等三角形对应角相等求出∠D=∠A,再利用三角形的内角和等于180°列式进行计算即可得解.【详解】∵△ABC≌△DEF,AB=DE,∠A=70°,∴∠D=∠A=70°,在△DEF中,∠F=180°-∠D-∠E=180°-70°-30°=80°,故选A.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,根据全等三角形对应顶点的字母写在对应位置上准确找出对应角是解题的关键.8.C【解析】【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【详解】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB边的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解9.A【解析】试题分析:∵AB=AC,∠A=36°,∴∠ABC=∠C=1801803622A︒-∠︒-︒==72°,∵DE垂直平分AB,∴∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°.故选A.考点:1.线段垂直平分线的性质;2.等腰三角形的性质.10.B【分析】设∠A=x,∠B=2x,∠C=3x,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【详解】解:∵::1:2:3A B C∠∠∠=设∠A=x,∠B=2x,∠C=3x.则x+2x+3x=180°,解得x=30°,∴∠A=30°,∠B=60°,∠C=90°,所以这个三角形是直角三角形.故选:B.【点睛】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.11.D【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出多边形的边数.【详解】该正多边形的边数为360°÷60°=6.【点睛】本题考查了多边形外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.12.C 【分析】根据垂直定义推出90ABC DCB ∠=∠=°,AB=DC ,CB BC =,根据SAS 推出ABC DCB ≌.【详解】∵AB ⊥BC ,BC ⊥CD ∴∠ABC=∠DCB=90°又∵AB=DC ,BC=CB ∴△ABC ≌△DCB (SAS )故答案为:C.【点睛】本题考查了对全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等,全等三角形的判定定理有SAS ASA AAS SSS ,,,.13.60°.【解析】试题分析:等边三角形三个角相等,而三角形内角和为180°,可得结果.试题解析:∵等边三角形三个角相等,又三角形内角和为180°,设等边三角形的每个内角的大小均是x ,则3x=180°,解得:x=60°.考点:1.三角形内角和定理;2.三角形.14.(-2,3)【解析】点P(2,3),点A 与点P 关于y 轴对称,则点A 的坐标是(−2,3),故答案为(−2,3).15.等边【分析】根据任意一个数的绝对值都是非负数和偶次方具有非负性可得:00a b b c -=-=,,再根据三角形的判断方法即可知道该三角形的形状.【详解】∵(a-b)2+|b-c|=0∴(a-b)2=0,|b-c|=0∴a=b ,b=c ∴a=b=c∴这个三角形是等边三角形.【点睛】本题考查了任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0、偶次方的非负性以及等边三角形的判定.16.6【详解】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2),外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=617.8【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=12×4×4=8cm 2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.18.2【分析】根据题意,画出图形,由轴对称的性质即可解答.【详解】根据轴对称的性质可知,台球走过的路径为:∴该球最后将落入的球袋是2号袋.故答案为2.【点睛】本题主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.19.x=60.【解析】试题分析:根据三角形的外角和定理列出等式,即可求得x 的值.试题解析:解:x+70=x+10+x ,∴x=60.考点:三角形的外角和定理.20.∠B=100°,∠C=50°.【分析】根据三角形的内角和等于180°列式求出∠C ,再求解即可得到∠B .【详解】∵2B C ∠=∠,180A B C ∠+∠+∠=°,∴2180A C C ∠+∠+∠=°,即303180C ︒+∠=°,解得:50C ∠=°,∴2250100B C ∠=∠=⨯︒=°.答:∠B 等于100°,∠C 等于50°【点睛】本题考查了三角形的内角和定理,是基础题,熟记定理列出并整理成关于∠C的方程是解题的关键.21.答案见解析.【分析】作的平分线交直线MN于P点.【详解】解:根据题意,如图,作∠AOB的平分线,∠AOB的平分线与直线MN交于一点,则点P 即为所求.22.证明见解析【详解】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.试题解析:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS)23.△ABC是等边三角形,理由见解析【分析】先根据完全平方公式进行变形,求出a=b=c,即可得出答案.【详解】解:△ABC是等边三角形.证明如下:∵2a2+2b2+2c2=2ab+2ac+2bc,∴2a2+2b2+2c2-2ab-2ac-2bc=0,∴a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴(a-b)2=0,(a-c)2=0,(b-c)2=0,∴a=b且a=c且b=c,即a=b=c,∴△ABC是等边三角形.【点睛】本题考查了等边三角形的判定和完全平方公式、因式分解,能根据完全平方公式得出(a-b)2+(a-c)2+(b-c)2=0是解此题的关键.24.DE=2cm【分析】利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.【详解】解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,∴S△ABC =12AB•DE+12AC•DF=28,即12×20×DE+12×8×DF=28,解得DE=2cm.【点睛】全等三角形的判定与性质;三角形的面积;角平分线的性质.25.(1)111112=1234543211111112=12345654321;(2)264×21;198×81.【分析】(1)分别观察112,1112,11112,…,得出结果的一般规律,再根据一般规律求值.(2)根据给出的题例,即把每一个因数各个数位上的数字反过来写,乘积仍相等.【详解】(1)由12=1,112=121,1112=12321,11112=1234321,可知,这类数平方的结果为“回文数”,即从1开始按连续整数依次增大到最大,再逐渐减小到1,其中,最大的数字为等式左边1的个数,所以接下来的等式是:111112=123454321,1111112=12345654321.(2)124625544264215544⨯=⨯=, ,1246226421∴⨯=⨯1889116038⨯=,1988116038⨯=1889119881∴⨯=⨯【点睛】本题考查了有理数的概念与运算.关键是由易到难,由特殊到一般,找出这类数的平方的规律.26.(1)①见解析;②见解析;(2)△ADC ≌△CEB ;理由见解析【分析】(1)①要证△ADC ≌△CEB ,已知一直角∠ADC=∠CEB=90°和一边AC=CB 对应相等,由题意根据同角的余角相等,可得另一内角∠ECB=∠DAC ,再由AAS 即可判定;②由①得出AD=CE ,BE=CD ,而DE=CD+CE ,故DE=AD+BE ;(2)同理,根据上一小题的解题思路,易得△ADC ≌△CEB.【详解】(1)①∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DAC ADC CEB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )②∵△ADC ≌△CEB∴AD=CE ,BE=CD又∵DE=CD+CE∴DE=AD+BE(2)△ADC ≌△CEB ;∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DACADC CEB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )【点睛】此题主要考查三角形全等的判定,熟练掌握,即可解题.。

八年级上学期期中考试数学试题

八年级上学期期中考试数学试题

2010~2011学年度第一学期期中考试八年级数学试题考试形式:闭卷 考试时间:100分钟 试卷分值:100分拟卷人:范公中学 朱兆梁 校核人:顾志林题号一二三总分2122 23 24 25 26 27 得分一、精心选择(本大题10小题,每小题2分,计20分) 题号 1 2 3 4 5 6 7 8 9 10 答案1.与数轴上的所有点建立一一对应关系的是( ) A .整数 B .有理数 C .无理数 D .实数 2.下列计算正确的是( ) A .()332-=-B .33343343-=-C .25212414=+= D .若()86,28913-===+x x x 或则3.在-3.14 ,2π, 32-, 2.303003000……(每两个3之间依次增加一个0),722中无理数有( ) A .1个 B .2个 C .3个 D .4个 4. 地球七大洲的总面积约是149480000㎞2,对这个数据保留3个有效数字表示为( ) A .149km 2 B .1.5×108km 2 C .1.49×108km 2 D .1.50×108km 2 5.下列各组数中,不能作为直角三角形的三边长的是( )A .7,24,25B .1.5,2 ,3C .6 ,8 ,10D .9, 12, 15 6.下列多边形中,既是轴对称图形又是中心对称图形的是( ) A .平行四边形 B .正方形 C .等腰梯形 D .等边三角形 7.如图,正方形ABCD 的边长为4㎝,M 为边AB 上的一点,ME ⊥AC 于点E ,MF ⊥BD 于点F , 则ME +MF 等于( )…………………密……………封……………线……………内……………不……………准……………答……………题……………………班 级__________ 姓 名__________ 学 号_________ 考试号__________A BCD E FO MA .22B .24C .4D .88.若顺次连接四边形各边中点所得的四边形是菱形,则原四边形是( )A .梯形B .菱形C .对角线相互垂直的四边形D .对角线相等的四边形 9.若直角三角形的两边长分别为2和3,则第三边长为( ) A .4 B .5 C .5或13 D .13 10.下列说法错误的是( )A .一组对边平行且一组对角相等的四边形是平行四边形B .每组邻边都相等的四边形是菱形C .对角线互相垂直平分的四边形是正方形D .四个角都相等的四边形是矩形二、细心填一填(本大题10小题,每题2分,计20分) 11.-2是_________的立方根 12.π-3=____________ 13.81的平方根是____________14.0)2(12=-+-y x 则x ·y 的值为____________15.用四舍五入法对0.8046取近似值为______________(保留两个有效数字) 16.已知梯形下底长为4cm ,上底长为2cm ,则它的中位线长等于_____________cm . 17.已知菱形的两条对角线的长分别为8㎝,10㎝,则菱形的面积是_____________. 18.如图,四边形ABCD 是正方形,△ABE 是等边三角形,∠AED 等于____________ 19.如图,△ABC 中,BC=12,边BC 的垂直平分线分别交AB ,BC 于点E 、D ,BE=8,则△BCE 的周长是______________.20.如图,已知E 是边长为12的正方形的边AB 上一点,且AE=5,P 是对角线AC 上任意一点,则PE +PB 的最小值是______________.E A B CD A C EBA BCDEP18题图19题图20题图D三、用心解答21.求下列各式中的x (每题4分,计8分)①49162=x②64)1(3=+x22.计算(本小题5分)332764116--∙23.如图在矩形ABCD 中,BC=20㎝,点P 和点Q 同时分别从点B 和点D 出发,按逆时方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为4㎝/秒和1㎝/秒,求经过多少秒后,四边形ABPQ 为矩形。

人教版八年级上册数学期中考试试卷带答案

人教版八年级上册数学期中考试试卷带答案

人教版八年级上册数学期中考试试题一、单选题1.下列图形中,其中不是轴对称图形的是()A .B .C .D .2.若正多边形的一个外角是60°,则该正多边形的边数是()A .4B .5C .6D .73.如图,△ABC 中BC 边上的高是()A .BDB .AEC .BED .CF4.若△ABC ≌△DEF ,AB =2,AC =4,且△DEF 的周长为奇数,则EF 的值为()A .3B .4C .3或5D .3或4或55.如图,在△ABC 中,点D 为BC 边上一点,连接AD ,取AD 的中点P ,连接BP ,CP .若△ABC 的面积为4cm 2,则△BPC 的面积为()A .4cm 2B .3cm 2C .2cm 2D .1cm 26.如图,在ABC 中,D 、E 分别为AB 、AC 边上的点,DA DE =,DB BE EC ==.若130ABC ∠=︒,则C ∠的度数为()A .20︒B .22.5︒C .25︒D .30°7.如图,将一副含30°,45°的直角三角板如图摆放,则∠1+∠2等于()A.200°B.210°C.180°D.225°8.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,依据“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠BDE=∠CDE C.AB=AC D.BD=CD9.在△ABC中,∠A=40°,∠B=60°,则∠C=()A.40°B.80°C.60°D.100°10.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC二、填空题11.若三角形三个内角度数的比为2:3:4,则此三角形是______三角形(填锐角、直角或钝角).12.已知ABC∆是等腰三角形,若它的周长为18,一条边的长为4,则它的腰长为__________.13.若△ABC的边AB、BC的长是方程组93x yx y+=⎧⎨-=⎩的解,设边AC的长为m,则m的取值范围是_____.14.如图,在△ABC 中,∠ACB =90º,∠ABC =60º,CD ⊥AB ,垂足为D ,若BD =1,则AD 的长为___________.15.如图,△ABC ≌△ADE ,且点E 在BC 上,若∠DAB =30°,则∠CED =_____.16.如图,ABC 为等边三角形,以边AC 为腰作等腰ACD △,使AC CD =,连接BD ,若32ABD ∠=︒,则CAD ∠=__________°.三、解答题17.如图,已知CD 为ACB ∠的平分线,AM CD ⊥于,46,8M B BAM ∠=︒∠=︒,求ACB ∠的度数.18.如图,∠C =∠E ,AC =AE ,点D 在BC 边上,∠1=∠2,AC 和DE 相交于点O .求证:△ABC ≌△ADE .19.如图,已知△ABC.(1)用直尺和圆规,作出边AC的垂直平分线,交AC于点E,BC于点D,(不写作法,保留作图痕迹)(2)在(1)的基础上,连接AD,若AE=5,△ABD的周长为20,则△ABC的周长是_______.20.已知a、b、c是三角形的三边长,①化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;②若a+b=11,b+c=9,a+c=10,求这个三角形的各边.21.如图,在△ABC中,∠ACB=90°,D是AC上的一点,且AD=BC,DE⊥AC于D,AB=AE.求证:(1)AE⊥AB;(2)CD=DE﹣BC.22.如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直平分线BE与CD交于点F,与AC交于点E.(1)判断△DBC的形状并证明你的结论.(2)求证:BF=AC.(3)试说明CE=12 BF.23.如图,在△ABC中,AB=AC,∠BAC=90°,点D、E分别在AB、BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF.(2)判断BD和CF的数量关系,并说明理由.24.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作△BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).25.如图1,在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,4),A(4,4),过C点作∠ECF分别交线段AB、OB于E、F两点.(1)若OF+BE=AB,求证:CF=CE.(2)如图2,∠ECF=45°,S△ECF=6,求S△BEF的值.参考答案1.A【解析】根据轴对称图形的定义:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,就可得到答案。

沪科版八年级上册数学期中考试试卷含答案

沪科版八年级上册数学期中考试试卷含答案

沪科版八年级上册数学期中考试试题一、单选题1.在平面直角坐标系中,点A 的坐标为(-2,3)若线段AB∥y 轴,且AB 的长为4,则点B 的坐标为()A.(-2,-1)B.(-2,7)C.(﹣2,-1)或(-2,7)D.(2,3)2.以下列各组线段为边,能组成三角形的是()A.1cm,2cm,4cm B.4cm,6cm,8cm C.5cm,6cm,12cmD.2cm,3cm,5cm3.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是()A.()1,2-B.()1,2-C.()2,3D.()3,44.下列图形中,正确画出AC 边上的高的是()A.B.C.D.5.如图,在平面直角坐标系中,一次函数y=kx+b 和y=mx+n 相交于点(2,-1)则关于x、y 的方程组kx y b mx n y =-⎧⎨+=⎩的解是()A.-12x y =⎧⎨=⎩B.2-1x y =⎧⎨=⎩C.12x y =⎧⎨=⎩D.21x y =-⎧⎨=⎩6.具备下列条件是△ABC 中,不是直角三角形的是()A.A B C∠+∠=∠B.1123A B C ∠=∠=∠C.∠A:∠B:∠C=1:3:4D.∠A=2∠B=3∠C7.下列命题中,正确的是()A.三角形的一个外角大于任何一个内角B.三角形三条角平分线交点在三角形的外部C.三角形的三条高都在三角形内部D.三角形的一条中线将三角形分成两个面积相等的三角形8.定义:当三角形中一个内角α是另一个内角的两倍时,我们称此三角形为“倍角三角形”,其中α称为“倍角”,如果一个“倍角三角形”的一个内角为99°,那么倍角α的度数是()A.99°B.99°或49.5°C.99°或54°D.99°或49.5°或54°9.关于函数y=(k-3)x+k,给出下列结论:①此函数一定是一次函数;②无论k 取什么值,函数图象必经过点(-1,3);③若图象经过二、三、四象限,则k 的取值范围是k <0;④若函数图象与x 轴的交点始终在正半轴可得k<3,其中正确的有()A.1个B.2个C.3个D.4个10.关于一次函数23y x =-+,下列结论正确的是()A.图象过点()1,1-B.图象与x 轴的交点是()0,3C.y 随x 的增大而增大D.函数图象不经过第三象限二、填空题11.命题“如果a+b=0,那么a,b 互为相反数”的逆命题为_________________________.12.一次函数y=kx+6的图象与x 轴交于点A,与y 轴交于点B,S△AOB ═9,则k=_____13.如图,CE 平分∠ACD,∠A=40°,∠B=30°,∠D=104°,则∠BEC=____.14.如图,在Rt△ABC 中,∠ACB=90°,BC=4cm,AC=9cm,点D 在线段CA 上从点C 出发向点A 方向运动(点D 不与点A,点C 重合),且点D 运动的速度为2cm/s,现设运动时间为x(0<x<92)秒时,对应的△ABD 的面积为ycm²,则当x=2时,y=_________;y 与x 之间满足的关系式为_________.15.直线y=12x-4与x 轴的交点坐标是_____,与y 轴的交点坐标是_______.三、解答题16.在△ABC 中,∠A-∠B=30°,∠C=4∠B,求∠A、∠B、∠C 的度数17.如图,在平面直角坐标系中,P(a,b)是三角形ABC 的边AC 上的一点,三角形ABC 经平移后点P 的对应点为P 1(a+6,b+2).(1)请画出经过上述平移后得到的三角形A 1B 1C 1;(2)求线段AC 扫过的面积.18.已知一次函数y=(6+3m)x+n-4(1)m 为何值时,y 随x 的增大而减小;(2)m,n 分别为何值时,函数的图象经过原点.19.设一次函数(,y kx b k =+b 为常数,0)k ≠的图象过()1,3A ,()5,3B --两点.()1求该函数表达式;()2若点()2,21C a a +-在该函数图象上,求a 的值;()3设点P 在x 轴上,若12ABP S = ,求点P 的坐标.20.已知,如图,在△ABC中,AH平分∠BAC交BC于点H,D、E分别在CA、BA的延长线上,DB∥AH,∠D=∠E.(1))求证:DB∥EC;(2)若∠ABD=2∠ABC,∠DAB比∠AHC大5°.求∠D的度数.21.在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路臀购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.①求w与x之间的函数表达式,并写出x的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?22.已知△ABC中,∠ABC=∠ACB,D为线段CB上一点(不与C,B重合),点E为射线CA 上一点,∠ADE=∠AED,设∠BAD=a,∠CDE=β.(1)如图(1),①若∠BAC=50°,∠DAE=40°,则a=____,β=②若∠BAC=58°,∠DAE=42°,则a=_____,β=____③写出a与β的数量关系,并说明理由;(2)如图(2),当E点在CA的延长线上时,其它条件不变,请直接写出a与β的数量关系.23.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值;(2)若函数的图象平行于直线y=3x-3,求m 的值;(3)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.24.如图,在平面直角坐标系中,一次函数y =kx +b 的图象与x 轴交点为A (-3,0),与y 轴交点为B ,且与正比例函数43y x =的图象交于点C(m,4).(1)求点C 的坐标;(2)求一次函数y =kx +b 的表达式;(3)利用图象直接写出当x 取何值时,kx +b>43x .参考答案1.C 【解析】【分析】设点B (),x y ,根据线段与数轴平行可得2x =-,根据线段4AB =,可得34y -=,求解即可得出点的坐标.【详解】解:设点B (),x y ,∵AB y ∥轴,∴A ()2,3-与点B 的横坐标相同,∴2x =-,∵4AB =,∴34y -=,∴34y -=或34y -=-,∴1y =-或7y =,∴点B 的坐标为:()2,1--,()2,7-,故选:C.【点睛】题目主要考查线段与坐标轴平行的点的坐标特点,两点之间的距离,一元一次方程应用等,理解题意,利用绝对值表示两点之间距离是解题关键.2.B 【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形;B、4+6>8,能组成三角形;C、5+6<12,不能够组成三角形;D、2+3=5,不能组成三角形.故选:B.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.B 【解析】【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k﹤0,A.当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B.当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C.当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D.当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意,故选:B.【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.4.D 【解析】【分析】根据高的定义即可求解.【详解】解:根据锐角三角形和钝角三角形的高线的画法,可得D 选项中,BE 是△ABC 中AC 边长的高,故选:D.【点晴】此题主要考查高的作法,解题的关键是熟知高的定义.5.B 【解析】【分析】根据题意直接利用方程组的解就是两个相应的一次函数图象的交点坐标进行分析解决问题.【详解】解:∵一次函数y kx b =+和y mx n =+相交于点(2,-1),∴关于x、y 的方程组kx y b mx n y=-⎧⎨+=⎩的解为21x y =⎧⎨=-⎩.故选:B.【点睛】本题考查一次函数交点问题与二元一次方程(组)解得关系,理清二者的联系是解题关键.6.D 【解析】【分析】分别求出各个选项中,三角形的最大的内角,即可判断.【详解】解:A、由A B C ∠+∠=∠,可以推出90C ∠=︒,本选项不符合题意.B、由1123A B C ∠=∠=,可以推出90C ∠=︒,本选项不符合题意.C、由::1:3:4A B C ∠∠∠=,可以推出90C ∠=︒,本选项不符合题意,D、由23A B C ∠=∠=∠,推出108011A ⎛⎫∠=︒ ⎪⎝⎭,ABC ∆是钝角三角形,本选项符合题意.故选:D.【点睛】本题考查三角形内角和定理,熟悉相关性质是解题的关键.7.D 【解析】【分析】根据三角形外角的性质、中线的性质、高的性质及角平分线的性质逐一判断可得.【详解】解:A、三角形的一个外角大于任何一个不相邻的内角,故此选项错误,不合题意;B、三角形三条角平分线交点在三角形的内部,故此选项错误,不合题意;C、锐角三角形的三条高在三角形的内部、直角三角形有两条高在边上、钝角三角形有两条高在外部,故此选项错误,不合题意;D、三角形的一条中线将三角形分成两个三角形的底相等、高公共,据此知两个三角形面积相等,故正确,符合题意;故选:D.【点睛】本题考查了命题与定理,解题的关键是熟练掌握三角形外角的性质、中线的性质、高的性质、角平分线的性质.8.C【解析】【分析】根据题意设三角形的三个内角分别是m、n、α且α=2m,由题意得α=99°或m=99°或n=99°,分这三种情况讨论即可.【详解】解:设三角形的三个内角分别是m、n、α且α=2m,当α=99°,则m=49.5°,n=31.5°,当m=99°,则α=2m=198°(舍去),当n=99°,则m+α=180°-n=81°,∴3m=81°,∴m=27°,∴α=2m=54°.综上:倍角α的度数为99°或54°.故选:C.【点睛】本题主要考查三角形内角和定理,熟练掌握三角形内角和定理即三角形内角和是180°是解决本题的关键,注意分类讨论方法的运用.9.B【解析】【分析】①当k﹣3≠0时,函数是一次函数;当k﹣3=0时,该函数是y=3,此时是常数函数,即可求解;②y=(k﹣3)x+k=k(x+1)﹣3x,当x=﹣1时,y=3,过函数过点(﹣1,3),即可求解;③函数y=(k﹣3)x+k经过二,三,四象限,可得30kk-<⎧⎨<⎩,从而可以求得k的取值范围;④当k﹣3=0时,y=3,与x轴无交点;当k≠3时,函数图象与x轴的交点始终在正半轴,即-03kk >-,即可求解.【详解】解:①当k﹣3≠0时,函数是一次函数;当k﹣3=0时,该函数是y=3,此时是常数函数,故①不符合题;②y=(k﹣3)x+k=k(x+1)﹣3x,当x=﹣1时,y=3,过函数过点(﹣1,3),故②符合题意;③函数y=(k﹣3)x+k 经过二,三,四象限,则300k k -<⎧⎨<⎩,解得:k<0,故③符合题意;④当k﹣3=0时,y=3,与x 轴无交点;当k≠3时,函数图象与x 轴的交点始终在正半轴,即﹣03kk >-,解得:0<k<3,故④不符合题;故正确的有:②③,共2个故选B 【点睛】本题考查根据交点坐标确定解析式字母系数的取值及分类讨论思想的运用,一般地,先求出交点坐标,再把坐标满足的条件转化成相应的方程或是不等式进而解决问题.10.D 【解析】【分析】A、把点的坐标代入关系式,检验是否成立;B、把y=0代入解析式求出x,判断即可;C、根据一次项系数判断;D、根据系数和图象之间的关系判断.【详解】解:A、当x=1时,y=1.所以图象不过(1,−1),故错误;B、把y=0代入y=−2x+3,得x=32,所以图象与x 轴的交点是(32,0),故错误;C、∵−2<0,∴y 随x 的增大而减小,故错误;D、∵−2<0,3>0,∴图象过一、二、四象限,不经过第三象限,故正确.故选D.【点睛】本题主要考查了一次函数的图象和性质.常采用数形结合的思想求解.11.如果a,b互为相反数,那么a+b=0【解析】【分析】交换原命题的题设与结论即可得到其逆命题.【详解】解:逆命题为:如果a,b互为相反数,那么a+b=0.故答案为:如果a,b互为相反数,那么a+b=0.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.12.2±【解析】【详解】分析:首先计算出与x轴的交点坐标,与y轴的交点坐标,再利用三角形的面积公式计算出面积即可.详解:∵当x=0时,y=6,∴与y轴的交点B(0,6),∵当y=0时,6 xk =-∴与x轴的交点6,0Ak⎛⎫-⎪⎝⎭,∴△AOB的面积为:1669. 2k⨯⨯-=解得: 2.k=±故答案为 2.±点睛:考查了利用一次函数解析式求直线与坐标轴的交点问题,并借助三角形的面积公式求系数k,属于常见题型.13.57°##57度【解析】【分析】根据四边形外角的性质和角平分线的性质,再结合题意,即可得到答案.【详解】根据四边形外角的性质可得∠D =∠A+∠B+∠DCA,∠D =∠BEC+∠B+∠ECD,则∠DCA =∠D-(∠A+∠B)=34°,因为CE 平分∠ACD,所以∠ECD=123471︒=⨯︒,所以∠BEC=∠D-(∠B+∠ECD)=57°.故答案为57°.【点睛】本题考查四边形外角的性质和角平分线的性质,解题的关键是掌握四边形外角的性质和角平分线的性质.14.10184y x =-【解析】【分析】根据ABDABC BCD S S S =- ,代入数轴求解即可.【详解】解:根据题意得:ABD ABC BCDS S S =- =1122AC BC CD BC⋅-⨯=118242x -⨯⨯=184x -,∴当x=2时,184184210y x =-=-⨯=,故答案为:10,184y x =-.【点睛】本题考查了动点问题的函数关系,根据题意得出解析式是关系.15.(8,0)(0,-4)【解析】【分析】分别根据x、y 轴上点的坐标特点进行解答即可.【详解】解:令0y =,则1042x =-,解得8x =,故直线与x 轴的交点坐标为:(8,0);令0x =,则4y =-,故直线与y 轴的交点坐标为:(0,-4);故答案为(8,0),(0,-4).【点睛】本题考查的是x、y 轴上点的坐标特点,与x 轴相交,0y =,与y 轴相交,0x =.16.55A ∠=︒,25B ∠=︒,100C ∠=︒【解析】【分析】根据三角形内角和定理,以及已知条件列三元一次方程组解方程求解即可【详解】在△ABC 中,180A B C ∠+∠+∠=︒,∠A-∠B=30°,∠C=4∠B,180304A B C A B C B ∠+∠=︒-∠⎧⎪∴∠-∠=︒⎨⎪∠=∠⎩①②③①-②得2150B C ∠=︒-∠④将③代入④解得25B ∠=︒100C ∴∠=︒,55A ∠=︒∴55A ∠=︒,25B ∠=︒,100C ∠=︒【点睛】本题考查了三角形内角和定理,解三元一次方程组,正确的计算是解题的关键.17.(1)见解析;(2)14【解析】【分析】(1)横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位;(2)以A、C、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的2个三角形的面积.【详解】解:(1)如图,各点的坐标为:A(﹣3,2)、C(﹣2,0)、A 1(3,4)、C 1(4,2);(2)如图,连接AA 1、CC 1;∴1117272AC A S =⨯⨯= ;117272AC C S =⨯⨯= ;∴四边形ACC 1A 1的面积为7+7=14.答:线段AC 扫过的面积为14.【点睛】本题考查平移,涉及的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;解题关键是掌握求四边形的面积通常整理为求几个三角形的面积的和.18.(1)当2m <-时,一次函数()634y m x n =++-,y 随x 的增大而减小;(2)当2m ≠-且4n =时,()634y m x n =++-的图象经过原点.【解析】【分析】(1)根据“y 随x 的增大而减小”可得630m +<,由此可求出m 的取值范围;(2)由函数图象经过原点得40n -=,630m +≠,由此求解即可.【详解】解:(1)由一次函数()634y m x n =++-,∵y 随x 的增大而减小,可得:630m +<,∴2m <-;∴当2m <-时,一次函数()634y m x n =++-,y 随x 的增大而减小;(2)由一次函数()634y m x n =++-的图象经过原点,可得:40n -=,解得:4n =,∵630m +≠,2m ≠-,∴当2m ≠-且4n =时,()634y m x n =++-的图象经过原点.【点睛】本题考查了一次函数的性质,解题的关键要熟练掌握一次函数的增减性与图象特点与参数之间的关系.19.(1)2y x =+;(2)5a =;(3)点P 坐标()2,0或()6,0-【解析】【分析】(1)根据一次函数y=kx+b(k,b 是常数,k≠0)的图象过A(1,3),B(-5,-3)两点,可以求得该函数的表达式;(2)将点C 坐标代入(1)中的解析式可以求得a 的值;(3)由题意可求直线y=x+2与x 轴的交点坐标,根据三角形的面积公式可求点P 坐标.【详解】解:()1根据题意得:{353k b k b +=-+=-解得:{12k b ==∴函数表达式为2y x =+()2 点()2,21C a a +-在该函数图象上,2122a a ∴-=++5a ∴=()3设点(),0P m 直线2y x =+与x 轴相交∴交点坐标为()2,0-1123231222ABP S m m =+⨯++⨯-=24m ∴+=2m ∴=或6-∴点P 坐标()2,0或()6,0-【点睛】本题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想解答.20.(1)见解析;(2)50°【解析】【分析】(1)根据平行线的性质可得∠D=∠CAH,根据角平分线的定义可得∠BAH=∠CAH,再根据已知条件和等量关系可得∠BAH=∠E,再根据平行线的判定即可求解;(2)可设∠ABC=x,则∠ABD=2x,则∠BAH=2x,可得∠DAB=180°−4x,可得∠AHC=175°−4x,可得175°−4x=3x,解方程求得x,进一步求得∠D 的度数.【详解】(1)证明:∵DB ∥AH,∴∠D=∠CAH,∵AH 平分∠BAC,∴∠BAH=∠CAH,∵∠D=∠E,∴∠BAH=∠E,∴AH ∥EC,∴DB ∥EC;(2)解:设∠ABC=x,则∠ABD=2x,∠BAH=2x,∴∠DAB=180°−4x,∠DAB 比∠AHC 大5°∴∠AHC=175°−4x,DB ∥AH,∴AHC DBC∠=∠即:175°−4x=3x,解得x=25°,则∠D=∠CAH=∠BAH=∠ABD=2x=50°.【点睛】考查了三角形内角和定理,平行线的判定与性质,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.21.(1)柏树的单价为100元,杉树的单价为80元;(2)①2012000w x =+,112.5150x ≤<且x 为整数;②要使此次费用最少,柏树购买113棵,杉树37棵,最少费用为14260元.【解析】【分析】(1)设柏树的单价为m 元,杉树的单价为n 元,根据题意列出二元一次方程组求解即可;(2)①根据单价、数量与费用的关系列出一次函数即可;再由题意本次购买柏树和杉树共150棵,且两种树都必须购买,可得不等式组,柏树的棵树不少于杉树的3倍,列出相应不等式求解,综合即可得x 的取值范围;②根据一次函数的增减性质可得w 随x 的增大而增大,由x 的取值范围代入求解即可.【详解】解:(1)设柏树的单价为m 元,杉树的单价为n 元,根据题意可得:234403380m n m n +=⎧⎨+=⎩,解得:10080m n =⎧⎨=⎩,答:柏树的单价为100元,杉树的单价为80元;(2)①设本次活动中购买柏树x 棵,则杉树()150x -棵,由(1)及题意可得:()100801502012000w x x x =+-=+,∵本次购买柏树和杉树共150棵,且两种树都必须购买,即:01500x x >⎧⎨->⎩,∴0150x <<,∵柏树的棵树不少于杉树的3倍,∴()3150x x ≥-,解得:112.5x ≥,综合可得:2012000w x =+,112.5150x ≤<且x 为整数;②由①可得:2012000w x =+,∵200>,∴w 随x 的增大而增大,∵112.5150x ≤<,∴当113x =时,w 最小,此时,201131200014260w =⨯+=(元),15011337-=(棵),∴要使此次费用最少,柏树购买113棵,杉树37棵,最少费用为14260元.【点睛】题目主要考查二元一次方程组、不等式组及一次函数的应用,理解题意,列出相应方程是解题关键.22.(1)①10︒,5︒;②16︒,8︒;③2αβ=,理由见详解;(2)2180αβ=-︒,理由见详解.【解析】【分析】(1)①先根据角的和与差求α的值,根据等腰三角形的两个底角相等及顶角可得:70ADE AED ∠=∠=︒,同理可得:65ACB ABC ∠=∠=︒,,根据外角性质列式:706510β︒+=︒+︒,即可得β的度数;②先根据角的和与差求α的值,根据等腰三角形的两个底角相等及顶角可得:69ADE AED ∠=∠=︒,同理可得:61ACB ABC ∠=∠=︒,,根据外角性质列式:696116β︒+=︒+︒,即可得β的度数;③设设BAC x ∠=,DAE y ∠=,则x y α=-,分别求出ADE ∠和B ∠,根据ADC B α∠=∠+列式,可得结论;(2)根据图形,设E x ∠=,则2DAC x ∠=,根据ADC B BAD ∠=∠+∠,列式代入化简可得结论.【详解】解:(1)①∵40DAE ∠=︒,∴140ADE AED ∠+∠=︒,∴70ADE AED ∠=∠=︒,∵50BAC ∠=︒,∴504010BAC DAE α=∠-∠=︒-︒=︒,∴180652BACACB ABC ︒-∠∠=∠==︒,∵ADC B α∠=∠+,∴706510β︒+=︒+︒,∴5β=︒;故答案为10︒,5︒;②∵42DAE ∠=︒,∴138ADE AED ∠+∠=︒,∴69ADE AED ∠=∠=︒,∵58BAC ∠=︒,∴584216α=︒︒=︒﹣,∴180612BACACB B ︒-∠∠=∠==︒,∵ADC B α∠=∠+,∴696116β︒+=︒+︒,∴8β=︒;故答案为16︒,8︒;③2αβ=,理由是:如图(1),设BAC x ∠=,DAE y ∠=,则x y α=-,∵ACB ABC ∠=∠,∴1802xACB ︒-∠=,∵ADE AED ∠=∠,∴1802y AED ︒-∠=,∴ADE ABC βα+∠=+∠,18018022y x βα︒-︒-+=+,化简可得:2αβ=;(2)2180αβ=-︒,理由是:由图象可得,设E x ∠=,则2DAC x ∠=,∴2BAC BAD DAC x α∠=∠+∠=+,∴18022xB ACB α︒--∠=∠=∵ADC B BAD ∠=∠+∠,∴18022x x αβα︒---=+,∴2180αβ=-︒.【点睛】题目主要考查等腰三角形的性质、三角形内角和定理、三角形外角的性质,熟练掌握等腰三角形的性质及运用类比的方法解决问题是解题关键.23.(1)m=3;(2)m=1;(3)m<﹣12【解析】【分析】(1)把原点坐标(0,0)代入函数关系式,即可求得m 的值;(2)根据图象平行的一次函数的一次项系数相同即可得到关于m 的方程,解出即可;(3)根据一次函数的性质即可得到关于m 的不等式,解出即可.【详解】解:(1)由题意得,30m -=,解得:3m =;(2)由题意得,213m +=,解得:1m =;(3)由题意得,210m +<,12m <-.【点睛】解答本题的关键是熟练掌握一次函数的性质:当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.24.(1)(3,4);21(2)223y x =+;(3)3x <时.【解析】【分析】(1)把点C(m,4)代入正比例函数43y x =即可得到答案;(2)把点A 和点C 的坐标代入y kx b =+求得k,b 的值即可;(3)根据图象判断.【详解】解:(1)∵点C(m,4)在正比例函数43y x =上,∴443m =,∴3m =,即点C 坐标为(3,4)(2)∵一次函数y kx b =+经过A(-3,0)、点C(3,4)∴3034k b k b -+=⎧⎨+=⎩,解之得:232k b ⎧=⎪⎨⎪=⎩,∴一次函数的表达式为:223y x =+;(3)由图象可知一次函数223y x =+与正比例函数43y x =的交点是点C,并且当3x <时,43kx b x +>.。

人教版八年级上册数学期中考试试卷含答案

人教版八年级上册数学期中考试试卷含答案

人教版八年级上册数学期中考试试题一、单选题1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.如图所示,如果将一副三角板按如图方式叠放,那么∠1等于()A .120︒B .105︒C .60︒D .45︒3.每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A .3cm ,4cm ,8cmB .8cm ,7cm ,15cmC .13cm ,12cm ,20cmD .5cm ,5cm ,11cm4.下列条件可以判断两个三角形全等的是()A .三个角对应相等B .三条边对应相等C .形状相同D .面积相等,周长相等5.在平面直角坐标系内点(),1P a 与点()5,B b 关于y 轴对称,则a b +的值为()A .4B .4-C .5D .5-6.十二边形的外角和...为()A .30°B .150︒C .360︒D .1800︒7.如图,//AB CD ,点C 是BE 的中点,直接应用“ASA ”定理证明 ≌ABC DCE 还需要的条件是()A .AB CD =B .ACB E ∠=∠C .AD ∠=∠D .AC DE=8.如图,OP 平分AOB ∠,PC OA ⊥,点D 是OB 上的动点,若5PC cm =,则PD 的长可以是()A .2cmB .3cmC .4cmD .6cm9.如图,AD 和BE 是ABC 的中线,AD 与BE 交于点,O 下列结论正确的有()个.(1)ABE ABDS S = (2)2AO OD=(3)ABOS = S 四边形DOECA .0个B .1个C .2个D .3个10.如图,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,若添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,则这个条件是()A .∠A =∠DB .BC =EF C .∠ACB =∠FD .AC =DF二、填空题11.点(1,2)A -关于x 轴对称点的坐标是___.12.如果一个正多边形的外角为30°,那么这个正多边形的边数是_____.13.自行车的三角形车架可以固定,利用的原理是___.14.如图,在ABC 中,10cm AB AC ==,AB 的垂直平分线交AC 于点D ,且BCD △的周长为17cm ,则BC =________cm .15.已知a ,b ,c 是三角形的三条边,化简简|a-b+c|+|a-b-c|=________.16.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,DE AB ⊥,垂足为E ,若7BC =,3DE =,则BD 的长为______.17.如图,在Rt △ABC 中,AB =AC ,点D 为BC 中点,点E 在AB 边上,连接DE ,过点D 作DE 的垂线,交AC 于点F .下列结论:①△BDE ≌△ADF ;②AE =CF ;③BE+CF =EF ;④S 四边形AEDF =12AD 2,其中正确的结论是__________(填序号).三、解答题18.如图,若AB CD ∥,AB CD =且CE BF =,求证:AE DF =.19.如图所示,∠BAC=90°,BF 平分∠ABC 交AC 于点F ,∠BFC=100°,求∠C 的度数.20.如图,在ABC 中,求作:BAC ∠的角平分线AD 交BC 于点D .(要求:尺规作图,不写作法,保留作图痕迹)21.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形ABC (顶点是网格线的交点的三角形)的顶点A ,C 的坐标分别为()4,5-,()1,3-.(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出ABC 关于y 轴对称的111A B C △;(3)写出点1B 的坐标;(4)求ABC 的面积.22.如图,已知AB ⊥AC ,AD ⊥AE ,AB =AC ,AD =AE .(1)求证△ADB ≌△AEC ;(2)DB ⊥EC .23.如图,在△ABC中,AB=AC,∠BAC=90°,分别过点B,C向过点A的直线作垂线,垂足分别为点E,F.求证:(1)△ABE≌△CAF;(2)EF=BE+CF.24.如图所示,已知AB∥CD,AB=CD,BF=CE,求证:△ABE≌△DCF.25.如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO 和∠ABO的角平分线,BC延长线交OM于点G.(1)若∠MON=60°,则∠ACG=;(直接写出答案)(2)若∠MON=n°,求出∠ACG的度数;(用含n的代数式表示)(3)如图2,若∠MON=80°,过点C作CF∥OA交AB于点F,求∠BGO与∠ACF的数量关系.参考答案1.A【详解】解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选:A.2.B【详解】∠=︒-︒=︒,解:如图,2904545由三角形的外角性质得,1260∠=∠+︒,=︒+︒,4560105=︒.故选:B.3.C 【详解】解:A 、3+4<8,不能组成三角形,故该选项不符合题意;B 、8+7=15,不能组成三角形,故该选项不符合题意;C 、13+12>20,能够组成三角形,故该选项符合题意;D 、5+5<11,不能组成三角形,故该选项不符合题意.故选C .4.B 【详解】解:A 、三个角对应相等的三角形,有可能是相似图形,选项错误;B 、三条边对应相等,两个三角形全等,答案正确;C 、形状相同、大小也相同的两个三角形全等,选项错误;D 、面积相等、周长相等的两个三角形不一定全等,选项错误.故选:B 【点睛】本题考查三角形全等的概念和性质,根据知识点解题是关键.5.B 【解析】【分析】直接利用关于y 轴对称点的性质得出a ,b 的值,进而得出答案.【详解】解:∵点(),1P a 与点()5,B b 关于y 轴对称,∴a=-5,b=1,∴a+b=-5+1=-4,故答案选:B .【点睛】本题考查关于y 轴对称点的坐标特点,关键是掌握点的坐标的变化规律.6.C 【解析】【分析】根据多边形的外角和为360°进行解答即可.【详解】解:∵多边形的外角和为360°∴十二边形的外角和是360°.故选:C.【点睛】本题考查多边形的内角和与外角和的求法,掌握多边形的外角和为360°是解题的关键.7.B【解析】【分析】根据平行线的性质推出∠B=∠DCE,再根据全等三角形的判定进行判断即可.【详解】解:∵点C是BE的中点,∴BC=CE,∵AB∥CD,∴∠B=∠DCE,A、根据SAS证△ABC≌△DCE,故本选项错误;B、∵∠ACB=∠E,CB=CE,∠B=∠DCE,∴△ABC≌△DCE(ASA),故本选项正确;C、根据AAS证三角形全等,故本选项错误;D、根据条件不能证△ABC和△DCE全等,故本选项错误.故选:B.【点睛】本题考查了平行线的性质,全等三角形的判定,灵活运用全等三角形的判定定理进行推理是解此题的关键.8.D【解析】【分析】过P作PD⊥OB于D,则此时PD长最小,根据角平分线的性质求出此时PD的长度,再逐个判断即可.【详解】解:过P 作PD ⊥OB 于D ,则此时PD 长最小,∵OP 平分∠AOB ,PC ⊥OA ,∴PD=PC ,∵PC=5cm ,∴PD=5(cm ),即PD 的最小值是5cm ,∴选项A 、选项B 、选项C 都不符合题意,只有选项D 符合题意,故选:D .【点睛】本题考查了角平分线的性质和垂线段最短,注意:垂线段最短,角平分线上的点到角两边的距离相等.9.D 【解析】【分析】(1)根据三角形中线的性质可直接得出;(2)连接CO ,利用中线性质及各三角形面积间的关系,得出2ABO BOD DOEC S S S ∆∆==四边形,然后利用三角形等高及面积比,即可证明;(3)根据(2)即可得.【详解】(1)∵AD 和BE 是ABC ∆的中线,∴12ABE ABC S S ∆∆=,12ABD ABC S S ∆∆=,∴ABE ABD S S ∆∆=,故(1)正确;(2)连接CO ,∵E 是AC 中点,∴AOECOE S S ∆∆=,又∵12ABE ABD ABC S S S ∆∆∆==,∴BOD AOE COD S S S ∆∆∆==,∴COD COE DOEC S S S ∆∆=+四边形,又∵12ABE ADC ABC S S S ∆∆∆==,∴ABE AOE ADC AOE S S S S ∆∆∆∆-=-,即:2ABO BOD DOEC S S S ∆∆==四边形,∵ABO ∆与BOD ∆等高,面积比为2:1,∴三角形的底边比,即:AO :OD=2:1,∴2AO OD =,故(2)正确;(3)在(2)中已经证明,故(3)正确.故选:D .【点睛】题目主要考察三角形中线的性质,理解中线的性质及理清题中各面积间的关系是解题关键.10.D 【解析】【详解】解:∵∠B=∠DEF ,AB=DE ,∴添加∠A=∠D ,利用ASA 可得△ABC ≌△DEF ;∴添加BC=EF ,利用SAS 可得△ABC ≌△DEF ;∴添加∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ;故选:D.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.--11.(1,2)【解析】【分析】利用平面直角坐标系点对称的性质求解.【详解】解:关于x轴对称点的坐标是横坐标不变纵坐标变为原来的相反数可知,A-关于x轴对称点的坐标是(1,2)(1,2)--.--.故答案是:(1,2)【点睛】本题考查点对称的性质,解题的关键是掌握坐标关于x轴对称的变化规律,即关于x轴对称点的坐标是横坐标不变纵坐标变为原来的相反数.12.12.【解析】【分析】正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角的个数,外角的个数就是多边形的边数.【详解】解:这个正多边形的边数:360°÷30°=12.故答案为:12.【点睛】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.13.稳定性【解析】【分析】当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.【详解】解:根据题意可得,自行车的三角形车架,这是利用了三角形的稳定性,故答案为:稳定性.【点睛】本题考查了三角形的稳定性的应用,解题的关键是掌握三角形具有稳定性,这一特性主要应用在实际生活中.14.7【解析】【分析】根据DE 是AB 的垂直平分线可得AD BD =,结合BCD △的周长为17cm 可得结论.【详解】∵DE 是AB 的垂直平分线,∴AD BD =,∵BCD △的周长为17cm ,∴17(cm)BC CD BD BC CD AD BC AC ++=++=+=,又∵10cm AB AC ==,∴()17107cm BC =-=.故答案为:7.【点睛】本题考查了垂直平分线的性质,熟知垂直平分线上的任意一点到两端点的距离相等是解题的关键.15.2c【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,得到0a b c -+>,0a b c --<,再根据绝对值的性质进行化简计算.【详解】解:根据三角形的三边关系,得a cb +>,a b c-<0a b c ∴-+>,0a b c --<∴原式()2a b c a b c c=-+---=故答案为:2c16.4【解析】由角平分线的性质可知CD=DE=3,根据线段的和差即可得到结论.【详解】解:∵AD 平分∠BAC ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵DE=3,∴CD=3,∴BD=BC-CD=7-3=4.故答案为:4.17.①②④【解析】由ASA 证明BDE ADF ∆≅∆,得出BE=AF ,DE=DF ,可判断出①②正确;再根据BE+CF=AF+AE,利用三角形两边之和大于第三边,即可判定③错误;根据全等三角形的面积相等可得BDE ADF S S ∆∆≅,从而求出S 四边形AEDF =21122ABC S AD ∆=,判断出④正确.【详解】∵在Rt △ABC 中,AB =AC ,点D 为BC 中点∴45,B DAC AD BD CD∠=∠=︒==∵90MDN ∠=︒90BDE ADE ADF ADE ∴∠+∠=∠+∠=︒∴DDE ADF∠=∠∴()BDE ADF ASA ∆≅∆,故①正确∴BE AF=∴AE CF =,故②正确∴BE CF BE AE AB +=+==∵,EF BD ED=>∴BE CF EF +>,故③错误∵BDE ADF∆≅∆∴S 四边形AEDF =21111112222222ABC S BC AD AD AD AD ∆=⨯⨯⨯=⨯⨯⨯=,故④正确;故答案为①②④18.见解析【解析】由AB ∥CD ,推出ABE DCF ∠=∠,再证明BE CF =,即可依据SAS 证明ABE △≌DFC △,由此得到结论.【详解】证明:∵AB ∥CD ,∴ABE DCF ∠=∠,∵CE BF=∴CE EF BF EF +=+,即BE CF =,在ABE △和DFC △中,AB CD ABE DCF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴()ABE DFC SAS ≌△△,∴AE DF =.19.70°【解析】根据外角的性质,得出∠ABF ,再由角平分线的定义得出∠CBF 的度数,根据三角形的内角和定理得出∠C 的度数.【详解】解:∵BF 平分∠ABC 交AC 于点F ,∴∠ABF=∠CBF ,∵∠BAC=90°,∠BFC=100°,∴∠ABF=100°-90°=10°,∴∠CBF=10°,∴∠C=180°-100°-10°=70°.20.见解析【解析】首先以A 点为圆心,适当长为半径作圆弧,交边AC 和AB 于两点,再分别以这两点为圆心,大于其长度一半的距离为半径作圆弧,交于∠BAC 内部一点,最后连接A 点和此点的射线交BC 边于D 点,线段AD 即为所求.【详解】解:如图所示,线段AD 即为所求.【点睛】本题考查作三角形的角平分线,理解并掌握角平分线的画法和原理是解题关键.21.(1)见解析(2)见解析(3)()12,1B (4)4【解析】【分析】(1)直接根据点A ,C 的坐标分别为()4,5-,()1,3-,建立坐标系即可;(2)先画出ABC 各顶点关于y 轴的对称点,然后顺次连接各点即可;(3)结合已经作出的坐标轴,直接写出点坐标即可;(4)运用割补法求解即可.(1)如图所示,(2)如图所示,(3)由图可知,()12,1B ;(4)11134242123124134222ABC S =⨯-⨯⨯-⨯⨯-⨯=---=△【点睛】本题考查建立平面直角坐标系,以及坐标系中的轴对称变化等,掌握根据两点建立平面直角坐标系的方法,以及轴对称变化的性质和特点是解题关键.22.(1)见详解;(2)见详解【解析】【分析】(1)由题意得出∠BAD =∠CAE ,根据SAS 可得出△AEC ≌△ADB ;(2)由全等三角形的性质得出∠ACE =∠ABD ,则可得出结论.【详解】(1)证明:∵AB ⊥AC ,AD ⊥AE ,∴∠BAC =∠DAE=90°,∴∠BAC +∠BAE =∠DAE +∠BAE ,∴∠BAD =∠CAE ,在△BAD 与△CAE 中,AB ACBAD CAE AD AE⎧⎪∠∠⎨⎪⎩===,∴△ADB ≌△AEC(SAS);(2)如图,设BD 和CE 交于点F .由(1)知,△ADB ≌△AEC ,∴∠ACE =∠ABD ,∵∠BAC =90°,∴∠CBD +∠BCE =∠ABC +∠ACB =90°,∴∠BFC =90°,∴DB ⊥EC.【点睛】本题考查了全等三角形的判定和性质,判断出△ADB ≌△AEC 是解本题的关键.23.(1)见解析;(2)见解析【解析】【分析】(1)根据“AAS”即可证明△ABE ≌△CAF ;(2)利用全等三角形的性质-对应边相等就可以证明题目的结论.【详解】证明:(1)∵BE ⊥EA ,CF ⊥AF ,∴∠BAC=∠BEA=∠AFC=90°,∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,∴∠CAF=∠EBA ,在△BEA 和△AFC 中,90BEA AFC EBA CAF AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CAF (AAS );(2)由(1)知△ABE ≌△CAF ,∴EA=FC ,BE=AF .∴EF=AE+EA=BE+CF .【点睛】本题主要考查了全等三角形的性质与判定,利用它们解决问题,经常用全等来证线段和的问题.24.证明见解析.【解析】【分析】根据平行线性质求出∠B=∠C ,再求出BE=CF ,根据SAS 推出两三角形全等即可.【详解】证明:∵AB ∥CD∴∠B =∠C∵BF=CE∴BE=C F在△ABC 和△DCB 中AB CD B C BE C F ==⎧⎪∠∠⎨⎪=⎩∴△ABE ≌△DCF (SAS)【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.25.(1)60°;(2)90°-12n°;(3)∠BGO-∠ACF=50°【解析】【分析】(1)根据三角形内角和定理求出∠BAO+∠ABO,根据角平分线的定义、三角形的外角性质计算,得到答案;(2)仿照(1)的解法解答;(3)根据平行线的性质得到∠ACF=∠CAG,根据(2)的结论解答.【详解】解:(1)∵∠MON=60°,∴∠BAO+∠ABO=120°,∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∴∠CBA+∠CAB=12(∠ABO+∠BAO)=60°,∴∠ACG=∠CBA+∠CAB=60°,故答案为:60°;(2)∵∠MON=n°,∴∠BAO+∠ABO=180°-n°,∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∴∠CBA+∠CAB=12(∠ABO+∠BAO)=90°-12n°,∴∠ACG=∠CBA+∠CAB=90°-12 n°;(3)∵CF∥OA,∴∠ACF=∠CAG,∴∠BGO-∠ACF=∠BGO-∠CAG=∠ACG,由(2)得:∠ACG=90°-12×80°=50°.∴∠BGO-∠ACF=50°.【点睛】本题考查的是角平分线的定义、平行线的性质、三角形的外角性质,掌握两直线平行、内错角相等是解题的关键.。

八年级上册数学期中复习试题大全

八年级上册数学期中复习试题大全

八年级上册数学期中复习试题大全数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

下面是为大家整理的关于八年级上册数学期中复习试题,希望对您有所帮助!八年级数学期中复习试卷一.选择题1.如图所示,图中不是轴对称图形的是( )2、下列图形:①三角形,②线段,③正方形,④直角.其中是轴对称图形的个数是( )A.4个B.3个C.2个D.1个3、下列图形是轴对称图形的有( )A:1个 B:2个 C:3个 D:4个4.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为( )A.72°B.36°C.60°D.82°5.已知A,B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A,B关于x轴对称;②A,B关于y轴对称;③A,B关于原点对称;④A,B之间的距离为4,其中正确的有( )A.1个B.2个C.3个D.4个5.如图,在△ABC中,AB=AC,∠A=40°,CD⊥AB于D,则∠DCB等于( )A.70°B.50°C.40°D.20°6.AD是△ABC的角平分线且交BC于D,过点D作DE⊥AB于E,DF⊥AC于F•,则下列结论不一定正确的是( ) A.DE=DF B.BD=CD C.AE=AF D.∠ADE=∠ADF7.三角形中,到三边距离相等的点是( )A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点。

8.如图,∠E=∠F=90°,∠B=∠C,AE=AF,则下列结论:①∠1=∠2;②BE=CF; ③CD=DN;④△ACN≌△ABM,其中正确的有( )A.1个B.2个C.3个D.4个9.等腰三角形ABC在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标能确定的是( )A.横坐标B.纵坐标C.横坐标及纵坐标D.横坐标或纵坐标10.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是( )A.∠M=∠N B. AM‖CN C.AB=CD D. AM=CN11.若△ABC≌△DEF,∠A=80°,∠B=40°,那么∠F的度数是( )A.80° B:40° C:60° D:120°12.如图:OC平分∠AOB,CD⊥OA于D,CE⊥OB于E,CD=3㎝,则CE的长度为( )A.2㎝ B.3㎝ C.4㎝ D.5㎝13.点M(—1,2)关于y轴对称的点的坐标为( )A.(-1,-2)B.(1,2)C.(1,-2)D.(2,-1)14.等腰三角形的一边长是6,另一边长是12,则周长为( )A.24B.30C.24或30D.1815.如图:DE是 ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则 EBC的周长为( )厘米 A.16 B.18 C.26 D.2816.下列关于等边三角形的说法正确的有( )①等边三角形的三个角相等,并且每一个角都是60°;②三边相等的三角形是等边三角形;③三角相等的三角形是等边三角形;④有一个角是60°的等腰三角形是等边三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上期期终考试试题
数学
亲爱的同学,你好!今天是展示你的学习成果和才能的时候了,请你仔细审题,认真作答, 发挥自己的正常水平,轻松一点,相信自己的实力!本试卷满分为120分,时量为120分钟,共6页. 请你将选择题和填空题做在答题卷上,写在试题卷上无效. 一.选择题(本题共10个小题,每小题3分,满分30分) 1.如果一个数的平方根等于这个数本身,那么这个数是( )
A .0
B .1
C . -1
D .±1
2.在实数2
3
-
,0,35,π
) A .1个
B .2个
C .3个
D .4个
3.下列各点中在函数1
12
y x =
+的图象上的点是( ) A .(2,1) B .(2,0) C .(-2,1) D .(-2,0)
4.直线y=5x -2经过第( )象限.
A .一、二、三
B .一、二、四
C .一、三、四
D .二、三、四 5.你一定听说过乌鸦喝水的故事吧!一个窄口瓶中盛了一些水,乌鸦想喝,但是够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水的高度随着石子的增多而升高,乌鸦喝到了水.但还没解渴,瓶中的水就又下降到够不着的高度,乌鸦只好又去衔些小石子放入瓶中,水面又升高了,乌鸦终于喝足了水飞走了.如果设衔入瓶中的石子的体积为x,瓶中水面的高度为y,下面能大致表示这个故事情节的图象是( )
A. B. C. D.
6.边长为下列各组数的三角形中,不是直角三角形的为( )
A. 1、2、5
B. 8 、 15 、17
C. 12、16、20
D. 7、12、15 7.下列从左到右的变形中,不属于因式分解的是( )
A. 5
4
4
(1)x x x x +=+ B. 2
242(2)a ab a a b -+=-- C. ()mx my xy m x y xy ++=++ D. 2
2
()()a b a b a b -=+-
第9题图 第8题图
C
B ′
l
8.如下图所示,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B 的度数为( )
A .100o
B .90o
C .50o
D . 30o
9.如上图所示,已知AB=A ′B ′,∠A=∠A ′,若使△ABC ≌△A ′B ′C ′, 还需补充的条件是( )
A .∠B=∠
B ′ B .∠C=∠
C ′ C .AC= A ′C ′
D .以上都对
10.甲、乙两人赛跑,所跑路程S 与时间t 之间的函数关系如下图所示,小王根据图象得到如下四 个信息,其中错误的是( )
A .这是一次1500m 赛跑
B .甲、乙两人同时起跑
C .甲、乙两人中先到达终点的是乙
D .甲在这次赛跑中的速度为5m/s
二.填空题(本题共10个小题,每小题3分,满分30分)
11.25
的平方根是 ;-8的立方根是
;的相反数是 12.比较大小:13.在直角坐标系中,点P (-3,-2)在第 象限.
14.已知一次函数y=kx+2,当k 0(填“<”、“=”或“>
15.已知函数y kx b =+
和y mx n =+的图象如右,
则关于x 、y 的方程组y kx b
y mx n
=+⎧⎨
=+⎩的解是_______
16.如下图,以左边图案的中心为旋转中心,将图案按 时针方向旋转. 17.如下图,在Rt △ABC 中,∠C=90°,∠B=30°,AC=1,则AB=
18.如上图,已知A D ∠=∠,要判定△ABC ≌△DCB ,只需添加一个条件:____________________ 19.近似数0.03201有 个有效数字.
20.为了解秦兵马俑的高度状况,考古工作者随机调查了36尊兵马俑的高度(单位:厘米)如下: 178 172 181 184 184 187 187 190 190 175 181 181 187 190 193 178 181 184 184 184 187 187 190 193 178 181 181 184 187 187 184 187 187 190 190 196在这里,兵马俑的高度的极差是 ;高度是187的频数是 ,频率是
第16题图
第17题图
A
D
B
C
第18题图
八年级上期期终考试答题卷
数学
一.
二.填空题(本题共10个小题,每小题3分,满分30分)
11.___________ ___________ ___________ 12.___________ 13. ___________
14. ___________ 15. ___________ 16.___________ 17.___________ 18. ___________
19. ___________ 20. ___________ ___________ ___________
三.解答题(本题共12个小题,满分60分) 21.(本小题满分8分)把下列多项式因式分解:
① 2mx -4my ② a 2
-9b 2
= = ③ x 2
+2xy+y 2
④ mx 2
-4my 2
= = = 22.(本小题满分3分)计算: ()
3
2
2
8
1
442⨯+--)( 解:原式=
=
=
23.(本小题满分4分)尺规作图(不写作法,但要求保留作图痕迹,写出结论)
①作∠AOB 的平分线OC ②以线段a 为底边,以线段h 为底边上的高,作等腰△ABC
B
A
O h
a
24.(本小题满分4分)如图,在平面直角坐标系中,已知
①求出△ABC 的面积S=
②在图中作出△ABC 关于y 轴的对称图形△A
1B 1C 1.
③写出点A1和点C1的坐标.
25.(本小题满分4分)
调查内容是“你最喜欢的自由活动项目是什么”,整理收集到的数据,•绘制成直方图,如图所示. ①喜欢“踢毽子”的学生有 人,并在图中将“踢毽子”部分的条图形补充完整. ②喜欢“跳绳”的频率是
③该校共有800名学生,估计喜欢“跳绳”的学生有 人.
26.(本小题满分4分) 如图,已知 AB=CD ,BC=DA ,试问:∠B 与∠D 相等吗?请你说明理由.
27.(本小题满分4分)如图,已知AD 是∠BAC 的平分线,且AB=AC ,求证: DB=DC
A
D
C
B
D C
B
A
2
1
28.(本小题满分5分)已知一次函数y kx b =+的图象经过点(-2,0)和(0,4), ①画出该函数的图象
②求这个函数的解析式 解:
③点S (9,1y )、P (-6,2y )在这个函数图象上, 试比较1y 、2y 的大小:1y 2y
29.(本小题满分5分)某长途客运汽车公司规定乘客可免费随身携带一定重量的行李,如果超过 一定的重量,则需要购买行李票,行李费y (元)是行李重量x (kg )的一次函数,其图象如下, ①求y 与x 之间的函数关系式
②求乘客最多可免费随身携带多少千克的行李 解:①

30.(本小题满分5分) 小明的爷爷在山坡上开辟了一块四边形的地准备种树,经过测量得到 AC ⊥AB ,CD ⊥CB ,AB=3m ,AC=4m, BD=13m,请你帮他计算这块地的面积S.
o
-4
-2
-2
4
2
4
2y
x
D
C
B
A
31.(本小题满分6分) 某单位计划春节期间组织员工到外地旅游,估计人数在6~15人之间.甲、乙两旅行社的服务质量相同,且对外报价都是200元/人.该单位联系时,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示,可先免去一位游客的旅游费用,其余游客九折优惠. ①分别写出两旅行社所报旅游费用y (元)与人数x (个)之间的函数表达式. ②若有11人参加旅游,选择哪家旅行社费用少些? ③人数为多少时选择甲或乙旅行社的费用相同? 解:①甲旅行社:y 甲= =
乙旅行社:y 乙= =


32.(本小题满分8分)如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,O 是BC 的中点,
①直接写出点O 到△ABC 的三个顶点的距离OA 、OB 、OC 之间的大小关系: ____________________ ②如果点M 、N 分别在线段AB 、AC 上移动,在移动过程中始终保持AN=BM ,请判断△MON 的形状, 并说明理由.
N
M O
C
B
A。

相关文档
最新文档